1
|
Nys K, Cuypers B, Berghmans H, Hammerschmid D, Moens L, Dewilde S, Van Doorslaer S. Surprising differences in the respiratory protein of insects: A spectroscopic study of haemoglobin from the European honeybee and the malaria mosquito. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140413. [PMID: 32179182 DOI: 10.1016/j.bbapap.2020.140413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Only recently it was discovered that haemoglobin (Hb) belongs to the standard gene repertoire of insects, although their tracheal system is used for respiration. A classical oxygen-carrying function of Hb is only obvious for hexapods living in hypoxic environments. In other insect species, including the common fruit fly Drosophila melanogaster, the physiological role of Hb is yet unclear. Here, we study recombinant haemoglobin from the European honeybee Apis mellifera (Ame) and the malaria mosquito Anopheles gambiae (Aga). Spectroscopic evidence shows that both proteins can be classified as hexacoordinate Hbs with a strong affinity for the distal histidine. AgaHb1 is proposed to play a role in oxygen transport or sensing based on its multimeric state, slow autoxidation, and small but significant amount of five-coordinated haem in the deoxy ferrous form. AmeHb appears to behave more like vertebrate neuroglobin with a complex function given its diversified distribution in the genome.
Collapse
Affiliation(s)
- Kevin Nys
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, Belgium.
| | - Bert Cuypers
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Herald Berghmans
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Dietmar Hammerschmid
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Luc Moens
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | - Sylvia Dewilde
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium.
| | | |
Collapse
|
2
|
Van Doorslaer S, Cuypers B. Electron paramagnetic resonance of globin proteins – a successful match between spectroscopic development and protein research. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1392629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Bert Cuypers
- Department of Physics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Bernal-Bayard P, Puerto-Galán L, Yruela I, García-Rubio I, Castell C, Ortega JM, Alonso PJ, Roncel M, Martínez JI, Hervás M, Navarro JA. The photosynthetic cytochrome c 550 from the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2017; 133:273-287. [PMID: 28032235 DOI: 10.1007/s11120-016-0327-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
The photosynthetic cytochrome c 550 from the marine diatom Phaeodactylum tricornutum has been purified and characterized. Cytochrome c 550 is mostly obtained from the soluble cell extract in relatively large amounts. In addition, the protein appeared to be truncated in the last hydrophobic residues of the C-terminus, both in the soluble cytochrome c 550 and in the protein extracted from the membrane fraction, as deduced by mass spectrometry analysis and the comparison with the gene sequence. Interestingly, it has been described that the C-terminus of cytochrome c 550 forms a hydrophobic finger involved in the interaction with photosystem II in cyanobacteria. Cytochrome c 550 was almost absent in solubilized photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, thus suggesting a lower affinity of cytochrome c 550 for the photosystem II complex. Under iron-limiting conditions the amount of cytochrome c 550 decreases up to about 45% as compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome c 550 has been characterized using continuous wave EPR and pulse techniques, including HYSCORE, and the obtained results have been interpreted in terms of the electrostatic charge distribution in the surroundings of the heme centre.
Collapse
Affiliation(s)
- Pilar Bernal-Bayard
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Leonor Puerto-Galán
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | | | - Inés García-Rubio
- Centro Universitario de la Defensa, Zaragoza, Spain
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Carmen Castell
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José M Ortega
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Pablo J Alonso
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza & CSIC, Zaragoza, Spain
| | - Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Jesús I Martínez
- Centro Universitario de la Defensa, Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza & CSIC, Zaragoza, Spain
| | - Manuel Hervás
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José A Navarro
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla & CSIC, Américo Vespucio 49, 41092, Sevilla, Spain.
| |
Collapse
|
4
|
Van Doorslaer S. Understanding heme proteins with hyperfine spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:79-88. [PMID: 28579104 DOI: 10.1016/j.jmr.2017.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 06/07/2023]
Abstract
Heme proteins are versatile proteins that are involved in a large number of biological processes. Many spectroscopic methods are used to gain insight into the different mechanistic processes governing heme-protein functions. Since many (intermediate) states of heme proteins are paramagnetic, electron paramagnetic resonance (EPR) methods, such as hyperfine spectroscopy, offer unique tools for these investigations. This perspective gives an overview of the use of state-of-the-art hyperfine spectroscopy in heme research, focusing on the advantages, limits and challenges of the different techniques.
Collapse
Affiliation(s)
- Sabine Van Doorslaer
- BIMEF Laboratory, Department of Physics, University of Antwerp, B-2610 Antwerp, Belgium.
| |
Collapse
|
5
|
Cuypers B, Vermeylen S, Hammerschmid D, Trashin S, Rahemi V, Konijnenberg A, De Schutter A, Cheng CHC, Giordano D, Verde C, De Wael K, Sobott F, Dewilde S, Van Doorslaer S. Antarctic fish versus human cytoglobins - The same but yet so different. J Inorg Biochem 2017; 173:66-78. [PMID: 28501743 DOI: 10.1016/j.jinorgbio.2017.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/23/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
The cytoglobins of the Antarctic fish Chaenocephalus aceratus and Dissostichus mawsoni have many features in common with human cytoglobin. These cytoglobins are heme proteins in which the ferric and ferrous forms have a characteristic hexacoordination of the heme iron, i.e. axial ligation of two endogenous histidine residues, as confirmed by electron paramagnetic resonance, resonance Raman and optical absorption spectroscopy. The combined spectroscopic analysis revealed only small variations in the heme-pocket structure, in line with the small variations observed for the redox potential. Nevertheless, some striking differences were also discovered. Resonance Raman spectroscopy showed that the stabilization of an exogenous heme ligand, such as CO, occurs differently in human cytoglobin in comparison with Antarctic fish cytoglobins. Furthermore, while it has been extensively reported that human cytoglobin is essentially monomeric and can form an intramolecular disulfide bridge that can influence the ligand binding kinetics, 3D modeling of the Antarctic fish cytoglobins indicates that the cysteine residues are too far apart to form such an intramolecular bridge. Moreover, gel filtration and mass spectrometry reveal the occurrence of non-covalent multimers (up to pentamers) in the Antarctic fish cytoglobins that are formed at low concentrations. Stabilization of these oligomers by disulfide-bridge formation is possible, but not essential. If intermolecular disulfide bridges are formed, they influence the heme-pocket structure, as is shown by EPR measurements.
Collapse
Affiliation(s)
- Bert Cuypers
- BIMEF Laboratory, Department of Physics, University of Antwerp, Belgium
| | - Stijn Vermeylen
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Dietmar Hammerschmid
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium; BAMS Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Stanislav Trashin
- AXES Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Vanoushe Rahemi
- AXES Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | | | - Amy De Schutter
- BIMEF Laboratory, Department of Physics, University of Antwerp, Belgium
| | | | - Daniela Giordano
- Institute of Biosciences and BioResources, CNR, Naples, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, CNR, Naples, Italy; Department of Biology, University Roma 3, Rome, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Karolien De Wael
- AXES Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Frank Sobott
- BAMS Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Sylvia Dewilde
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium
| | | |
Collapse
|
6
|
Zhao C, Du W. Dynamic features of carboxy cytoglobin distal mutants investigated by molecular dynamics simulations. J Biol Inorg Chem 2016; 21:251-61. [DOI: 10.1007/s00775-016-1334-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023]
|
7
|
Zhao C, Zhang B, Du W. Effects of distal mutation on the dynamic properties of carboxycytoglobin: a molecular dynamics simulation study. J Biol Inorg Chem 2013; 18:947-55. [DOI: 10.1007/s00775-013-1041-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/26/2013] [Indexed: 11/29/2022]
|
8
|
An N-myristoylated globin with a redox-sensing function that regulates the defecation cycle in Caenorhabditis elegans. PLoS One 2012; 7:e48768. [PMID: 23251335 PMCID: PMC3520999 DOI: 10.1371/journal.pone.0048768] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/04/2012] [Indexed: 01/17/2023] Open
Abstract
Globins occur in all kingdoms of life where they fulfill a wide variety of functions. In the past they used to be primarily characterized as oxygen transport/storage proteins, but since the discovery of new members of the globin family like neuroglobin and cytoglobin, more diverse and complex functions have been assigned to this heterogeneous family. Here we propose a function for a membrane-bound globin of C. elegans, GLB-26. This globin was predicted to be myristoylated at its N-terminus, a post-translational modification only recently described in the globin family. In vivo, this globin is found in the membrane of the head mesodermal cell and in the tail stomato-intestinal and anal depressor muscle cells. Since GLB-26 is almost directly oxidized when exposed to oxygen, we postulate a possible function as electron transfer protein. Phenotypical studies show that GLB-26 takes part in regulating the length of the defecation cycle in C. elegans under oxidative stress conditions.
Collapse
|
9
|
Zhang B, Xu J, Li Y, Du W, Fang W. Molecular dynamics simulation of carboxy and deoxy human cytoglobin in solution. J Inorg Biochem 2011; 105:949-56. [DOI: 10.1016/j.jinorgbio.2011.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 11/30/2022]
|
10
|
Lyubenova S, Maly T, Zwicker K, Brandt U, Ludwig B, Prisner T. Multifrequency pulsed electron paramagnetic resonance on metalloproteins. Acc Chem Res 2010; 43:181-9. [PMID: 19842617 DOI: 10.1021/ar900050d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metalloproteins often contain metal centers that are paramagnetic in some functional state of the protein; hence electron paramagnetic resonance (EPR) spectroscopy can be a powerful tool for studying protein structure and function. Dipolar spectroscopy allows the determination of the dipole-dipole interactions between metal centers in protein complexes, revealing the structural arrangement of different paramagnetic centers at distances of up to 8 nm. Hyperfine spectroscopy can be used to measure the interaction between an unpaired electron spin and nuclear spins within a distance of 0.8 nm; it therefore permits the characterization of the local structure of the paramagnetic center's ligand sphere with very high precision. In this Account, we review our laboratory's recent applications of both dipolar and hyperfine pulsed EPR methods to metalloproteins. We used pulsed dipolar relaxation methods to investigate the complex of cytochrome c and cytochrome c oxidase, a noncovalent protein-protein complex involved in mitochondrial electron-transfer reactions. Hyperfine sublevel correlation spectroscopy (HYSCORE) was used to study the ligand sphere of iron-sulfur clusters in complex I of the mitochondrial respiratory chain and substrate binding to the molybdenum enzyme polysulfide reductase. These examples demonstrate the potential of the two techniques; however, they also highlight the difficulties of data interpretation when several paramagnetic species with overlapping spectra are present in the protein. In such cases, further approaches and data are very useful to enhance the information content. Relaxation filtered hyperfine spectroscopy (REFINE) can be used to separate the individual components of overlapping paramagnetic species on the basis of differences in their longitudinal relaxation rates; it is applicable to any kind of pulsed hyperfine or dipolar spectroscopy. Here, we show that the spectra of the iron-sulfur clusters in complex I can be separated by this method, allowing us to obtain hyperfine (and dipolar) information from the individual species. Furthermore, performing pulsed EPR experiments at different magnetic fields is another important tool to disentangle the spectral components in such complex systems. Despite the fact that high magnetic fields do not usually lead to better spectral separation for metal centers, they provide additional information about the relative orientation of different paramagnetic centers. Our high-field EPR studies on cytochrome c oxidase reveal essential information regarding the structural arrangement of the binuclear Cu(A) center with respect to both the manganese ion within the enzyme and the cytochrome in the protein-protein complex with cytochrome c.
Collapse
Affiliation(s)
- Sevdalina Lyubenova
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Thorsten Maly
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Klaus Zwicker
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Ulrich Brandt
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Bernd Ludwig
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Thomas Prisner
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Ioanitescu AI, Van Doorslaer S, Dewilde S, Moens L. Unusual flexibility of distal and proximal histidine residues in the haem pocket of Drosophila melanogaster haemoglobin. Metallomics 2009; 1:256-64. [PMID: 21305121 DOI: 10.1039/b902059b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several pH-dependent low-spin ferric haem forms are identified in a frozen solution of the ferric ¹²¹Cys→Ser mutant of Drosophila melanogaster haemoglobin (DmHb1*) using electron paramagnetic resonance (EPR) techniques. Different forms with EPR parameters typical of bis-histidine coordinated haem iron centers were observed. Strong pH-dependent changes in the EPR signatures were observed related to changes in the haem pocket. The pulsed EPR data indicate that both the distal and proximal histidine exhibit a large libration around the Fe-N(His) axis. The resonance Raman spectra of the CO-ligated ferrous form of Drosophila melanogaster haemoglobin are typical of an open conformation, with little stabilization of the CO ligand by the surrounding amino-acid residues. The EPR data of the cyanide-ligated ferric DmHb1* indicates a close similarity with cyanide-ligated ferric myoglobin. The structural characteristics of DmHb1* are found to clearly differ from those of other bis-histidine-coordinated globins.
Collapse
|
12
|
García-Rubio I, Fittipaldi M, Trandafir F, Van Doorslaer S. A Multifrequency HYSCORE Study of Weakly Coupled Nuclei in Frozen Solutions of High-Spin Aquometmyoglobin. Inorg Chem 2008; 47:11294-304. [DOI: 10.1021/ic8016886] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Inés García-Rubio
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zürich, Switzerland, and Department of Physics, University of Antwerp, B-2610 Wilrijk-Antwerp, Belgium
| | - Maria Fittipaldi
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zürich, Switzerland, and Department of Physics, University of Antwerp, B-2610 Wilrijk-Antwerp, Belgium
| | - Florin Trandafir
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zürich, Switzerland, and Department of Physics, University of Antwerp, B-2610 Wilrijk-Antwerp, Belgium
| | - Sabine Van Doorslaer
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zürich, Switzerland, and Department of Physics, University of Antwerp, B-2610 Wilrijk-Antwerp, Belgium
| |
Collapse
|