1
|
Hayes DG, Barth BA, Pingali SV. Effect of equilibration time on the structural gradient in the vertical direction for bicontinuous microemulsions in Winsor-III and -IV systems. SOFT MATTER 2024; 20:6109-6119. [PMID: 38651769 DOI: 10.1039/d3sm01741a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Bicontinuous microemulsions (BMEs), self-assembly systems consisting of oil and water nanodomains separated by surfactant monolayers, have many applications. However, changes in structure and properties of BMEs in the vertical direction can affect BMEs' utility. This study's objective was to determine the effect of equilibration time (τeq) on structural changes in the vertical direction for bicontinuous phases of Winsor-III (WIII) systems in situ or after being isolated, for D2O + H2O/1-dodecane/sodium dodecyl sulfate (SDS)/1-pentanol/NaCl at 22 °C. Small-angle neutron scattering (SANS) measurements were performed using a vertical stage sample environment that precisely aligned samples in the neutron beam. SANS data were fitted by the Teubner-Strey (TS) model and changes in TS-derived parameter values were observed. For 10 min ≤ τeq ≤ 4 h, the effective activity of the bicontinuous phase's surfactant monolayers increased with time at all vertical positions. At short equilibration (τeq = 10 min), small but significant amounts of water and oil were transiently emulsified near the WIII upper liquid-liquid interface. WIII systems underwent a relaxation process after being transferred to narrow 1 mm pathlength cells, resulting in a decrease of surfactant activity for the top half of the bicontinuous phase. For isolated bicontinuous phases, results suggest that SDS was desorbed from the BMEs by quartz near the bottom, while near the top, the water concentration near was relatively high. The results suggest that WIII systems should equilibrate for at least 4 hours after being prepared and transferred to a container that differs in cross sectional area and surfactant behavior in BMEs can change near interfaces.
Collapse
Affiliation(s)
- Douglas G Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, 2506 E.J. Chapman Drive, Knoxville, TN 37996-4531, USA.
| | - Brian A Barth
- Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Dr, Knoxville, TN 37996, USA.
| | | |
Collapse
|
2
|
Lai WC, Liu LJ, Tseng SJ. Green Polymer Electrolytes Prepared by a Cost-Effective Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16492-16501. [PMID: 39046930 DOI: 10.1021/acs.langmuir.4c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The preparation of solid polymer electrolytes (SPEs) using poly(ethylene oxide) (PEO) typically involves incorporating fillers or undergoing chemical modifications to reduce crystallinity and enhance conductivity. PEO with a lower molecular weight, known as polyethylene glycol (PEG), exhibits higher conductivity, despite weaker mechanical strength. It is commonly employed as a plasticizer to improve the conductivity of SPEs or to fabricate PEG-based gel polymer electrolytes (GPEs). In this study, we use a straightforward approach to create innovative SPEs by blending liquid polymer electrolytes (LPEs), particularly low-molecular-weight polyethylene glycol (PEG), with a molecular weight of 400 g/mol, and sustainable poly(l-lactide) (PLLA). Solid PEG/PLLA forms are achieved by introducing 30 wt % of PLLA. Subsequently, the addition of lithium salts results in the development of novel PEG/PLLA SPEs. Another focal point of this study involves incorporating 1,3:2,4-dibenzylidene sorbitol (DBS) into these PEG/PLLA systems. DBS, an organic gelator derived from natural sugars, demonstrates self-assembly, leading to the formation of a nanofibrillar network structure. Leveraging DBS's ability to form organogels in liquid organic environments, we facilitate the transformation of low PLLA content LPEs into innovative solvent-free GPEs. Our prepared PEG/PLLA SPEs exhibited a maximum conductivity value of 4.39 × 10-5 S/cm, approximately five times higher than that of neat PEG (10000 g/mol) SPEs. The ionic conductivity exhibited a declining trend as the content of PLLA and DBS increased. However, there was an improvement in electrochemical stability. Furthermore, the incorporation of PLLA and DBS into electrolytes contributed to enhanced mechanical support and stability within the electrolyte layer. This, in turn, mitigated capacity decay and improved the cycling performance of assembled lithium-ion cells.
Collapse
Affiliation(s)
- Wei-Chi Lai
- Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Road, Tamsui District, New Taipei City 25137, Taiwan
| | - Li-Jie Liu
- Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Road, Tamsui District, New Taipei City 25137, Taiwan
| | - Shen-Jhen Tseng
- Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Road, Tamsui District, New Taipei City 25137, Taiwan
| |
Collapse
|
3
|
Du J, You Y, Reis RL, Kundu SC, Li J. Manipulating supramolecular gels with surfactants: Interfacial and non-interfacial mechanisms. Adv Colloid Interface Sci 2023; 318:102950. [PMID: 37352741 DOI: 10.1016/j.cis.2023.102950] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Gel is a class of self-supporting soft materials with applications in many fields. Fast, controllable gelation, micro/nano structure and suitable rheological properties are essential considerations for the design of gels for specific applications. Many methods can be used to control these parameters, among which the additive approach is convenient as it is a simple physical mixing process with significant advantages, such as avoidance of pH change and external energy fields (ultrasound, UV light and others). Although surfactants are widely used to control the formation of many materials, particularly nanomaterials, their effects on gelation are less known. This review summarizes the studies that utilized different surfactants to control the formation, structure, and properties of molecular and silk fibroin gels. The mechanisms of surfactants, which are interfacial and non-interfacial effects, are classified and discussed. Knowledge and technical gaps are identified, and perspectives for further research are outlined. This review is expected to inspire increasing research interest in using surfactants for designing/fabricating gels with desirable formation kinetics, structure, properties and functionalities.
Collapse
Affiliation(s)
- Juan Du
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Yue You
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia.
| |
Collapse
|
4
|
Ait-Touchente Z, Zine N, Jaffrezic-Renault N, Errachid A, Lebaz N, Fessi H, Elaissari A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101688. [PMID: 37242104 DOI: 10.3390/nano13101688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Microemulsions are novel drug delivery systems that have garnered significant attention in the pharmaceutical research field. These systems possess several desirable characteristics, such as transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to the formulation, characterization, and applications of microemulsions, with a particular emphasis on their potential for cutaneous drug delivery. Microemulsions have shown great promise in overcoming bioavailability concerns and enabling sustained drug delivery. Thus, it is crucial to have a thorough understanding of their formulation and characterization in order to optimize their effectiveness and safety. This review will delve into the different types of microemulsions, their composition, and the factors that affect their stability. Furthermore, the potential of microemulsions as drug delivery systems for skin applications will be discussed. Overall, this review will provide valuable insights into the advantages of microemulsions as drug delivery systems and their potential for improving cutaneous drug delivery.
Collapse
Affiliation(s)
- Zouhair Ait-Touchente
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Noureddine Lebaz
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| |
Collapse
|
5
|
Oehler MA, Hayes DG, D’Souza DH, Senanayake M, Gurumoorthy V, Pingali SV, O’Neill HM, Bras W, Urban VS. Assessment of antimicrobial activity of melittin encapsulated in bicontinuous microemulsions prepared using renewable oils. J SURFACTANTS DETERG 2023; 26:387-399. [PMID: 37470058 PMCID: PMC10353728 DOI: 10.1002/jsde.12654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
The objective of this study is to demonstrate that melittin, a well-studied antimicrobial peptide (AMP), can be solubilized in an active form in bicontinuous microemulsions (BMEs) that employ biocompatible oils. The systems investigated consisted of Winsor-III and -IV BME phases composed of Water/Aerosol-OT (AOT)/Polysorbate 85/isopropyl myristate and a Winsor-IV BME employing Polysorbate 80 and limonene. We found that melittin resided in an α-helix-rich configuration and was in an apolar environment for the AOT/Polysorbate 85 Winsor-III system, suggesting that melittin interacted with the surfactant monolayer and was in an active conformation. An apolar environment was also detected for melittin in the two Winsor-IV systems, but to a lesser extent than the Winsor-III system. Small-angle X-ray scattering analysis indicated that melittin at a concentration of 1.0 g/Laq in the aqueous subphase of the Winsor-IV systems led to the greatest impact on the BME structure (e.g., decrease of quasi-periodic repeat distance and correlation length and induction of interfacial fluidity). The antimicrobial activity of the Polysorbate 80 Winsor-IV system was evaluated against several bacteria prominent in chronic wounds and surgical site infections (SSIs). Melittin-free BMEs inhibited the growth of all tested bacteria due to its oil, limonene, while the inclusion of 1.0 g/Laq of melittin in the BMEs enhanced the activity against several bacteria. A further increase of melittin concentration in the BMEs had no further enhancement. These results demonstrate the potential utility of BMEs as a delivery platform for AMPs and other hydrophilic and lipophilic drugs to inhibit antibiotic-resistant microorganisms in chronic wounds and SSIs.
Collapse
Affiliation(s)
- Madison A. Oehler
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Douglas G. Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Doris H. D’Souza
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Manjula Senanayake
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Hugh M. O’Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Wim Bras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Volker S. Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
6
|
Kirchhof M, Abitaev K, Abouhaileh A, Gugeler K, Frey W, Zens A, Kästner J, Sottmann T, Laschat S. Interplay of Polarity and Confinement in Asymmetric Catalysis with Chiral Rh Diene Complexes in Microemulsions. Chemistry 2021; 27:16853-16870. [PMID: 34664324 PMCID: PMC9299057 DOI: 10.1002/chem.202102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Microemulsions provide a unique opportunity to tailor the polarity and liquid confinement in asymmetric catalysis via nanoscale polar and nonpolar domains separated by a surfactant film. For chiral diene Rh complexes, the influence of counterion and surfactant film on the catalytic activity and enantioselectivity remained elusive. To explore this issue chiral norbornadiene Rh(X) complexes (X=OTf, OTs, OAc, PO2 F2 ) were synthesized and characterized by X-ray crystallography and theoretical calculations. These complexes were used in Rh-catalyzed 1,2-additions of phenylboroxine to N-tosylimine in microemulsions stabilized either exclusively by n-octyl-β-D-glucopyranoside (C8 G1 ) or a C8 G1 -film doped with anionic or cationic surfactants (AOT, SDS and DTAB). The Rh(OAc) complex showed the largest dependence on the composition of the microemulsion, yielding up to 59 % (90 %ee) for the surfactant film doped with 5 wt% of AOT as compared to 52 % (58 %ee) for neat C8 G1 at constant surfactant concentration. Larger domains, determined by SAXS analysis, enabled further increase in yield and selectivity while the reaction rate almost remained constant according to kinetic studies.
Collapse
Affiliation(s)
- Manuel Kirchhof
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Karina Abitaev
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Abdulwahab Abouhaileh
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Katrin Gugeler
- Institut für Theoretische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Wolfgang Frey
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Anna Zens
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Johannes Kästner
- Institut für Theoretische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Thomas Sottmann
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sabine Laschat
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
7
|
Peng K, Preisig N, Sottmann T, Stubenrauch C. From water-rich to oil-rich gelled non-toxic microemulsions. Phys Chem Chem Phys 2021; 23:16855-16867. [PMID: 34328162 DOI: 10.1039/d1cp02522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gelled non-toxic microemulsions have great potential in transdermal drug delivery: the microemulsion provides an optimum solubilizing capacity for drugs and promotes drug permeation through the skin barrier, while the gel network provides mechanical stability. We have formulated such a gelled non-toxic microemulsion consisting of H2O - isopropyl myristate (IPM) - Plantacare 1200 UP (technical-grade alkyl polyglucoside with an average composition of C12G1.4) - 1,2-octanediol in the presence of the low molecular weight gelator (LMWG) 1,3:2,4-dibenzylidene-d-sorbitol (DBS) at an oil-to-water ratio of φ = 0.50. The study at hand aimed to develop gelled non-toxic microemulsions that can contain both oil- and water-soluble drugs and are either water- or oil-based, depending on the application. To accomplish this, we varied the oil-to-water ratio from being water-rich to oil-rich, i.e. 0.2 ≤ φ ≤ 0.8. Phase studies were carried out along the middle phase trajectory, and a suitable LMWG was identified for all φ-ratios. Electrical conductivity measurements showed that the structure can be tuned from water- to oil-continuous by adjusting the amount of 1,2-octanediol and φ-ratios. The existence of the gel network was visualized by freeze-fracture electron microscopy (FFEM) at three different φ-ratios. We found that all systems from φ = 0.35 to φ = 0.80 form strong gels with nearly the same rheological behavior, while the system with φ = 0.20 is a much weaker gel. We attribute this behavior on the one hand to the microemulsion microstructure and on the other hand to the solvent-dependent gelation properties of DBS, which can be described by the Hansen solubility parameters (HSPs).
Collapse
Affiliation(s)
- Ke Peng
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|