1
|
Gopinath T, Kraft A, Shin K, Wood NA, Marassi FM. Solid state NMR spectral editing of histidine, arginine and lysine using Hadamard encoding. JOURNAL OF BIOMOLECULAR NMR 2025; 79:35-45. [PMID: 39881117 DOI: 10.1007/s10858-024-00455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/06/2024] [Indexed: 01/31/2025]
Abstract
The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the 15N spectral frequency dimension. All multi-dimensional 15N-edited solid-state NMR experiments can be acquired using this strategy, thereby accelerating the acquisition of spectra spanning broad frequency bandwidth. Application of these methods to the ferritin nanocage, reveals signals from N atoms from His, Arg, Lys and Trp sidechains, as well as their tightly bound, ordered water molecules. The Hadamard approach adds to the arsenal of spectroscopic approaches for protein NMR signal detection.
Collapse
Affiliation(s)
- Tata Gopinath
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Alyssa Kraft
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Kyungsoo Shin
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nicholas A Wood
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Francesca M Marassi
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
2
|
Xiao H, Wang J, Tan H, Gan Y, Liu W, Zhang Y, Zhang Z, Yang J. Robust Heteronuclear Correlations for Sub-milligram Protein in Ultrafast Magic-Angle Spinning Solid-State NMR. J Am Chem Soc 2025; 147:6384-6389. [PMID: 39953646 DOI: 10.1021/jacs.5c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Proton-detected solid-state nuclear magnetic resonance (ssNMR) under ultrafast magic-angle spinning (MAS) has become a powerful tool for elucidating the structures of proteins with sub-milligram quantities, where establishing 13C-15N correlations is essential. However, traditional 13C-15N cross-polarization (CP), effective at lower MAS frequencies, suffers diminished efficiency under ultrafast MAS conditions. To overcome this limitation, we developed a robust method for selective polarization between insensitive nuclei (SPINE). This approach significantly enhances the heteronuclear 13C-15N correlation efficiency over CP, with gain factors of 1.75 for 13CA-15N and 1.9 and 13CO-15N transfers. SPINE's efficacy was validated on four diverse proteins: the microcrystalline β1 immunoglobulin binding domain of protein G (GB1), the large-conductance mechanosensitive ion channel from Methanosarcina acetivorans (MaMscL), fibrillar septum-forming protein (SepF), and the vertex protein of the β-carboxysome shell (CcmL). This enhancement can reduce the duration of current multidimensional experiments to about one-third of that using a single 13C-15N CP and to about one-tenth with dual 13C-15N transfers. Our findings underscore the practical utility and versatility of SPINE in ssNMR spectroscopy, making it a valuable approach for advancing structural biology studies of sub-milligram protein.
Collapse
Affiliation(s)
- Hang Xiao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Huan Tan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yuefang Gan
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Wenjing Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Zhengfeng Zhang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
3
|
Mammeri NE, Duan P, Hong M. Structures of Δ D421 Truncated Tau Fibrils. J Mol Biol 2025:169051. [PMID: 40021051 DOI: 10.1016/j.jmb.2025.169051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The microtubule-associated protein tau aggregates into pathological β -sheet amyloid fibrils in Alzheimer's disease (AD) and other neurodegenerative diseases. In these aggregates, tau is chemically modified, including abnormal hyperphosphorylation and truncation. Truncation after D421 in the C-terminal domain occurs at early stages of AD. Here we investigate the structures of Δ D421-truncated 0N4R tau fibrils assembled in vitro in the absence of anionic cofactors. Using solid-state NMR spectroscopy and cryoelectron microscopy, we show that Δ D421-truncated 0N4R tau forms homogeneous fibrils whose rigid core adopts a three-layered β -sheet structure that spans R2, R3 and R4 repeats. This structure is essentially identical to that of full-length tau containing phospho-mimetic mutations at the PHF1 epitope in the C-terminal domain. In comparison, a Δ D421-truncated tau that additionally contains three phospho-mimetic mutations at the AT8 epitope in the proline-rich region forms a fibril core that includes the first half of the C-terminal domain, which is excluded from all known pathological tau fibril cores. These results indicate that the posttranslational modification code of tau contains redundancy: both charge modification and truncation of the C-terminal domain promote a three-layered β -sheet structure, which resembles pathological four-repeat tau structures in several tauopathies. In comparison, reducing the positive charges at the AT8 epitope in Δ D421-truncated tau promotes a fibril core that includes an immobilized C-terminal domain. The absence of this structure in tauopathy brains implies that Δ D421 truncation does not occur in conjunction with AT8 phosphorylation in diseased brains.
Collapse
Affiliation(s)
- Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States.
| |
Collapse
|
4
|
Borcik CG, DeZonia B, Ravula T, Harding BD, Garg R, Rienstra CM. OPTO: Automated Optimization for Solid-State NMR Spectroscopy. J Am Chem Soc 2025; 147:3293-3303. [PMID: 39814553 PMCID: PMC11808819 DOI: 10.1021/jacs.4c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
NMR spectroscopy presents boundless opportunities for understanding the structure, dynamics, and function for a broad range of scientific applications. Solid-state NMR (SSNMR), in particular, provides novel insights into biological and material systems that are not amenable to other approaches. However, a major bottleneck is the extent of user training and the difficulty of obtaining reproducible, high-quality experimental results, especially for the sophisticated multidimensional pulse sequences that are essential to provide site-resolved measurements in large biomolecules. Here, we present OPTO, a software operating environment that addresses these challenges and enhances the performance of many types of commonly utilized SSNMR experiments. OPTO is compatible with Varian OpenVnmrJ and Bruker Topspin, with a front-end graphical user interface that presents the instrument operator with access to powerful underlying optimization algorithms, including simplex and grid searches of the dozens of parameter settings required for optimal performance. Therefore, OPTO efficiently leverages instrument time and enables instrument operators to find optimal experimental conditions reliably. We demonstrate examples including improvements in (1) resolution, with an automated, global search of 21 shimming parameters to achieve a 12 parts per billion line width; (2) sensitivity, with searches and refinements of several cross-polarization conditions dependent on 16 parameters in triple resonance experiments; and (3) robustness, with results from protein samples on several spectrometers operating at different magnetic field strengths and magic-angle spinning rates.
Collapse
Affiliation(s)
- Collin G. Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Barry DeZonia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Thirupathi Ravula
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Benjamin D. Harding
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Rajat Garg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Chad M. Rienstra
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53706 USA
| |
Collapse
|
5
|
Gautam I, Yarava JR, Xu Y, Li R, Scott FJ, Mentink-Vigier F, Momany M, Latgé JP, Wang T. Comparative analysis of polysaccharide and cell wall structure in Aspergillus nidulans and Aspergillus fumigatus by solid-state NMR. Carbohydr Polym 2025; 348:122907. [PMID: 39562136 PMCID: PMC11576540 DOI: 10.1016/j.carbpol.2024.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
Invasive aspergillosis poses a significant threat to immunocompromised patients, leading to high mortality rates associated with these infections. Targeting the biosynthesis of cell wall carbohydrates is a promising strategy for antifungal drug development and will be advanced by a molecular-level understanding of the native structures of polysaccharides within their cellular context. Solid-state NMR spectroscopy has recently provided detailed insights into the cell wall organization of Aspergillus fumigatus, but genetic and biochemical evidence highlights species-specific differences among Aspergillus species. In this study, we employed a combination of 13C, 15N, and 1H-detection solid-state NMR, supplemented by Dynamic Nuclear Polarization (DNP), to compare the structural organization of cell wall polymers and their assembly in the cell walls of A. fumigatus and A. nidulans, both of which are key model organisms and human pathogens. The two species exhibited a similar rigid core architecture, consisting of chitin, α-glucan, and β-glucan, which contributed to comparable cell wall properties, including polymer dynamics, water retention, and supramolecular organization. However, differences were observed in the chitin, galactosaminogalactan, protein, and lipid content, as well as in the dynamics of galactomannan and the structure of the glucan matrix.
Collapse
Affiliation(s)
- Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | - Yifan Xu
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Reina Li
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Faith J Scott
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | | | - Michelle Momany
- Fungal Biology Group & Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece; Fungal Respiratory Infections Research Unit and SFR ICAT, University of Angers, France
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
6
|
Gerland L, Diehl A, Erdmann N, Hiller M, Lang C, Teutloff C, Hughes J, Oschkinat H. Changes in Secondary Structure Upon Pr to Pfr Transition in Cyanobacterial Phytochrome Cph1 Detected by DNP NMR. Chemistry 2025; 31:e202402454. [PMID: 39541567 DOI: 10.1002/chem.202402454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Phytochromes perceive subtle changes in the light environment and convert them into biological signals by photoconversion between the red-light absorbing (Pr) and the far-red-absorbing (Pfr) states. In the primitive bacteriophytochromes this includes refolding of a tongue-like hairpin loop close to the chromophore, one strand of an antiparallel β-sheet being replaced by an α-helix. However, the strand sequence in the cyanobacterial phytochrome Cph1 is different from that of previously investigated bacteriophytochromes and has a higher β-sheet propensity. We confirm here the transition experimentally and estimate minimum helix length using dynamic nuclear polarisation (DNP) magic angle spinning NMR. Sample conditions were optimized for protein DNP NMR studies at high field, yielding Boltzmann enhancements ϵB of 19 at an NMR field of 18.801 T. Selective labelling of Trp, Ile, Arg, and Val residues with 13C and 15N enabled filtering for pairs of labelled amino acids by the 3D CANCOCA technique to identify signals of the motif 483Ile-Val-Arg485 (IVR) present in both sheet and helix. Those signals were assigned for the Pfr state of the protein. Based on the chemical shift pattern, we confirm for Cph1 the formation of a helix covering the IVR motif.
Collapse
Affiliation(s)
- Lisa Gerland
- NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Anne Diehl
- NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Natalja Erdmann
- NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Matthias Hiller
- NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Christina Lang
- Plant Physiology, Faculty of Biology and Chemistry, Justus-Liebig-University Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
| | - Christian Teutloff
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jon Hughes
- Plant Physiology, Faculty of Biology and Chemistry, Justus-Liebig-University Giessen, Senckenbergstr. 3, 35390, Giessen, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Hartmut Oschkinat
- NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
7
|
Medeiros-Silva J, Pankratova Y, Sučec I, Dregni AJ, Hong M. Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein. J Am Chem Soc 2025; 147:746-757. [PMID: 39726395 DOI: 10.1021/jacs.4c13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive. Here, we use solid-state NMR spectroscopy to investigate the side chain structure, dynamics, and interactions of five polar residues at the N-terminal entrance of the channel and three polar residues at the C-terminal end. The chemical shifts of the N-terminal Glu8 reveal that the Glu side chain interacts with protons, Ca2+ and two neighboring Thr residues, and adopts distinct motionally averaged conformational ensembles. These polar interactions are sensitive to the presence of negatively charged lipids in the membrane. A T9I mutation, prevalent in the Omicron variants of SARS-CoV-2 E, perturbs these interactions and partially immobilizes the N-terminal segment. Deeper into the channel, two polar residues, Asn15 and Ser16, form interhelical hydrogen bonds in the closed state but become separated by water molecules in the open state. This is manifested by Asn15-Ser16 correlation signals at neutral pH and the loss of these correlations and the appearance of water cross peaks with Ser16 at acidic pH in the presence of Ca2+. Finally, the guanidinium side chain of the C-terminal Arg38 undergoes fast reorientations in the closed state but becomes more restricted in the open state. These results provide evidence for a dynamic and hydrogen-bonded N-terminal polar network that recruits and relays protons and Ca2+ in a lipid-dependent manner. Once inside, the ions permeate past the hydrophobic middle of the transmembrane domain with the help of enhanced hydrophilicity of the C-terminal channel lumen due to the insertion of the Arg38 side chain into the pore.
Collapse
Affiliation(s)
- João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Yanina Pankratova
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Iva Sučec
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Wilson CB, Lee M, Yau WM, Tycko R. Conformations of a low-complexity protein in homogeneous and phase-separated frozen solutions. Biophys J 2024; 123:4097-4114. [PMID: 39497416 PMCID: PMC11628836 DOI: 10.1016/j.bpj.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/13/2024] Open
Abstract
Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below a temperature TLLPS. To investigate whether local conformational distributions are detectably different in the homogeneous (i.e., single-phase) and phase-separated states of FUS-LC, we performed solid-state NMR (ssNMR) measurements on solutions that were frozen on submillisecond timescales after equilibration at temperatures well above (50°C) or well below (4°C) TLLPS. Measurements were performed at 25 K with signal enhancements from dynamic nuclear polarization. Crosspeak patterns in two-dimensional ssNMR spectra of rapidly frozen solutions in which FUS-LC was uniformly 15N,13C labeled were found to be nearly identical for the two states. Similar results were obtained for solutions in which FUS-LC was labeled only at Thr, Tyr, and Gly residues, as well as solutions of a FUS construct in which five specific residues were labeled by ligation of synthetic and recombinant fragments. These experiments show that local conformational distributions are nearly the same in the homogeneous and phase-separated solutions, despite the much greater protein concentrations and more abundant intermolecular interactions within phase-separated, protein-rich "droplets." Comparison of the experimental results with simulations of the sensitivity of two-dimensional ssNMR crosspeaks to changes in populations of β strand-like conformations suggests that changes in conformational distributions are no larger than 5-10%.
Collapse
Affiliation(s)
- C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Myungwoon Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
9
|
Zhang X, Tamaki H, Kikukawa T, Fujiwara T, Matsuki Y. Structural changes of Natronomonas pharaonis halorhodopsin in its late photocycle revealed by solid-state NMR spectroscopy. Biophys Chem 2024; 315:107329. [PMID: 39369577 DOI: 10.1016/j.bpc.2024.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
Natronomonas pharaonis halorhodopsin (NpHR) is a light-driven Cl- inward pump that is widely used as an optogenetic tool. Although NpHR is previously extensively studied, its Cl- uptake process is not well understood from the protein structure perspective, mainly because in crystalline lattice, it has been difficult to analyze the structural changes associated with the Cl- uptake process. In this study, we used solid-state NMR to analyze NpHR both in the Cl--bound and -free states under near-physiological transmembrane condition. Chemical shift perturbation analysis suggested that while the structural change caused by the Cl- depletion is widespread over the NpHR molecule, residues in the extracellular (EC) part of helix D exhibited significant conformational changes that may be related to the Cl- uptake process. By combining photochemical analysis and dynamic nuclear polarization (DNP)-enhanced solid-state NMR measurement on NpHR point mutants for the suggested residues, we confirmed their importance in the Cl- uptake process. In particular, we found the mutation at Ala165 position, located at the trimer interface, to an amino acid with bulky sidechain (A165V) significantly perturbs the late photocycle and disrupts its trimeric assembly in the Cl--free state as well as during the ion-pumping cycle under the photo-irradiated condition. This strongly suggested an outward movement of helix D at EC part, disrupting the trimer integrity. Together with the spectroscopic data and known NpHR crystal structures, we proposed a model that this helix movement is required for creating the Cl- entrance path on the extracellular surface of the protein and is crucial to the Cl- uptake process.
Collapse
Affiliation(s)
- Xin Zhang
- Institute for Protein Research, Osaka University, Japan
| | - Hajime Tamaki
- Institute for Protein Research, Osaka University, Japan
| | | | | | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Japan; Center for Quantum Information and Quantum Biology, Osaka University, Japan.
| |
Collapse
|
10
|
Rodina N, Sarkar R, Tsakalos D, Suladze S, Niu Z, Reif B. Manual and automatic assignment of two different Aβ40 amyloid fibril polymorphs using MAS solid-state NMR spectroscopy. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:201-212. [PMID: 39120652 PMCID: PMC11511749 DOI: 10.1007/s12104-024-10189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Amyloid fibrils from Alzheimer's amyloid-beta peptides (Aβ) are found to be polymorphic. So far, 14 Aβ40 fibril structures have been determined. The mechanism of why one particular protein sequence adopts so many different three-dimensional structures is yet not understood. In this work, we describe the assignment of the NMR chemical shifts of two Alzheimer's disease fibril polymorphs, P1 and P2, which are formed by the amyloid-beta peptide Aβ40. The assignment is based on 13C-detected 3D NCACX and NCOCX experiments MAS solid-state NMR experiments. The fibril samples are prepared using an extensive seeding protocol in the absence and presence of the small heat shock protein αB-crystallin. In addition to manual assignments, we obtain chemical shift assignments using the automation software ARTINA. We present an analysis of the secondary chemical shifts and a discussion on the differences between the manual and automated assignment strategies.
Collapse
Affiliation(s)
- Natalia Rodina
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
- Institute of Structural Biology, Helmholtz Zentrum Munich or German Research Center for Environmental Health, Munich, Germany
| | - Riddhiman Sarkar
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
- Institute of Structural Biology, Helmholtz Zentrum Munich or German Research Center for Environmental Health, Munich, Germany
| | - Dimitrios Tsakalos
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Saba Suladze
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - Zheng Niu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Bernd Reif
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany.
- Institute of Structural Biology, Helmholtz Zentrum Munich or German Research Center for Environmental Health, Munich, Germany.
| |
Collapse
|
11
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Muzquiz R, Jamshidi C, Conroy DW, Jaroniec CP, Foster MP. Insights into Ligand-Mediated Activation of an Oligomeric Ring-Shaped Gene-Regulatory Protein from Solution- and Solid-State NMR. J Mol Biol 2024; 436:168792. [PMID: 39270971 PMCID: PMC11563856 DOI: 10.1016/j.jmb.2024.168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The 91 kDa oligomeric ring-shaped ligand binding protein TRAP (trp RNA binding attenuation protein) regulates the expression of a series of genes involved in tryptophan (Trp) biosynthesis in bacilli. When cellular Trp levels rise, the free amino acid binds to sites buried in the interfaces between each of the 11 (or 12, depending on the species) protomers in the ring. Crystal structures of Trp-bound TRAP show the Trp ligands are sequestered from solvent by a pair of loops from adjacent protomers that bury the bound ligand via polar contacts to several threonine residues. Binding of the Trp ligands occurs cooperatively, such that successive binding events occur with higher apparent affinity but the structural basis for this cooperativity is poorly understood. We used solution methyl-TROSY NMR relaxation experiments focused on threonine and isoleucine sidechains, as well as magic angle spinning solid-state NMR 13C-13C and 15N-13C chemical shift correlation spectra on uniformly labeled samples recorded at 800 and 1200 MHz, to characterize the structure and dynamics of the protein. Methyl 13C relaxation dispersion experiments on ligand-free apo TRAP revealed concerted exchange dynamics on the µs-ms time scale, consistent with transient sampling of conformations that could allow ligand binding. Cross-correlated relaxation experiments revealed widespread disorder on fast timescales. Chemical shifts for methyl-bearing side chains in apo- and Trp-bound TRAP revealed subtle changes in the distribution of sampled sidechain rotameric states. These observations reveal a pathway and mechanism for induced conformational changes to generate homotropic Trp-Trp binding cooperativity.
Collapse
Affiliation(s)
- Rodrigo Muzquiz
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Cameron Jamshidi
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Daniel W Conroy
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Christopher P Jaroniec
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Mark P Foster
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, 484 W 12th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
13
|
Han B, Yang J, Zhang Z. Selective Methods Promote Protein Solid-State NMR. J Phys Chem Lett 2024; 15:11300-11311. [PMID: 39495892 DOI: 10.1021/acs.jpclett.4c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is indispensable for studying the structures, dynamics, and interactions of insoluble proteins in native or native-like environments. While ssNMR includes numerous nonselective techniques for general analysis, it also provides various selective methods that allow for the extraction of precise details about proteins. This perspective highlights three key aspects of selective methods: selective signals of protein segments, selective recoupling, and site-specific insights into proteins. These methods leverage protein topology, labeling strategies, and the tailored manipulation of spin interactions through radio frequency (RF) pulses, significantly promoting the field of protein ssNMR. With ongoing advancements in higher magnetic fields and faster magic angle spinning (MAS), there remains an ongoing need to enhance the selectivity and efficiency of selective ssNMR methods, facilitating deeper atomic-level insights into complex biological systems.
Collapse
Affiliation(s)
- Bin Han
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Zhengfeng Zhang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
14
|
Gibbs E, Miao Q, Ferrolino M, Bajpai R, Hassan A, Phillips AH, Pitre A, Kümmerle R, Miller S, Nagy G, Leite W, Heller W, Stanley C, Perrone B, Kriwacki R. p14 ARF forms meso-scale assemblies upon phase separation with NPM1. Nat Commun 2024; 15:9531. [PMID: 39528457 PMCID: PMC11555371 DOI: 10.1038/s41467-024-53904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
NPM1 is an abundant nucleolar chaperone that, in addition to facilitating ribosome biogenesis, contributes to nucleolar stress responses and tumor suppression through its regulation of the p14 Alternative Reading Frame tumor suppressor protein (p14ARF). Oncogenic stress induces p14ARF to inhibit MDM2, stabilize p53 and arrest the cell cycle. Under non-stress conditions, NPM1 stabilizes p14ARF in nucleoli, preventing its degradation and blocking p53 activation. However, the mechanisms underlying the regulation of p14ARF by NPM1 are unclear because the structural features of the p14ARF-NPM1 complex were elusive. Here we show that p14ARF assembles into a gel-like meso-scale network upon phase separation with NPM1. This assembly is mediated by intermolecular contacts formed by hydrophobic residues in an α-helix and β-strands within a partially folded N-terminal portion of p14ARF. These hydrophobic interactions promote phase separation with NPM1, enhance p14ARF nucleolar partitioning, restrict NPM1 diffusion within condensates and nucleoli, and reduce cellular proliferation. Our structural analysis provides insights into the multifaceted chaperone function of NPM1 in nucleoli by mechanistically linking the nucleolar localization of p14ARF to its partial folding and meso-scale assembly upon phase separation with NPM1.
Collapse
Affiliation(s)
- Eric Gibbs
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Qi Miao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mylene Ferrolino
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richa Bajpai
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aila Hassan
- Bruker Switzerland AG, Fällanden, Switzerland
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Aaron Pitre
- Cell and Tissue Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Shondra Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gergely Nagy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Wellington Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - William Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Chris Stanley
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA.
| |
Collapse
|
15
|
Blake Wilson C, Tycko R. Optimization of 15N- 13C double-resonance NMR experiments under low temperature magic angle spinning dynamic nuclear polarization conditions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107783. [PMID: 39383594 PMCID: PMC11573627 DOI: 10.1016/j.jmr.2024.107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Dynamic nuclear polarization (DNP) enhanced magic angle spinning (MAS) solid-state NMR carried out at 25 K enables rapid acquisition of multi-dimensional 13C-15N correlation spectra for protein structure studies and resonance assignment. Under commonly used DNP conditions, solvent deuteration reduces 1H-15N cross polarization (CP) efficiencies, necessitates more careful optimization, and requires longer high-power 15N radio-frequency pulses. The sensitivity of 2D heteronuclear correlation experiments is potentially impaired. Here we show that 2D 15N-13C experiments based on 13C-15N transferred echo double resonance (TEDOR) methods outperform 2D experiments based on CP transfers in a fully deuterated solvent, and are competitive with CP-based experiments when the solvent is only partially deuterated. Additionally, we show that optimization of TEDOR-based 2D experiments is simpler than optimization of CP-based experiments under 25 K MAS conditions.
Collapse
Affiliation(s)
- C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A.
| |
Collapse
|
16
|
Middleton DA. NMR studies of amyloid interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:63-96. [PMID: 39645351 DOI: 10.1016/j.pnmrs.2024.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/09/2024]
Abstract
Amyloid fibrils are insoluble, fibrous nanostructures that accumulate extracellularly in biological tissue during the progression of several human disorders, including Alzheimer's disease (AD) and type 2 diabetes. Fibrils are assembled from protein monomers via the transient formation of soluble, cytotoxic oligomers, and have a common molecular architecture consisting of a spinal core of hydrogen-bonded protein β-strands. For the past 25 years, NMR spectroscopy has been at the forefront of research into the structure and assembly mechanisms of amyloid aggregates. Until the recent boom in fibril structure analysis by cryo-electron microscopy, solid-state NMR was unrivalled in its ability to provide atomic-level models of amyloid fibril architecture. Solution-state NMR has also provided complementary information on the early stages in the amyloid assembly mechanism. Now, both NMR modalities are proving to be valuable in unravelling the complex interactions between amyloid species and a diverse range of physiological metal ions, molecules and surfaces that influence the assembly pathway, kinetics, morphology and clearance in vivo. Here, an overview is presented of the main applications of solid-state and solution-state NMR for studying the interactions between amyloid proteins and biomembranes, glycosaminoglycan polysaccharides, metal ions, polyphenols, synthetic therapeutics and diagnostics. Key NMR methodology is reviewed along with examples of how to overcome the challenges of detecting interactions with aggregating proteins. The review heralds this new role for NMR in providing a comprehensive and pathologically-relevant view of the interactions between protein and non-protein components of amyloid. Coverage of both solid- and solution-state NMR methods and applications herein will be informative and valuable to the broad communities that are interested in amyloid proteins.
Collapse
Affiliation(s)
- David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
17
|
Georgiou T, Palma JL, Mujica V, Varela S, Galante M, Santamaría-García VJ, Mboning L, Schwartz RN, Cuniberti G, Bouchard LS. Enantiospecificity in NMR enabled by chirality-induced spin selectivity. Nat Commun 2024; 15:7367. [PMID: 39191753 PMCID: PMC11349874 DOI: 10.1038/s41467-024-49966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/24/2024] [Indexed: 08/29/2024] Open
Abstract
Spin polarization in chiral molecules is a magnetic molecular response associated with electron transport and enantioselective bond polarization that occurs even in the absence of an external magnetic field. An unexpected finding by Santos and co-workers reported enantiospecific NMR responses in solid-state cross-polarization (CP) experiments, suggesting a possible additional contribution to the indirect nuclear spin-spin coupling in chiral molecules induced by bond polarization in the presence of spin-orbit coupling. Herein we provide a theoretical treatment for this phenomenon, presenting an effective spin-Hamiltonian for helical molecules like DNA and density functional theory (DFT) results on amino acids that confirm the dependence of J-couplings on the choice of enantiomer. The connection between nuclear spin dynamics and chirality could offer insights for molecular sensing and quantum information sciences. These results establish NMR as a potential tool for chiral discrimination without external agents.
Collapse
Affiliation(s)
- T Georgiou
- Molecular Biology Interdepartmental Program (MBIDP), The Molecular Biology Institute, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA, 90095-1570, USA
| | - J L Palma
- Department of Chemistry, Penn State University, 2201 University Drive, Lemont Furnace, PA, 15456, USA
| | - V Mujica
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281, USA
| | - S Varela
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - M Galante
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, AZ, 85281, USA
| | - V J Santamaría-García
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139, US
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, Mexico
| | - L Mboning
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA, 90095-1569, USA
| | - R N Schwartz
- Department of Electrical and Computer Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-1594, USA
| | - G Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany.
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062, Dresden, Germany.
| | - L-S Bouchard
- Molecular Biology Interdepartmental Program (MBIDP), The Molecular Biology Institute, University of California Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA, 90095-1570, USA.
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA, 90095-1569, USA.
- California NanoSystems Institute, University of California Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA, 90095-1569, USA.
- Department of Bioengineering, University of California Los Angeles, 607 Charles E. Young Dr. East, Los Angeles, CA, 90095-1569, USA.
| |
Collapse
|
18
|
Iyer A, Frallicciardi J, le Paige UBA, Narasimhan S, Luo Y, Sieiro PA, Syga L, van den Brekel F, Tran BM, Tjioe R, Schuurman-Wolters G, Stuart MCA, Baldus M, van Ingen H, Poolman B. The Structure and Function of the Bacterial Osmotically Inducible Protein Y. J Mol Biol 2024; 436:168668. [PMID: 38908784 DOI: 10.1016/j.jmb.2024.168668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how E. coli and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in E. coli and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in E. coli but may influence a cascade of osmoregulatory functions of the cell.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Jacopo Frallicciardi
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Ulric B A le Paige
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Yanzhang Luo
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Patricia Alvarez Sieiro
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Lukasz Syga
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Floris van den Brekel
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Buu Minh Tran
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Rendy Tjioe
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Gea Schuurman-Wolters
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Marc C A Stuart
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
19
|
Harding BD, Barclay AM, Piehl DW, Hiett A, Warmuth OA, Han R, Henzler-Wildman K, Rienstra CM. Cross polarization stability in multidimensional NMR spectroscopy of biological solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107724. [PMID: 38991266 PMCID: PMC11364147 DOI: 10.1016/j.jmr.2024.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Magic-angle spinning (MAS) solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful and versatile technique for probing structure and dynamics in large, insoluble biological systems at atomic resolution. With many recent advances in instrumentation and polarization methods, technology development in SSNMR remains an active area of research and presents opportunities to further improve data collection, processing, and analysis of samples with low sensitivity and complex tertiary and quaternary structures. SSNMR spectra are often collected as multidimensional data, requiring stable experimental conditions to minimize signal fluctuations (t1 noise). In this work, we examine the factors adversely affecting signal stability as well as strategies used to mitigate them, considering laboratory environmental requirements, configuration of amplifiers, and pulse sequence parameter selection. We show that Thermopad® temperature variable attenuators (TVAs) can partially compensate for the changes in amplifier output power as a function of temperature and thereby ameliorate one significant source of instability for some spectrometers and pulse sequences. We also consider the selection of tangent ramped cross polarization (CP) waveform shapes, to balance the requirements of sensitivity and instrumental stability. These findings collectively enable improved stability and overall performance for CP-based multidimensional spectra of microcrystalline, membrane, and fibrous proteins performed at multiple magnetic field strengths.
Collapse
Affiliation(s)
- Benjamin D Harding
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Alexander M Barclay
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dennis W Piehl
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ashley Hiett
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Owen A Warmuth
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Ruixian Han
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Chad M Rienstra
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706 USA; National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706 USA; Morgridge Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706 USA.
| |
Collapse
|
20
|
Xiao H, Zhao W, Zhang Y, Kang H, Zhang Z, Yang J. Selective correlations between aliphatic 13C nuclei in protein solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107730. [PMID: 38981307 DOI: 10.1016/j.jmr.2024.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Solid-state nuclear magnetic resonance (NMR) is a potent tool for studying the structures and dynamics of insoluble proteins. It starts with signal assignment through multi-dimensional correlation experiments, where the aliphatic 13Cα-13Cβ correlation is indispensable for identifying specific residues. However, developing efficient methods for achieving this correlation is a challenge in solid-state NMR. We present a simple band-selective zero-quantum (ZQ) recoupling method, named POST-C4161 (PC4), which enhances 13Cα-13Cβ correlations under moderate magic-angle spinning (MAS) conditions. PC4 requires minimal 13C radio-frequency (RF) field and proton decoupling, exhibits high stability against RF variations, and achieves superior efficiency. Comparative tests on various samples, including the formyl-Met-Leu-Phe (fMLF) tripeptide, microcrystalline β1 immunoglobulin binding domain of protein G (GB1), and membrane protein of mechanosensitive channel of large conductance from Methanosarcina acetivorans (MaMscL), demonstrate that PC4 selectively enhances 13Cα-13Cβ correlations by up to 50 % while suppressing unwanted correlations, as compared to the popular dipolar-assisted rotational resonance (DARR). It has addressed the long-standing need for selective 13C-13C correlation methods. We anticipate that this simple but efficient PC4 method will have immediate applications in structural biology by solid-state NMR.
Collapse
Affiliation(s)
- Hang Xiao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Yan Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Huimin Kang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, PR China; Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
21
|
Emmanouilidis L, Bartalucci E, Kan Y, Ijavi M, Pérez ME, Afanasyev P, Boehringer D, Zehnder J, Parekh SH, Bonn M, Michaels TCT, Wiegand T, Allain FHT. A solid beta-sheet structure is formed at the surface of FUS droplets during aging. Nat Chem Biol 2024; 20:1044-1052. [PMID: 38467846 PMCID: PMC11288893 DOI: 10.1038/s41589-024-01573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024]
Abstract
Phase transitions are important to understand cell dynamics, and the maturation of liquid droplets is relevant to neurodegenerative disorders. We combined NMR and Raman spectroscopies with microscopy to follow, over a period of days to months, droplet maturation of the protein fused in sarcoma (FUS). Our study reveals that the surface of the droplets plays a critical role in this process, while RNA binding prevents it. The maturation kinetics are faster in an agarose-stabilized biphasic sample compared with a monophasic condensed sample, owing to the larger surface-to-volume ratio. In addition, Raman spectroscopy reports structural differences upon maturation between the inside and the surface of droplets, which is comprised of β-sheet content, as revealed by solid-state NMR. In agreement with these observations, a solid crust-like shell is observed at the surface using microaspiration. Ultimately, matured droplets were converted into fibrils involving the prion-like domain as well as the first RGG motif.
Collapse
Affiliation(s)
- Leonidas Emmanouilidis
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
- Bringing Materials to Life Initiative, ETH Zurich, Zurich, Switzerland.
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Yelena Kan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Mahdiye Ijavi
- Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Maria Escura Pérez
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | | | | | - Johannes Zehnder
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Thomas C T Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- Bringing Materials to Life Initiative, ETH Zurich, Zurich, Switzerland
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Mülheim/Ruhr, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany.
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland.
| | - Frédéric H-T Allain
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
- Bringing Materials to Life Initiative, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Dickwella Widanage MC, Gautam I, Sarkar D, Mentink-Vigier F, Vermaas JV, Ding SY, Lipton AS, Fontaine T, Latgé JP, Wang P, Wang T. Adaptative survival of Aspergillus fumigatus to echinocandins arises from cell wall remodeling beyond β-1,3-glucan synthesis inhibition. Nat Commun 2024; 15:6382. [PMID: 39085213 PMCID: PMC11291495 DOI: 10.1038/s41467-024-50799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Antifungal echinocandins inhibit the biosynthesis of β-1,3-glucan, a major and essential polysaccharide component of the fungal cell wall. However, the efficacy of echinocandins against the pathogen Aspergillus fumigatus is limited. Here, we use solid-state nuclear magnetic resonance (ssNMR) and other techniques to show that echinocandins induce dynamic changes in the assembly of mobile and rigid polymers within the A. fumigatus cell wall. The reduction of β-1,3-glucan induced by echinocandins is accompanied by a concurrent increase in levels of chitin, chitosan, and highly polymorphic α-1,3-glucans, whose physical association with chitin maintains cell wall integrity and modulates water permeability. The rearrangement of the macromolecular network is dynamic and controls the permeability and circulation of the drug throughout the cell wall. Thus, our results indicate that echinocandin treatment triggers compensatory rearrangements in the cell wall that may help A. fumigatus to tolerate the drugs' antifungal effects.
Collapse
Affiliation(s)
- Malitha C Dickwella Widanage
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | | | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, East Lansing, MI, USA
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Shi-You Ding
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Andrew S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, F-, 75015, Paris, France
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology, University of Crete, Heraklion, Greece
| | - Ping Wang
- Departments of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
23
|
Suladze S, Sarkar R, Rodina N, Bokvist K, Krewinkel M, Scheps D, Nagel N, Bardiaux B, Reif B. Atomic resolution structure of full-length human insulin fibrils. Proc Natl Acad Sci U S A 2024; 121:e2401458121. [PMID: 38809711 PMCID: PMC11161806 DOI: 10.1073/pnas.2401458121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two β-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.
Collapse
Affiliation(s)
- Saba Suladze
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| | - Riddhiman Sarkar
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| | - Natalia Rodina
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
| | - Krister Bokvist
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Frankfurt65926, Germany
| | - Manuel Krewinkel
- Sanofi-Aventis Deutschland GmbH, Manufacturing Science and Technology, Industriepark Höchst, Frankfurt65926, Germany
| | - Daniel Scheps
- Chemistry Manufacturing & Controls Microbial Platform, Sanofi-Aventis Deutschland GmbH, Microbial Platform, Industriepark Höchst, Frankfurt65926, Germany
| | - Norbert Nagel
- Sanofi-Aventis Deutschland GmbH, Tides Platform, Industriepark Höchst, Frankfurt65926, Germany
| | - Benjamin Bardiaux
- Institut Pasteur, Department of Structural Biology and Chemistry, Structural Bioinformatics Unit, CNRS UMR 3528, Université Paris Cité, Paris75015, France
- Institut Pasteur, Department of Structural Biology and Chemistry, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Université Paris Cité, Paris75015, France
| | - Bernd Reif
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| |
Collapse
|
24
|
Todokoro Y, Miyasaka Y, Yagi H, Kainosho M, Fujiwara T, Akutsu H. Structural analysis of ATP bound to the F 1-ATPase β-subunit monomer by solid-state NMR- insight into the hydrolysis mechanism in F 1. Biophys Chem 2024; 309:107232. [PMID: 38593533 DOI: 10.1016/j.bpc.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
ATP-hydrolysis-associated conformational change of the β-subunit during the rotation of F1-ATPase (F1) has been discussed using cryo-electron microscopy (cryo-EM). Since it is worthwhile to further investigate the conformation of ATP at the catalytic subunit through an alternative approach, the structure of ATP bound to the F1β-subunit monomer (β) was analyzed by solid-state NMR. The adenosine conformation of ATP-β was similar to that of ATP analog in F1 crystal structures. 31P chemical shift analysis showed that the Pα and Pβ conformations of ATP-β are gauche-trans and trans-trans, respectively. The triphosphate chain is more extended in ATP-β than in ATP analog in F1 crystals. This appears to be in the state just before ATP hydrolysis. Furthermore, the ATP-β conformation is known to be more closed than the closed form in F1 crystal structures. In view of the cryo-EM results, ATP-β would be a model of the most closed β-subunit with ATP ready for hydrolysis in the hydrolysis stroke of the F1 rotation.
Collapse
Affiliation(s)
- Yasuto Todokoro
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan; Technical Support Division, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043, Japan.
| | - Yoshiyuki Miyasaka
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Hiromasa Yagi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Masatsune Kainosho
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Hideo Akutsu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
25
|
Li J, Her AS, Besch A, Ramirez-Cordero B, Crames M, Banigan JR, Mueller C, Marsiglia WM, Zhang Y, Traaseth NJ. Dynamics underlie the drug recognition mechanism by the efflux transporter EmrE. Nat Commun 2024; 15:4537. [PMID: 38806470 PMCID: PMC11133458 DOI: 10.1038/s41467-024-48803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
The multidrug efflux transporter EmrE from Escherichia coli requires anionic residues in the substrate binding pocket for coupling drug transport with the proton motive force. Here, we show how protonation of a single membrane embedded glutamate residue (Glu14) within the homodimer of EmrE modulates the structure and dynamics in an allosteric manner using NMR spectroscopy. The structure of EmrE in the Glu14 protonated state displays a partially occluded conformation that is inaccessible for drug binding by the presence of aromatic residues in the binding pocket. Deprotonation of a single Glu14 residue in one monomer induces an equilibrium shift toward the open state by altering its side chain position and that of a nearby tryptophan residue. This structural change promotes an open conformation that facilitates drug binding through a conformational selection mechanism and increases the binding affinity by approximately 2000-fold. The prevalence of proton-coupled exchange in efflux systems suggests a mechanism that may be shared in other antiporters where acid/base chemistry modulates access of drugs to the substrate binding pocket.
Collapse
Affiliation(s)
- Jianping Li
- Department of Chemistry, New York University, New York, NY, USA
| | - Ampon Sae Her
- Department of Chemistry, New York University, New York, NY, USA
| | - Alida Besch
- Department of Chemistry, New York University, New York, NY, USA
| | | | - Maureen Crames
- Department of Chemistry, New York University, New York, NY, USA
| | - James R Banigan
- Department of Chemistry, New York University, New York, NY, USA
| | - Casey Mueller
- Department of Chemistry, New York University, New York, NY, USA
| | | | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, USA
- Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA
| | | |
Collapse
|
26
|
Beriashvili D, Zhou J, Liu Y, Folkers GE, Baldus M. Cellular Applications of DNP Solid-State NMR - State of the Art and a Look to the Future. Chemistry 2024; 30:e202400323. [PMID: 38451060 DOI: 10.1002/chem.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Sensitivity enhanced dynamic nuclear polarization solid-state NMR is emerging as a powerful technique for probing the structural properties of conformationally homogenous and heterogenous biomolecular species irrespective of size at atomic resolution within their native environments. Herein we detail advancements that have made acquiring such data, specifically within the confines of intact bacterial and eukaryotic cell a reality and further discuss the type of structural information that can presently be garnered by the technique's exploitation. Subsequently, we discuss bottlenecks that have thus far curbed cellular DNP-ssNMR's broader adoption namely due a lack of sensitivity and spectral resolution. We also explore possible solutions ranging from utilization of new pulse sequences, design of better performing polarizing agents, and application of additional biochemical/ cell biological methodologies.
Collapse
Affiliation(s)
- David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jiaxin Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics, Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics, Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
27
|
Porat-Dahlerbruch G, Struppe J, Polenova T. High-efficiency low-power 13C- 15N cross polarization in MAS NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107649. [PMID: 38452523 PMCID: PMC11031345 DOI: 10.1016/j.jmr.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Biomolecular solid-state magic angle spinning (MAS) NMR spectroscopy frequently relies on selective 13C-15N magnetization transfers, for various kinds of correlation experiments. Introduced in 1998, spectrally induced filtering in combination with cross polarization (SPECIFIC-CP) is a selective heteronuclear magnetization transfer experiment widely used for biological applications. At MAS frequencies below 20 kHz, commonly used for 13C-detected MAS NMR experiments, SPECIFIC-CP transfer between amide 15N and 13Cα atoms (NCA) is typically performed with radiofrequency (rf) fields set higher than the MAS frequency for both 13C and 15N channels, and high-power 1H decoupling rf field is simultaneously applied. Here, we experimentally explore a broad range of NCA zero-quantum (ZQ) SPECIFIC-CP matching conditions at the MAS frequency of 14 kHz and compare the best high- and low-power matching conditions with respect to selectivity, robustness, and sensitivity at lower 1H decoupling rf fields. We show that low-power NCA SPECIFIC-CP matching condition gives rise to 20% sensitivity enhancement compared to high-power conditions, in 2D NCA spectra of microcrystalline assemblies of HIV-1 CACTD-SP1 protein with inositol hexakis-phosphate (IP6).
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States.
| |
Collapse
|
28
|
Dhavale DD, Barclay AM, Borcik CG, Basore K, Berthold DA, Gordon IR, Liu J, Milchberg MH, O'Shea JY, Rau MJ, Smith Z, Sen S, Summers B, Smith J, Warmuth OA, Perrin RJ, Perlmutter JS, Chen Q, Fitzpatrick JAJ, Schwieters CD, Tajkhorshid E, Rienstra CM, Kotzbauer PT. Structure of alpha-synuclein fibrils derived from human Lewy body dementia tissue. Nat Commun 2024; 15:2750. [PMID: 38553463 PMCID: PMC10980826 DOI: 10.1038/s41467-024-46832-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. Here we develop and validate a method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and use solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise a mixture of single protofilament and two protofilament fibrils with very low twist. The protofilament fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural characterization of LBD Asyn fibrils and approaches for studying disease mechanisms, imaging agents and therapeutics targeting Asyn.
Collapse
Affiliation(s)
- Dhruva D Dhavale
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alexander M Barclay
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Collin G Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katherine Basore
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deborah A Berthold
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Isabelle R Gordon
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jialu Liu
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Moses H Milchberg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jennifer Y O'Shea
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael J Rau
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zachary Smith
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Soumyo Sen
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brock Summers
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Smith
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Owen A Warmuth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Richard J Perrin
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel S Perlmutter
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - James A J Fitzpatrick
- Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chad M Rienstra
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Paul T Kotzbauer
- Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
29
|
Wi S, Li C, Pham K, Lee W, Frydman L. Short and long range 2D 15N- 15N NMR correlations among peptide groups by novel solid state dipolar mixing schemes. JOURNAL OF BIOMOLECULAR NMR 2024; 78:19-30. [PMID: 38102490 DOI: 10.1007/s10858-023-00429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
A recently developed homonuclear dipolar recoupling scheme, Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO), was applied to record two-dimensional (2D) 15N-15N correlations on uniformly 15N-labeled GB1 powders. A major feature exploited in these 15N-15N correlations was AL FRESCO's remarkably low RF power demands, which enabled seconds-long mixing schemes when establishing direct correlations. These 15N-15N mixing schemes proved efficient regardless of the magic-angle spinning (MAS) rate and, being nearly free from dipolar truncation effects, they enabled the detection of long-range, weak dipolar couplings, even in the presence of strong short-range dipolar couplings. This led to a connectivity information that was significantly better than that obtained with spontaneously proton-driven, 15N spin-diffusion experiments. An indirect approach producing long-range 15N-15N correlations was also tested, relying on short (ms-long) 1HN-1HN mixings schemes while applying AL FRESCO chirped pulses along the 15N channel. These indirect mixing schemes produced numerous long-distance Ni-Ni±n (n = 2 - 5) correlations, that might be useful for characterizing three-dimensional arrangements in proteins. Once again, these AL FRESCO mediated experiments proved more informative than variants based on spin-diffusion-based 1HN-1HN counterparts.
Collapse
Affiliation(s)
- Sungsool Wi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32304, USA.
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Karen Pham
- Department of Chemistry, University of Colorado at Denver, Denver, CO, 80217-3364, USA
| | - Woonghee Lee
- Department of Chemistry, University of Colorado at Denver, Denver, CO, 80217-3364, USA
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32304, USA.
- Department of Chemical and Biological Physics, Weizmann Institute of Sciences, Rehovot, Israel.
| |
Collapse
|
30
|
Gopinath T, Shin K, Tian Y, Im W, Struppe J, Perrone B, Hassan A, Marassi FM. Solid-state NMR MAS CryoProbe enables structural studies of human blood protein vitronectin bound to hydroxyapatite. J Struct Biol 2024; 216:108061. [PMID: 38185342 PMCID: PMC10939839 DOI: 10.1016/j.jsb.2024.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The low sensitivity of nuclear magnetic resonance (NMR) is a major bottleneck for studying biomolecular structures of complex biomolecular assemblies. Cryogenically cooled probe technology overcomes the sensitivity limitations enabling NMR applications to challenging biomolecular systems. Here we describe solid-state NMR studies of the human blood protein vitronectin (Vn) bound to hydroxyapatite (HAP), the mineralized form of calcium phosphate, using a CryoProbe designed for magic angle spinning (MAS) experiments. Vn is a major blood protein that regulates many different physiological and pathological processes. The high sensitivity of the CryoProbe enabled us to acquire three-dimensional solid-state NMR spectra for sequential assignment and characterization of site-specific water-protein interactions that provide initial insights into the organization of the Vn-HAP complex. Vn associates with HAP in various pathological settings, including macular degeneration eyes and Alzheimer's disease brains. The ability to probe these assemblies at atomic detail paves the way for understanding their formation.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kyungsoo Shin
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ye Tian
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, PA 18015, USA
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, USA
| | | | - Alia Hassan
- Bruker Switzerland AG, Fallanden, Switzerland
| | - Francesca M Marassi
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
31
|
Thurber KR, Yau WM, Tycko R. Structure of Amyloid Peptide Ribbons Characterized by Electron Microscopy, Atomic Force Microscopy, and Solid-State Nuclear Magnetic Resonance. J Phys Chem B 2024; 128:1711-1723. [PMID: 38348474 PMCID: PMC11423861 DOI: 10.1021/acs.jpcb.3c07867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Polypeptides often self-assemble to form amyloid fibrils, which contain cross-β structural motifs and are typically 5-15 nm in width and micrometers in length. In many cases, short segments of longer amyloid-forming protein or peptide sequences also form cross-β assemblies but with distinctive ribbon-like morphologies that are characterized by a well-defined thickness (on the order of 5 nm) in one lateral dimension and a variable width (typically 10-100 nm) in the other. Here, we use a novel combination of data from solid-state nuclear magnetic resonance (ssNMR), dark-field transmission electron microscopy (TEM), atomic force microscopy (AFM), and cryogenic electron microscopy (cryoEM) to investigate the structures within amyloid ribbons formed by residues 14-23 and residues 11-25 of the Alzheimer's disease-associated amyloid-β peptide (Aβ14-23 and Aβ11-25). The ssNMR data indicate antiparallel β-sheets with specific registries of intermolecular hydrogen bonds. Mass-per-area values are derived from dark-field TEM data. The ribbon thickness is determined from AFM images. For Aβ14-23 ribbons, averaged cryoEM images show a periodic spacing of β-sheets. The combined data support structures in which the amyloid ribbon growth direction is the direction of intermolecular hydrogen bonds between β-strands, the ribbon thickness corresponds to the width of one β-sheet (i.e., approximately the length of one molecule), and the variable ribbon width is a variable multiple of the thickness of one β-sheet (i.e., a multiple of the repeat distance in a stack of β-sheets). This architecture for a cross-β assembly may generally exist within amyloid ribbons.
Collapse
Affiliation(s)
- Kent R. Thurber
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, U.S.A
| |
Collapse
|
32
|
Yi X, Fritzsching KJ, Rogawski R, Xu Y, McDermott AE. Contribution of protein conformational heterogeneity to NMR lineshapes at cryogenic temperatures. Proc Natl Acad Sci U S A 2024; 121:e2301053120. [PMID: 38346186 PMCID: PMC10895356 DOI: 10.1073/pnas.2301053120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/17/2023] [Indexed: 02/15/2024] Open
Abstract
While low-temperature Nuclear Magnetic Resonance (NMR) holds great promise for the analysis of unstable samples and for sensitizing NMR detection, spectral broadening in frozen protein samples is a common experimental challenge. One hypothesis explaining the additional linewidth is that a variety of conformations are in rapid equilibrium at room temperature and become frozen, creating an inhomogeneous distribution at cryogenic temperatures. Here, we investigate conformational heterogeneity by measuring the backbone torsion angle (Ψ) in Escherichia coli Dihydrofolate Reductase (DHFR) at 105 K. Motivated by the particularly broad N chemical shift distribution in this and other examples, we modified an established NCCN Ψ experiment to correlate the chemical shift of Ni+1 to Ψi. With selective 15N and 13C enrichment of Ile, only the unique I60-I61 pair was expected to be detected in 13C'-15N correlation spectrum. For this unique amide, we detected three different conformation basins based on dispersed chemical shifts. Backbone torsion angles Ψ were determined for each basin: 114 ± 7° for the major peak and 150 ± 8° and 164 ± 16° for the minor peaks as contrasted with 118° for the X-ray crystal structure (and 118° to 130° for various previously reported structures). These studies support the hypothesis that inhomogeneous distributions of protein backbone torsion angles contribute to the lineshape broadening in low-temperature NMR spectra.
Collapse
Affiliation(s)
- Xu Yi
- Department of Chemistry, Columbia University, New York, NY 1002
| | | | - Rivkah Rogawski
- Department of Chemistry, Columbia University, New York, NY 1002
| | - Yunyao Xu
- Department of Chemistry, Columbia University, New York, NY 1002
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 1002
| |
Collapse
|
33
|
Zhang J, Li J, Wang Y, Shi C. NMR methods to detect fluoride binding and transport by membrane proteins. Methods Enzymol 2024; 696:25-42. [PMID: 38658082 DOI: 10.1016/bs.mie.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Solid-state nuclear magnetic resonance (NMR) methods can probe the motions of membrane proteins in liposomes at the atomic level, and propel the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. High-resolution crystallography snapshots have provided a structural basis for fluoride channels. NMR is a powerful tool to build upon these snapshots and depict a dynamic picture of fluoride channels in native-like lipid bilayers. In this contribution, we discuss solid-state and solution NMR experiments to detect fluoride binding and transport by fluoride channels. Ongoing developments in membrane protein sample preparation and ssNMR methodology, particularly in using 1H, 19F and 13C-detection schemes, offer additional opportunities to study structure and functional aspects of fluoride channels.
Collapse
Affiliation(s)
- Jin Zhang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Juan Li
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Yusong Wang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Chaowei Shi
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, P.R. China.
| |
Collapse
|
34
|
Medeiros-Silva J, Dregni AJ, Hong M. Distinguishing Different Hydrogen-Bonded Helices in Proteins by Efficient 1H-Detected Three-Dimensional Solid-State NMR. Biochemistry 2024; 63:181-190. [PMID: 38127783 PMCID: PMC10880114 DOI: 10.1021/acs.biochem.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Helical structures in proteins include not only α-helices but also 310 and π helices. These secondary structures differ in the registry of the C═O···H-N hydrogen bonds, which are i to i + 4 for α-helices, i to i + 3 for 310 helices, and i to i + 5 for π-helices. The standard NMR observable of protein secondary structures are chemical shifts, which are, however, insensitive to the precise type of helices. Here, we introduce a three-dimensional (3D) 1H-detected experiment that measures and assigns CO-HN cross-peaks to distinguish the different types of hydrogen-bonded helices. This hCOhNH experiment combines efficient cross-polarization from CO to HN with 13C, 15N, and 1H chemical shift correlation to detect the relative proximities of the COi-Hi+jN spin pairs. We demonstrate this experiment on the membrane-bound transmembrane domain of the SARS-CoV-2 envelope (E) protein (ETM). We show that the C-terminal five residues of ETM form a 310-helix, whereas the rest of the transmembrane domain have COi-Hi+4N hydrogen bonds that are characteristic of α-helices. This result confirms the recent high-resolution solid-state NMR structure of the open state of ETM, which was solved in the absence of explicit hydrogen-bonding restraints. This C-terminal 310 helix may facilitate proton and calcium conduction across the hydrophobic gate of the channel. This hCOhNH experiment is generally applicable and can be used to distinguish not only different types of helices but also different types of β-strands and other hydrogen-bonded conformations in proteins.
Collapse
Affiliation(s)
- Joao Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
35
|
Zhang Y, Gan Y, Zhao W, Zhang X, Zhao Y, Xie H, Yang J. Membrane Protein Structures in Native Cellular Membranes Revealed by Solid-State NMR Spectroscopy. JACS AU 2023; 3:3412-3423. [PMID: 38155644 PMCID: PMC10751765 DOI: 10.1021/jacsau.3c00564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/30/2023]
Abstract
The structural characterization of membrane proteins within the cellular membrane environment is critical for understanding the molecular mechanism in their native functional context. However, conducting residue site-specific structural analysis of membrane proteins in native membranes by solid-state NMR faces challenges due to poor spectral sensitivity and serious interference from background protein signals. In this study, we present a new protocol that combines various strategies for cellular membrane sample preparations, enabling us to reveal the secondary structure of the mechanosensitive channel of large conductance from Methanosarcina acetivorans (MaMscL) in Escherichia coli inner membranes. Our findings demonstrate the feasibility of achieving complete resonance assignments and the potential for determining the 3D structures of membrane proteins within cellular membranes. We find that the use of the BL21(DE3) strain in this protocol is crucial for effectively suppressing background protein labeling without compromising the sensitivity of the target protein. Furthermore, our data reveal that the structures of different proteins exhibit varying degrees of sensitivity to the membrane environment. These results underscore the significance of studying membrane proteins within their native cellular membranes when performing structural characterizations. Overall, this study opens up a new avenue for achieving the atomic-resolution structural characterization of membrane proteins within their native cellular membranes, providing valuable insights into the nativeness of membrane proteins.
Collapse
Affiliation(s)
- Yan Zhang
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuefang Gan
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weijing Zhao
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Xuning Zhang
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongxiang Zhao
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Huayong Xie
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Jun Yang
- National
Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics
and Mathematics, Wuhan National Laboratory for Optoelectronics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Interdisciplinary
Institute of NMR and Molecular Sciences, School of Chemistry and Chemical
Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
36
|
Barclay AM, Dhavale DD, Borcik CG, Milchberg MH, Kotzbauer PT, Rienstra CM. 13C and 15N resonance assignments of alpha synuclein fibrils amplified from Lewy Body Dementia tissue. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:281-286. [PMID: 37919529 PMCID: PMC10863844 DOI: 10.1007/s12104-023-10156-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Fibrils of the protein α-synuclein (Asyn) are implicated in the pathogenesis of Parkinson Disease, Lewy Body Dementia, and Multiple System Atrophy. Numerous forms of Asyn fibrils have been studied by solid-state NMR and resonance assignments have been reported. Here, we report a new set of 13C, 15N assignments that are unique to fibrils obtained by amplification from postmortem brain tissue of a patient diagnosed with Lewy Body Dementia.
Collapse
Affiliation(s)
- Alexander M Barclay
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Dhruva D Dhavale
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Collin G Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Moses H Milchberg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Graduate Program in Biophysics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Paul T Kotzbauer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Chad M Rienstra
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Graduate Program in Biophysics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
37
|
Xie H, Zhao Y, Zhao W, Chen Y, Liu M, Yang J. Solid-state NMR structure determination of a membrane protein in E. coli cellular inner membrane. SCIENCE ADVANCES 2023; 9:eadh4168. [PMID: 37910616 PMCID: PMC10619923 DOI: 10.1126/sciadv.adh4168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Structure determination of membrane proteins in native cellular membranes is critical to precisely reveal their structures in physiological conditions. However, it remains challenging for solid-state nuclear magnetic resonance (ssNMR) due to the low sensitivity and high complexity of ssNMR spectra of cellular membranes. Here, we present the structure determination of aquaporin Z (AqpZ) by ssNMR in Escherichia coli inner membranes. To enhance the signal sensitivity of AqpZ, we optimized protein overexpression and removed outer membrane components. To suppress the interference of background proteins, we used a "dual-media" expression approach and antibiotic treatment. Using 1017 distance restraints obtained from two-dimensional 13C-13C spectra based on the complete chemical shift assignments, the 1.7-Å ssNMR structure of AqpZ is determined in E. coli inner membranes. This cellular ssNMR structure determination paves the way for analyzing the atomic structural details for membrane proteins in native cellular membranes.
Collapse
Affiliation(s)
- Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yongxiang Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Maili Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| |
Collapse
|
38
|
Nimerovsky E, Varkey AC, Kim M, Becker S, Andreas LB. Simplified Preservation of Equivalent Pathways Spectroscopy. JACS AU 2023; 3:2763-2771. [PMID: 37885577 PMCID: PMC10598565 DOI: 10.1021/jacsau.3c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Inspired by the recently proposed transverse mixing optimal control pulses (TROP) approach for improving signal in multidimensional magic-angle spinning (MAS) NMR experiments, we present simplified preservation of equivalent pathways spectroscopy (SPEPS). It transfers both transverse components of magnetization that occur during indirect evolutions, theoretically enabling a √2 improvement in sensitivity for each such dimension. We compare SPEPS transfer with TROP and cross-polarization (CP) using membrane protein and fibril samples at MAS of 55 and 100 kHz. In three-dimensional (3D) (H)CANH spectra, SPEPS outperformed TROP and CP by factors of on average 1.16 and 1.69, respectively, for the membrane protein, but only a marginal improvement of 1.09 was observed for the fibril. These differences are discussed, making note of the longer transfer time used for CP, 14 ms, as compared with 2.9 and 3.6 ms for SPEPS and TROP, respectively. Using SPEPS for two transfers in the 3D (H)CANCO experiment resulted in an even larger benefit in signal intensity, with an average improvement of 1.82 as compared with CP. This results in multifold time savings, in particular considering the weaker peaks that are observed to benefit the most from SPEPS.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Abel Cherian Varkey
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Myeongkyu Kim
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Stefan Becker
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Loren B. Andreas
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
39
|
Medeiros-Silva J, Dregni AJ, Somberg NH, Duan P, Hong M. Atomic structure of the open SARS-CoV-2 E viroporin. SCIENCE ADVANCES 2023; 9:eadi9007. [PMID: 37831764 PMCID: PMC10575589 DOI: 10.1126/sciadv.adi9007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
The envelope (E) protein of the SARS-CoV-2 virus forms cation-conducting channels in the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of infected cells. The calcium channel activity of E is associated with the inflammatory responses of COVID-19. Using solid-state NMR (ssNMR) spectroscopy, we have determined the open-state structure of E's transmembrane domain (ETM) in lipid bilayers. Compared to the closed state, open ETM has an expansive water-filled amino-terminal chamber capped by key glutamate and threonine residues, a loose phenylalanine aromatic belt in the middle, and a constricted polar carboxyl-terminal pore filled with an arginine and a threonine residue. This structure gives insights into how protons and calcium ions are selected by ETM and how they permeate across the hydrophobic gate of this viroporin.
Collapse
Affiliation(s)
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
40
|
van Aalst EJ, Jang J, Halligan TC, Wylie BJ. Strategies for acquisition of resonance assignment spectra of highly dynamic membrane proteins: a GPCR case study. JOURNAL OF BIOMOLECULAR NMR 2023; 77:191-202. [PMID: 37493866 PMCID: PMC10838152 DOI: 10.1007/s10858-023-00421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
In protein nuclear magnetic resonance (NMR), chemical shift assignment provides a wealth of information. However, acquisition of high-quality solid-state NMR spectra depends on protein-specific dynamics. For membrane proteins, bilayer heterogeneity further complicates this observation. Since the efficiency of cross-polarization transfer is strongly entwined with protein dynamics, optimal temperatures for spectral sensitivity and resolution will depend not only on inherent protein dynamics, but temperature-dependent phase properties of the bilayer environment. We acquired 1-, 2-, and 3D homo- and heteronuclear experiments of the chemokine receptor CCR3 in a 7:3 phosphatidylcholine:cholesterol lipid environment. 1D direct polarization, cross polarization (CP), and T2' experiments indicate sample temperatures below - 25 °C facilitate higher CP enhancement and longer-lived transverse relaxation times. T1rho experiments indicate intermediate timescales are minimized below a sample temperature of - 20 °C. 2D DCP NCA experiments indicated optimal CP efficiency and resolution at a sample temperature of - 30 °C, corroborated by linewidth analysis in 3D NCACX at - 30 °C compared to - 5 °C. This optimal temperature is concluded to be directly related the lipid phase transition, measured to be between - 20 and 15 °C based on rINEPT signal of all-trans and trans-gauche lipid acyl conformations. Our results have critical implications in acquisition of SSNMR membrane protein assignment spectra, as we hypothesize that different lipid compositions with different phase transition properties influence protein dynamics and therefore the optimal acquisition temperature.
Collapse
Affiliation(s)
- Evan J van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Jun Jang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Ty C Halligan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79415, USA.
| |
Collapse
|
41
|
El Mammeri N, Duan P, Dregni AJ, Hong M. Amyloid fibril structures of tau: Conformational plasticity of the second microtubule-binding repeat. SCIENCE ADVANCES 2023; 9:eadh4731. [PMID: 37450599 PMCID: PMC10348678 DOI: 10.1126/sciadv.adh4731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
The intrinsically disordered protein tau associates with microtubules in neurons but aggregates into cross-β amyloid fibrils that propagate in neurodegenerative brains. Different tauopathies have different structures for the rigid fibril core. To understand the molecular basis of tau assembly into different polymorphs, here we use solid-state nuclear magnetic resonance (NMR) spectroscopy to determine the structure of a tau protein that includes all microtubule-binding repeats and a proline-rich domain. This P2R tau assembles into well-ordered filaments when induced by heparin. Two- and three-dimensional NMR spectra indicate that R2 and R3 repeats constitute the rigid β-sheet core of the fibril. Unexpectedly, the amino-terminal half of R2 forms a β-arch at ambient temperature (24°C) but a continuous β-strand at 12°C, which dimerizes with the R2 of another protofilament. This temperature-dependent structure indicates that R2 is conformationally more plastic than the R3 domain. The distinct conformational stabilities of different microtubule-binding repeats give insight into the energy landscape of tau fibril formation.
Collapse
Affiliation(s)
- Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Guo C, Alfaro-Aco R, Zhang C, Russell RW, Petry S, Polenova T. Structural basis of protein condensation on microtubules underlying branching microtubule nucleation. Nat Commun 2023; 14:3682. [PMID: 37344496 PMCID: PMC10284871 DOI: 10.1038/s41467-023-39176-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Targeting protein for Xklp2 (TPX2) is a key factor that stimulates branching microtubule nucleation during cell division. Upon binding to microtubules (MTs), TPX2 forms condensates via liquid-liquid phase separation, which facilitates recruitment of microtubule nucleation factors and tubulin. We report the structure of the TPX2 C-terminal minimal active domain (TPX2α5-α7) on the microtubule lattice determined by magic-angle-spinning NMR. We demonstrate that TPX2α5-α7 forms a co-condensate with soluble tubulin on microtubules and binds to MTs between two adjacent protofilaments and at the intersection of four tubulin heterodimers. These interactions stabilize the microtubules and promote the recruitment of tubulin. Our results reveal that TPX2α5-α7 is disordered in solution and adopts a folded structure on MTs, indicating that TPX2α5-α7 undergoes structural changes from unfolded to folded states upon binding to microtubules. The aromatic residues form dense interactions in the core, which stabilize folding of TPX2α5-α7 on microtubules. This work informs on how the phase-separated TPX2α5-α7 behaves on microtubules and represents an atomic-level structural characterization of a protein that is involved in a condensate on cytoskeletal filaments.
Collapse
Affiliation(s)
- Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Raymundo Alfaro-Aco
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Chunting Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Ryan W Russell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
43
|
El Mammeri N, Gampp O, Duan P, Hong M. Membrane-induced tau amyloid fibrils. Commun Biol 2023; 6:467. [PMID: 37117483 PMCID: PMC10147698 DOI: 10.1038/s42003-023-04847-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
The intrinsically disordered protein tau aggregates into β-sheet amyloid fibrils that spread in human brains afflicted with Alzheimer's disease and other neurodegenerative diseases. Tau interaction with lipid membranes might play a role in the formation and spreading of these pathological aggregates. Here we investigate the conformation and assembly of membrane-induced tau aggregates using solid-state NMR and transmission electron microscopy. A tau construct that encompasses the microtubule-binding repeats and a proline-rich domain is reconstituted into cholesterol-containing phospholipid membranes. 2D 13C-13C correlation spectra indicate that tau converted from a random coil to a β-sheet conformation over weeks. Small unilamellar vesicles (SUVs) cause different equilibrium conformations from large unilamellar vesicles (LUVs) and multilamellar vesicles (MLVs). Importantly, SUV-bound tau developed long fibrils that exhibit the characteristic β-sheet chemical shifts of Tyr310 in heparin-fibrillized tau. In comparison, LUVs and MLVs do not induce fibrils but cause different β-sheet aggregates. Lipid-protein correlation spectra indicate that these tau aggregates reside at the membrane-water interface, without inserting into the middle of the lipid bilayer. Removal of cholesterol from the SUVs abolished the fibrils, indicating that both membrane curvature and cholesterol are required for tau fibril formation. These results have implications for how lipid membranes might nucleate tau aggregates.
Collapse
Affiliation(s)
- Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivia Gampp
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
44
|
Nimerovsky E, Najbauer EÉ, Becker S, Andreas LB. Great Offset Difference Internuclear Selective Transfer. J Phys Chem Lett 2023; 14:3939-3945. [PMID: 37078685 PMCID: PMC10150390 DOI: 10.1021/acs.jpclett.3c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Carbon-carbon dipolar recoupling sequences are frequently used building blocks in routine magic-angle spinning NMR experiments. While broadband homonuclear first-order dipolar recoupling sequences mainly excite intra-residue correlations, selective methods can detect inter-residue transfers and long-range correlations. Here, we present the great offset difference internuclear selective transfer (GODIST) pulse sequence optimized for selective carbonyl or aliphatic recoupling at fast magic-angle spinning, here, 55 kHz. We observe a 3- to 5-fold increase in intensities compared with broadband RFDR recoupling for perdeuterated microcrystalline SH3 and for the membrane protein influenza A M2 in lipid bilayers. In 3D (H)COCO(N)H and (H)CO(CO)NH spectra, inter-residue carbonyl-carbonyl correlations up to about 5 Å are observed in uniformly 13C-labeled proteins.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR-based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Eszter Éva Najbauer
- Department of NMR-based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Stefan Becker
- Department of NMR-based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Loren B. Andreas
- Department of NMR-based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
45
|
Nimerovsky E, Becker S, Andreas LB. Windowed cross polarization at 55 kHz magic-angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107404. [PMID: 36848688 DOI: 10.1016/j.jmr.2023.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cross polarization (CP) transfers via Hartmann-Hahn matching conditions are one of the cornerstones of solid-state magic-angle spinning NMR experiments. Here we investigate a windowed sequence for cross polarization (wCP) at 55 kHz magic-angle spinning, placing one window (and one pulse) per rotor period on one or both rf channels. The wCP sequence is known to have additional matching conditions. We observe a striking similarity between wCP and CP transfer conditions when considering the flip angle of the pulse rather than the rf-field strength applied during the pulse. Using fictitious spin-1/2 formalism and average Hamiltonian theory, we derive an analytical approximation that matches these observed transfer conditions. We recorded data at spectrometers with different external magnetic fields up to 1200 MHz, for strong and weak heteronuclear dipolar couplings. These transfers, and even the selectivity of CP were again found to relate to flip angle (average nutation).
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| | - Stefan Becker
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| |
Collapse
|
46
|
Dregni AJ, McKay MJ, Surya W, Queralt-Martin M, Medeiros-Silva J, Wang HK, Aguilella V, Torres J, Hong M. The Cytoplasmic Domain of the SARS-CoV-2 Envelope Protein Assembles into a β-Sheet Bundle in Lipid Bilayers. J Mol Biol 2023; 435:167966. [PMID: 36682677 PMCID: PMC9851921 DOI: 10.1016/j.jmb.2023.167966] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) protein forms a pentameric ion channel in the lipid membrane of the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of the infected cell. The cytoplasmic domain of E interacts with host proteins to cause virus pathogenicity and may also mediate virus assembly and budding. To understand the structural basis of these functions, here we investigate the conformation and dynamics of an E protein construct (residues 8-65) that encompasses the transmembrane domain and the majority of the cytoplasmic domain using solid-state NMR. 13C and 15N chemical shifts indicate that the cytoplasmic domain adopts a β-sheet-rich conformation that contains three β-strands separated by turns. The five subunits associate into an umbrella-shaped bundle that is attached to the transmembrane helices by a disordered loop. Water-edited NMR spectra indicate that the third β-strand at the C terminus of the protein is well hydrated, indicating that it is at the surface of the β-bundle. The structure of the cytoplasmic domain cannot be uniquely determined from the inter-residue correlations obtained here due to ambiguities in distinguishing intermolecular and intramolecular contacts for a compact pentameric assembly of this small domain. Instead, we present four structural topologies that are consistent with the measured inter-residue contacts. These data indicate that the cytoplasmic domain of the SARS-CoV-2 E protein has a strong propensity to adopt β-sheet conformations when the protein is present at high concentrations in lipid bilayers. The equilibrium between the β-strand conformation and the previously reported α-helical conformation may underlie the multiple functions of E in the host cell and in the virion.
Collapse
Affiliation(s)
- Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Matthew J McKay
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Maria Queralt-Martin
- Laboratory of Molecular Biophysics. Department of Physics. Universitat Jaume I. 12080 Castellón, Spain
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Harrison K Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Vicente Aguilella
- Laboratory of Molecular Biophysics. Department of Physics. Universitat Jaume I. 12080 Castellón, Spain
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
47
|
Barclay AM, Dhavale DD, Borcik CG, Milchberg MH, Kotzbauer PT, Rienstra CM. 13C and 15N Resonance Assignments of Alpha Synuclein Fibrils Amplified from Lewy Body Dementia Tissue. RESEARCH SQUARE 2023:rs.3.rs-2460685. [PMID: 36865115 PMCID: PMC9980205 DOI: 10.21203/rs.3.rs-2460685/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Fibrils of the protein α-synuclein (Asyn) are implicated in the pathogenesis of Parkinson Disease, Lewy Body Dementia, and Multiple System Atrophy. Numerous forms of Asyn fibrils have been studied by solid-state NMR and resonance assignments have been reported. Here, we report a new set of 13C, 15N assignments that are unique to fibrils obtained by amplification from postmortem brain tissue of a patient diagnosed with Lewy Body Dementia.
Collapse
|
48
|
Duma L, Senicourt L, Rigaud B, Papadopoulos V, Lacapère JJ. Solid-state NMR study of structural heterogeneity of the apo WT mouse TSPO reconstituted in liposomes. Biochimie 2023; 205:73-85. [PMID: 36029902 DOI: 10.1016/j.biochi.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
In the last decades, ligand binding to human TSPO has been largely used in clinical neuroimaging, but little is known about the interaction mechanism. Protein conformational mobility plays a key role in the ligand recognition and both, ligand-free and ligand-bound structures, are mandatory for characterizing the molecular binding mechanism. In the absence of crystals for mammalian TSPO, we have exploited solid-state nuclear magnetic resonance (ssNMR) spectroscopy under magic-angle spinning (MAS) to study the apo form of recombinant mouse TSPO (mTSPO) reconstituted in lipids. This environment has been previously described to permit binding of its high-affinity drug ligand PK11195 and appears therefore favourable for the study of molecular dynamics. We have optimized the physical conditions to get the best resolution for MAS ssNMR spectra of the ligand-free mTSPO. We have compared and combined various ssNMR spectra to get dynamical information either for the lipids or for the mTSPO. Partial assignment of residue types suggests few agreements with the published solution NMR assignment of the PK11195-bound mTSPO in DPC detergent. Moreover, we were able to observe some lateral chains of aromatic residues that were not assigned in solution. 13C double-quantum NMR spectroscopy shows remarkable dynamics for ligand-free mTSPO in lipids which may have significant implications on the recognition of the ligand and/or other protein partners.
Collapse
Affiliation(s)
- Luminita Duma
- Champagne-Ardenne University, CNRS, ICMR UMR, 7312, Reims, France.
| | - Lucile Senicourt
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005, Paris, France
| | - Baptiste Rigaud
- CNRS Institut des Matériaux de Paris Centre (FR2482), 4 Place Jussieu, 75005, Paris, France
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jean-Jacques Lacapère
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005, Paris, France
| |
Collapse
|
49
|
Al-Hilaly YK, Hurt C, Rickard JE, Harrington CR, Storey JMD, Wischik CM, Serpell LC, Siemer AB. Solid-state NMR of paired helical filaments formed by the core tau fragment tau(297-391). Front Neurosci 2022; 16:988074. [PMID: 36570831 PMCID: PMC9774000 DOI: 10.3389/fnins.2022.988074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Aggregation of the tau protein into fibrillar cross-β aggregates is a hallmark of Alzheimer's diseases (AD) and many other neurodegenerative tauopathies. Recently, several core structures of patient-derived tau paired helical filaments (PHFs) have been solved revealing a structural variability that often correlates with a specific tauopathy. To further characterize the dynamics of these fibril cores, to screen for strain-specific small molecules as potential biomarkers and therapeutics, and to develop strain-specific antibodies, recombinant in-vitro models of tau filaments are needed. We recently showed that a 95-residue fragment of tau (from residue 297 to 391), termed dGAE, forms filaments in vitro in the absence of polyanionic co-factors often used for in vitro aggregation of full-length tau. Tau(297-391) was identified as the proteolytic resistant core of tau PHFs and overlaps with the structures characterized by cryo-electron microscopy in ex vivo PHFs, making it a promising model for the study of AD tau filaments in vitro. In the present study, we used solid-state NMR to characterize tau(297-391) filaments and show that such filaments assembled under non-reducing conditions are more dynamic and less ordered than those made in the presence of the reducing agent DTT. We further report the resonance assignment of tau(297-391)+DTT filaments and compare it to existing core structures of tau.
Collapse
Affiliation(s)
- Youssra K. Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, United Kingdom
- Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Connor Hurt
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Janet E. Rickard
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Charles R. Harrington
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - John M. D. Storey
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
- Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Claude M. Wischik
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Louise C. Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, United Kingdom
| | - Ansgar B. Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
50
|
Hassid RR, Kedem S, Bachar-Beck M, Shamir Y, Goldbourt A. Solid state NMR chemical shift assignment of the non-structural single-stranded DNA binding protein gVp from fd bacteriophage. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:181-185. [PMID: 35460051 DOI: 10.1007/s12104-022-10076-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The non-structural gene V protein (pV, gVp) from fd virus is a non-specific single-stranded DNA binding protein. The role of gVp is to sequester the single-stranded DNA thus reducing the generation of the replicative DNA form and leading to the formation of progeny phage. In this study, we assigned the 13C and 15N resonances of the crystalline unbound protein by magic-angle spinning solid-state NMR. The secondary structure predicted by the NMR shifts is in excellent agreement with the X-ray structure of the same 87-residue protein.
Collapse
Affiliation(s)
- Roni Rene Hassid
- School of Chemistry, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Smadar Kedem
- School of Chemistry, Tel Aviv University, 6997801, Tel Aviv, Israel
| | | | - Yoav Shamir
- School of Chemistry, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Amir Goldbourt
- School of Chemistry, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|