1
|
Gallo M, Luti S, Baroni F, Baccelli I, Cilli EM, Cicchi C, Leri M, Spisni A, Pertinhez TA, Pazzagli L. Plant Defense Elicitation by the Hydrophobin Cerato-Ulmin and Correlation with Its Structural Features. Int J Mol Sci 2023; 24:2251. [PMID: 36768573 PMCID: PMC9916430 DOI: 10.3390/ijms24032251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Cerato-ulmin (CU) is a 75-amino-acid-long protein that belongs to the hydrophobin family. It self-assembles at hydrophobic-hydrophilic interfaces, forming films that reverse the wettability properties of the bound surface: a capability that may confer selective advantages to the fungus in colonizing and infecting elm trees. Here, we show for the first time that CU can elicit a defense reaction (induction of phytoalexin synthesis and ROS production) in non-host plants (Arabidopsis) and exerts its eliciting capacity more efficiently when in its soluble monomeric form. We identified two hydrophobic clusters on the protein's loops endowed with dynamical and physical properties compatible with the possibility of reversibly interconverting between a disordered conformation and a β-strand-rich conformation when interacting with hydrophilic or hydrophobic surfaces. We propose that the plasticity of those loops may be part of the molecular mechanism that governs the protein defense elicitation capability.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Simone Luti
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Fabio Baroni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-901, Brazil
| | - Costanza Cicchi
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Manuela Leri
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | | | - Luigia Pazzagli
- Department of Biomedical Experimental and Clinical Sciences, University of Florence, 50121 Firenze, Italy
| |
Collapse
|
2
|
Tomato Xylem Sap Hydrophobins Vdh4 and Vdh5 Are Important for Late Stages of Verticillium dahliae Plant Infection. J Fungi (Basel) 2022; 8:jof8121252. [PMID: 36547586 PMCID: PMC9783231 DOI: 10.3390/jof8121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Verticillium dahliae causes economic losses to a wide range of crops as a vascular fungal pathogen. This filamentous ascomycete spends long periods of its life cycle in the plant xylem, a unique environment that requires adaptive processes. Specifically, fungal proteins produced in the xylem sap of the plant host may play important roles in colonizing the plant vasculature and in inducing disease symptoms. RNA sequencing revealed over 1500 fungal transcripts that are significantly more abundant in cells grown in tomato xylem sap compared with pectin-rich medium. Of the 85 genes that are strongly induced in the xylem sap, four genes encode the hydrophobins Vdh1, Vdh2, Vdh4 and Vdh5. Vdh4 and Vhd5 are structurally distinct from each other and from the three other hydrophobins (Vdh1-3) annotated in V. dahliae JR2. Their functions in the life cycle and virulence of V. dahliae were explored using genetics, cell biology and plant infection experiments. Our data revealed that Vdh4 and Vdh5 are dispensable for V. dahliae development and stress response, while both contribute to full disease development in tomato plants by acting at later colonization stages. We conclude that Vdh4 and Vdh5 are functionally specialized fungal hydrophobins that support pathogenicity against plants.
Collapse
|
3
|
Hilário S, Gonçalves MFM, Fidalgo C, Tacão M, Alves A. Genome Analyses of Two Blueberry Pathogens: Diaportheamygdali CAA958 and Diaporthe eres CBS 160.32. J Fungi (Basel) 2022; 8:804. [PMID: 36012791 PMCID: PMC9409727 DOI: 10.3390/jof8080804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The genus Diaporthe includes pathogenic species distributed worldwide and affecting a wide variety of hosts. Diaporthe amygdali and Diaporthe eres have been found to cause cankers, dieback, or twig blights on economically important crops such as soybean, almond, grapevine, and blueberry. Despite their importance as plant pathogens, the strategies of species of Diaporthe to infect host plants are poorly explored. To provide a genomic basis of pathogenicity, the genomes of D. amygdali CAA958 and D. eres CBS 160.32 were sequenced and analyzed. Cellular transporters involved in the transport of toxins, ions, sugars, effectors, and genes implicated in pathogenicity were detected in both genomes. Hydrolases and oxidoreductases were the most prevalent carbohydrate-active enzymes (CAZymes). However, analyses of the secreted proteins revealed that the secretome of D. eres CBS 160.32 is represented by 5.4% of CAZymes, whereas the secreted CAZymes repertoire of D. amygdali CAA958 represents 29.1% of all secretomes. Biosynthetic gene clusters (BGCs) encoding compounds related to phytotoxins and mycotoxins were detected in D. eres and D. amygdali genomes. The core gene clusters of the phytotoxin Fusicoccin A in D. amygdali are reported here through a genome-scale assembly. Comparative analyses of the genomes from 11 Diaporthe species revealed an average of 874 CAZymes, 101 secondary metabolite BGCs, 1640 secreted proteins per species, and genome sizes ranging from 51.5 to 63.6 Mbp. This study offers insights into the overall features and characteristics of Diaporthe genomes. Our findings enrich the knowledge about D. eres and D. amygdali, which will facilitate further research into the pathogenicity mechanisms of these species.
Collapse
Affiliation(s)
| | | | | | | | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (S.H.); (M.F.M.G.); (C.F.); (M.T.)
| |
Collapse
|
4
|
Zhang X, Jacobeen S, Zhang Q, Khau B, Yunker P, Qi HJ, Bhamla S, Russo PS. Reshaping sub-millimetre bubbles from spheres to tori. SOFT MATTER 2022; 18:4660-4666. [PMID: 35543353 PMCID: PMC9247010 DOI: 10.1039/d2sm00173j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Shape-changing objects are prized for applications ranging from acoustics to robotics. We report sub-millimetre bubbles that reversibly and rapidly change not only their shape but also their topological class, from sphere to torus, when subjected to a simple pressure treatment. Stabilized by a solid-like film of nanoscopic protein "particles", the bubbles may persist in toroidal form for several days, most of them with the relative dimensions expected of Clifford tori. The ability to cross topological classes reversibly and quickly is enabled by the expulsion of protein from the strained surfaces in the form of submicron assemblies. Compared to structural modifications of liquid-filled vesicles, for example by slow changes in solution osmolality, the rapid inducement of shape changes in bubbles by application of pressure may hasten experimental investigations of surface mechanics, even as it suggests new routes to lightweight materials with high surface areas.
Collapse
Affiliation(s)
- Xujun Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shane Jacobeen
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qiang Zhang
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brian Khau
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Peter Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - H Jerry Qi
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Paul S Russo
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
- Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Draft genomic sequence of Armillaria gallica 012m: insights into its symbiotic relationship with Gastrodia elata. Braz J Microbiol 2020; 51:1539-1552. [PMID: 32572836 DOI: 10.1007/s42770-020-00317-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 06/09/2020] [Indexed: 10/24/2022] Open
Abstract
Armillaria species (Basidiomycota, Physalacriaceae) are well known as plant pathogens related to serious root rot disease on various trees in forests and plantations. Interestingly, some Armillaria species are essential symbionts of the rare Chinese medicinal herb Gastrodia elata, a rootless and leafless orchid used for over 2000 years. In this work, an 87.3-M draft genome of Armillaria gallica 012m strain, which was symbiotic with G. elata, was assembled. The genome includes approximately 23.6% repetitive sequences and encodes 26,261 predicted genes. In comparison with other four genomes of Armillaria, the following gene families related to pathogenicity/saprophytic phase, including cytochrome P450 monooxygenases, carbohydrate-active enzyme AA3, and hydrophobins, were significantly contracted in A. gallica 012m. These characteristics may be beneficial for G. elata to get less injuries. The genome-guided analysis of differential expression between rhizomorph (RH) and vegetative mycelium (VM) showed that a total of 2549 genes were differentially expressed, including 632 downregulated genes and 1917 upregulated genes. In the RH, most differentially expressed genes (DEGs) related to pathogenicity were significantly upregulated. To further elucidate gene function, Gene Ontology enrichment analysis showed that the upregulated DEGs significantly grouped into monooxygenase activity, hydrolase activity, glucosidase activity, extracellular region, fungal cell wall, response to xenobiotic stimulus, response to toxic substance, etc. These phenomena indicate that RH had better infection ability than VM. The infection ability of RH may be beneficial for G. elata to obtain nutrition, because the rhizomorph constantly infected the nutritional stems of G. elata and formed the hyphae that can be digested by G. elata. These results clarified the characteristics of A. gallica 012m and the reason why the strain 012m can establish a symbiotic relationship with G. elata in some extent from the perspective of genomics.
Collapse
|
6
|
Sheu F, Chien PJ, Hsieh KY, Chin KL, Huang WT, Tsao CY, Chen YF, Cheng HC, Chang HH. Purification, cloning, and functional characterization of a novel immunomodulatory protein from Antrodia camphorata (bitter mushroom) that exhibits TLR2-dependent NF-κB activation and M1 polarization within murine macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4130-4141. [PMID: 19371137 DOI: 10.1021/jf900469a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new immunomodulatory protein, designated ACA, was purified from the mycelium extract of Antrodia camphorata , a well-known folk medicine bitter mushroom in Taiwan, and N-terminally sequenced. By taking advantage of its N-terminal amino acid sequence, the full-length ACA gene was cloned using rapid amplification of cDNA ends (RACE) approach. This gene encodes a 136 amino acid protein that is homologous to the phytotoxic proteins from fungi. On the basis of the data of N-terminal sequencing and N-glycosidase F treatment, the native ACA was confirmed to be a glycoprotein. The similarity in activation of TLR4-deficient macrophages by both the native ACA and recombinant ACA (rACA) suggested that the glycosyl group(s) of the native ACA was insignificant in macrophage activation. Moreover, the failure of rACA to induce TLR2-deficient macrophages and to activate the RAW 264.7 macrophages transfected with the dominate-negative MyD88 (dnMyD88) indicated that the ACA-mediated macrophage activation was TLR2/MyD88 dependent. Microarray assay of the ACA-activated NFκB-related gene expression showed that rACA demonstrated a LPS-mimetic proinflammatory response toward RAW 264.7 macrophages. Furthermore, rACA enhanced phagocytosis activity and CD86 (B7-2) expression as well as induced TNF-α and IL-1β production within murine peritoneal macrophages. A time-dependent induction of mRNA expression of cytokines TNF-α, IL-1β, IL-6, and IL-12 as well as chemokines CCL3, CCL4, CCL5, and CCL10, but not IL-10, CCL17, CCL22, and CCL24, was observed after the ACA treatment of the macrophages. These results proposed that ACA exhibited M1 polarization and differentiation in macrophages. Thus, ACA is an important immunomodulatory protein of A. camphorata.
Collapse
Affiliation(s)
- Fuu Sheu
- Research Center of Food and Biomolecules, Chinese Culture University, Taiwan, Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tadesse Y, Bernier L, Hintz WE, Horgen PA. Real time RT-PCR quantification and Northern analysis of cerato-ulmin ( CU) gene transcription in different strains of the phytopathogens Ophiostoma ulmi and O. novo-ulmi. Mol Genet Genomics 2003; 269:789-96. [PMID: 14513363 DOI: 10.1007/s00438-003-0890-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Accepted: 06/13/2003] [Indexed: 10/26/2022]
Abstract
Cerato-ulmin is a surface protein that belongs to the class of fungal proteins known as hydrophobins. This class II hydrophobin is produced throughout the life cycle and in all developmental stages of Ophiostoma novo-ulmi and O. ulmi; the aggressive and non-aggressive pathogens responsible for Dutch elm disease. Since yeast/mycelial transitions are often important to pathogenesis in dimorphic fungi such as Ophiostoma, we have examined the levels and abundance of cu mRNA in the yeast and mycelial stages of this fungus. The fungus contains one copy of the cu gene per haploid genome, located on chromosome IV. Our studies have been done using phosphoimager-based Northern analysis and real-time quantitative RT-PCR (qRT-PCR) to measure levels of cu mRNA. These measurements were made in both yeast-like and mycelial stages of the pathogen. Two wild-type, aggressive, strains of O. novo-ulmi (VA30 and H327) and one wild type non-aggressive strain of O. ulmi (H5) were analysed. As controls, we have utilized two types of mutants that we had previously generated, the null cu mutants THEK5-8 and THEK5-8-1, and a cu over-expression mutant, H5-tf16. Data generated by both Northern hybridization and real-time qRT-PCR analyses demonstrate that there is no cu mRNA transcription in the null mutants. The Northern analysis clearly showed that the over-expressing mutant H5-tf16 produces much more cu mRNA than the non-aggressive or aggressive strains. The quantitative data generated using qRT-PCR demonstrated that mycelium generally had 20-60% more cu mRNA than the yeast form. The non-aggressive strain of O. ulmi (H5) produces one-tenth as much cu mRNA as the aggressive strains (VA30 and H327). When transformed with additional copies of the cu gene, this same non-aggressive strain (H5-tf16) expressed about 20 times more cu mRNA than the wild type H5 strain. These data were consistently generated in multiple real-time qRT-PCR experiments with different RNA preparations, clearly demonstrating that the quantitative abundance values obtained were reproducible. Our study represents the first report on the use of real-time qRT-PCR to compare and quantify gene transcription in different growth phases of a fungal pathogen.
Collapse
Affiliation(s)
- Y Tadesse
- Department of Botany, University of Toronto at Mississauga, Mississauga, Ontario, L1L 1C6, Canada.
| | | | | | | |
Collapse
|
8
|
Wilson LM, Idnurm A, Howlett BJ. Characterization of a gene (sp1) encoding a secreted protein from Leptosphaeria maculans, the blackleg pathogen of Brassica napus. MOLECULAR PLANT PATHOLOGY 2002; 3:487-493. [PMID: 20569355 DOI: 10.1046/j.1364-3703.2002.00144.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY A gene (sp1) encoding a 12.3 kDa protein with a predicted secretion signal has been characterized from Leptosphaeria maculans, the dothideomycete that causes blackleg disease of canola (Brassica napus). This protein (SP1) contains four cysteine residues and shows a high sequence similarity to proteins from other ascomycetes. L. maculans sp1 has been placed on genetic and physical maps. This gene is expressed during the infection of B. napus cotyledons 10 days post-inoculation, coinciding with detection of the constitutively expressed fungal gene, beta-tubulin. L. maculans sp1, along with opsin and glyceraldehyde phosphate dehydrogenase, is light regulated. A recombinant SP1 protein expressed in Escherichia coli and a crude protein fraction secreted by L. maculans induced an autofluorescence response on B. napus leaves. The sp1 gene was mutated by targeted gene disruption whereby a hygromycin resistance gene was inserted. Such mutants caused similar-sized lesions on B. napus cotyledons as those caused by the wild-type isolate, indicating that sp1 is not crucial for pathogenicity of L. maculans on B. napus. This is the first report of disruption of this gene in any fungus.
Collapse
Affiliation(s)
- Leanne M Wilson
- School of Botany, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
9
|
Whiteford JR, Spanu PD. Hydrophobins and the interactions between fungi and plants. MOLECULAR PLANT PATHOLOGY 2002; 3:391-400. [PMID: 20569345 DOI: 10.1046/j.1364-3703.2002.00129.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Summary Hydrophobins are small proteins thought to be ubiquitous in filamentous fungi. They are usually secreted and are found on the outer surfaces of cell walls of hyphae and conidia where they mediate interactions between the fungus and the environment. We review here what is currently known about the primary and secondary structure of these proteins, as well as their post-translational modifications. We also discuss the diverse functions of hydrophobins in biology and development, with particular attention to fungi involved in pathogenesis and symbiosis.
Collapse
Affiliation(s)
- James R Whiteford
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London, UK
| | | |
Collapse
|
10
|
Pipe ND, Brasier CM, Buck KW. Two natural cerato-ulmin (CU)-deficient mutants of Ophiostoma novo-ulmi: one has an introgressed O. ulmi cu gene, the other has an O. novo-ulmi cu gene with a mutation in an intron splice consensus sequence. MOLECULAR PLANT PATHOLOGY 2000; 1:379-382. [PMID: 20572985 DOI: 10.1046/j.1364-3703.2000.00042.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Summary The nucleotide sequences of the cerato-ulmin (cu) genes of two naturally occurring pathogenic CU-deficient mutants, PG470 and MAFf8, of the Dutch elm disease fungus, Ophiostoma novo-ulmi, were determined. The PG470 cu gene sequence was identical to that of CU-secreting isolates of O. novo-ulmi, except for a G to A mutation in the GT splice consensus sequence at the start of intron 1, suggesting that the CU deficiency was due to a splicing defect in the premRNA. In contrast, the MAFf8 cu gene showed a 99.1% sequence identity with cu genes of O. ulmi isolates, but only 92.8% sequence identity with cu genes of CU-secreting isolates of O. novo-ulmi, and in a dendrogram clustered with cu gene sequences of O. ulmi isolates with 100% bootstrap support. Restriction fragment length polymorphisms of the ribosomal RNA region, random amplified polymorphic DNA markers, and many biological properties of MAFf8, including pathogenicity, were typical of O. novo-ulmi. It is therefore likely that the cu gene of MAFf8 has been introgressed from O. ulmi, probably as a result of rare hybrid formation between O. ulmi and O. novo-ulmi, followed by backcrossing of the hybrid with O. novo-ulmi. The presence of an O. ulmi-like cu gene in MAFf8 is consistent with its CU deficiency, since the O. ulmicu gene is known to be poorly expressed and O. ulmi isolates secrete little or no CU in culture.
Collapse
Affiliation(s)
- N D Pipe
- Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
| | | | | |
Collapse
|