1
|
Koch Bach RA, Murithi HM, Coyne D, Clough SJ. Phylogenetic analyses show the Select Agent Coniothyrium glycines represents a single species that has significant morphological and genetic variation. Mycologia 2024; 116:936-948. [PMID: 39287961 DOI: 10.1080/00275514.2024.2383114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/18/2024] [Indexed: 09/19/2024]
Abstract
Soybean red leaf blotch (RLB), caused by the fungus Coniothyrium glycines, represents a foliar disease of soybean that is thus far restricted to Africa. The fungus is listed as a Select Agent by the Federal Select Agent Program because it could pose a severe threat to plant health were it to establish in the United States. Previous work uncovered tremendous molecular diversity at the internal transcribed spacer region, suggesting that there may be multiple species causing RLB. To determine whether multiple species cause RLB, we reconstructed the phylogeny of C. glycines and taxonomic allies using sequence data from four genes. We included 33 C. glycines isolates collected from six African countries and determined that all isolates form a well-supported, monophyletic lineage. Within this lineage there are at least six well-supported clades that largely correspond to geography, with one clade exclusively composed of isolates from Ethiopia, another exclusively composed of isolates from Uganda, and four composed of isolates from southern Africa. However, we did not detect any concordance for these clades between the four genes, indicating that all isolates included in this analysis are representative of a single species. Isolates in the Ethiopia clade are morphologically distinct from isolates in the other clades, as they produce larger sclerotia and smaller pycnida and more sclerotia in planta. Additionally, ancestral range estimations suggest that the C. glycines lineage emerged in southern Africa. These results show that there is significantly more genetic and morphological diversity than was initially suspected with this high-consequence fungal plant pathogen.
Collapse
Affiliation(s)
- Rachel A Koch Bach
- Foreign Disease-Weed Science Research Unit, Agricultural Research Service, United States Department of Agriculture, Fort Detrick, Maryland 21702
| | - Harun M Murithi
- Agricultural Research Service Research Participation Program through the Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Danny Coyne
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Steven J Clough
- Soybean/Maize Germplasm, Pathology and Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, Illinois 61801
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
2
|
Ma X, Huang R, Zhai L, Jiang Y, Moffett P, Wang Z, Song X, Zhang Y, Song F, He L, Ji S, Wu L. Molecular characterization of a novel partitivirus with four segments isolated from Fusarium solani, the causal agent of citrus root rot. J Gen Virol 2024; 105. [PMID: 39526878 DOI: 10.1099/jgv.0.002043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
We report here the identification of a dsRNA virus, obtained from Fusarium solani strain Newher-7, tentatively named F. solani partitivirus 3 (FsPV3). It consists of four dsRNA segments (dsRNA1-4) with lengths of 1961, 1900, 1830 and 1830 bp, respectively. Sequence analysis showed that dsRNA1 encodes an RNA-dependent RNA polymerase (RdRp), dsRNA2 encodes a capsid protein (CP), dsRNA3 encodes a hypothetical protein of unknown function and dsRNA4 encodes two hypothetical proteins of unknown function. Amino acid sequence comparisons showed that the RdRp of FsPV3 is most similar to that of Hulunbuir Parti tick virus 1. In contrast, the CP of FsPV3, as well as the hypothetical protein encoded by ORF3 of dsRNA3, was most similar to cognate proteins encoded by Colletotrichum-associated partitivirus 2. However, the two hypothetical proteins encoded by dsRNA4 showed no significant similarity to the available sequences in the National Center for Biotechnology Information database and encoded no apparent conserved domains. Phylogenetic analysis of the RdRp and CP showed that FsPV3 clustered together with other species in the genus Alphapartitivirus. Given that proteins encoded by FsPV3 are not sufficiently highly homologous to a single known virus and that it encodes two novel proteins, we suggest that FsPV3 should be regarded as a new member of the genus Alphapartitivirus in the family Partitiviridae. This is the first report of FsPV3 infecting F. solani.
Collapse
Affiliation(s)
- XiaoFang Ma
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Rui Huang
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408000, PR China
| | - LiFeng Zhai
- College of Life Science and Technology, Yangtze Normal University, Chongqing 408000, PR China
| | - YingChun Jiang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd. de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - ZhiJing Wang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Xin Song
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Yu Zhang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Fang Song
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - LiGang He
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - ShengMei Ji
- College of Horticulture & Forestry Sciences, Hubei Vocational College of Bio-Technology, Wuhan 430070, PR China
| | - LiMing Wu
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit trees, Research Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| |
Collapse
|
3
|
Nielsen MR, Sørensen T, Pedersen TB, Westphal KR, Díaz Fernández De Quincoces L, Sondergaard TE, Wimmer R, Brown DW, Sørensen JL. Final piece to the Fusarium pigmentation puzzle - Unraveling of the phenalenone biosynthetic pathway responsible for perithecial pigmentation in the Fusarium solani species complex. Fungal Genet Biol 2024; 174:103912. [PMID: 39004163 DOI: 10.1016/j.fgb.2024.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The Fusarium solani species complex (FSSC) is comprised of important pathogens of plants and humans. A distinctive feature of FSSC species is perithecial pigmentation. While the dark perithecial pigments of other Fusarium species are derived from fusarubins synthesized by polyketide synthase 3 (PKS3), the perithecial pigments of FSSC are derived from an unknown metabolite synthesized by PKS35. Here, we confirm in FSSC species Fusarium vanettenii that PKS35 (fsnI) is required for perithecial pigment synthesis by deletion analysis and that fsnI is closely related to phnA from Penicillium herquei, as well as duxI from Talaromyces stipentatus, which produce prephenalenone as an early intermediate in herqueinone and duclauxin synthesis respectively. The production of prephenalenone by expression of fsnI in Saccharomyces cerevisiae indicates that it is also an early intermediate in perithecial pigment synthesis. We next identified a conserved cluster of 10 genes flanking fsnI in F. vanettenii that when expressed in F. graminearum led to the production of a novel corymbiferan lactone F as a likely end product of the phenalenone biosynthetic pathway in FSSC.
Collapse
Affiliation(s)
- Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Tobias Bruun Pedersen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark
| | - Klaus Ringsborg Westphal
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | | | - Teis Esben Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Daren W Brown
- National Center for Agricultural Utilization Research, U.S. Department of Agriculture, 1815 N University St. Peoria IL 61604, United States of America
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark.
| |
Collapse
|
4
|
Qiu R, Li C, Zhang Y, Li X, Li C, Liu C, Zhang M, Bai J, Chen Y, Li F, Li S. Characterization of Fusarium solani Associated with Tobacco ( Nicotiana tabacum) Root Rot in Henan, China. PLANT DISEASE 2024; 108:2447-2453. [PMID: 38522090 DOI: 10.1094/pdis-10-23-2172-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The aim of this study was to characterize the Fusarium solani species complex (FSSC) population obtained from tobacco roots with root rot symptoms by morphological characteristics, molecular tests, and assessment of pathogenicity. Cultures isolated from roots were white to cream with sparse mycelium on potato dextrose agar, with colony growth of 21.5 ± 0.5 to 29.5 ± 0.5 mm after 3 days. Sporodochia were cream on carnation leaf agar (CLA) and Spezieller Nährstoffarmer agar (SNA), and macroconidia formed in sporodochia were 3 to 6 septate and straight to slightly curved, with wide central cells, a slightly short blunt apical cell, and a straight to almost cylindrical basal cell with a distinct foot shape, ranging in size from 20.92 to 64.37 × 3.91 to 6.57 μm. Microconidia formed on CLA were reniform and fusiform, with 0 or 1 to occasionally 2 septa, that formed on long monophialidic conidiogenous cells, with a size range of 5.99 to 32.32 × 1.76 to 5.84 μm. Globose to oval chlamydospores were smooth- to rough-walled, 6.5 to 13.3 ± 0.37 μm in diameter, and terminal or intercalary and occurred singly, in pairs, or occasionally in short chains on SNA. Molecular tests consisted of sequencing and phylogenetic analysis of the translation elongation factor-1 alpha (EF-1α), RNA polymerase II largest subunit, and second largest subunit regions. All the obtained sequences revealed 98.14 to 100% identity to F. solani in both Fusarium ID and Fusarium MLST databases. Phylogenetic trees of the EF-1α gene and concatenated three-locus data showed that isolates from tobacco in Henan grouped in the proposed group 5, which is nested within FSSC clade 3 (FSSC 5). Twenty-seven of the 28 isolates caused root rot in artificially inoculated tobacco seedlings, with a disease severity index ranging from 15.00 ± 1.67 to 91.11 ± 2.22. Cross-pathogenicity tests showed that three representative isolates were virulent to six species of Solanaceae and two species of Poaceae, with disease severity indexes ranging from 6.12 ± 0.56 to 84.44 ± 0.00, indicating that these isolates have a wide host range. The results may inform the control of tobacco root rot through improved crop rotations.
Collapse
Affiliation(s)
- Rui Qiu
- Tobacco Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Xuchang 461000, China
| | - Caihong Li
- Tobacco Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Xuchang 461000, China
| | - Yingying Zhang
- Tobacco Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Xuchang 461000, China
| | - Xiaojie Li
- Tobacco Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Xuchang 461000, China
| | - Chengjun Li
- Tobacco Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Xuchang 461000, China
| | - Chang Liu
- Tobacco Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Xuchang 461000, China
| | - Mengdan Zhang
- Tobacco Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Xuchang 461000, China
| | - Jingke Bai
- Tobacco Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Xuchang 461000, China
| | - Yuguo Chen
- Tobacco Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Xuchang 461000, China
| | - Fangfang Li
- Henan Provincial Tobacco Corporation of CNTC, Zhengzhou, Henan 450018, China
| | - Shujun Li
- Tobacco Research Institute, Henan Academy of Agricultural Sciences/Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Xuchang 461000, China
| |
Collapse
|
5
|
Lizcano Salas AF, Duitama J, Restrepo S, Celis Ramírez AM. Phylogenomic approaches reveal a robust time-scale phylogeny of the Terminal Fusarium Clade. IMA Fungus 2024; 15:13. [PMID: 38849861 PMCID: PMC11161934 DOI: 10.1186/s43008-024-00147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
The Terminal Fusarium Clade (TFC) is a group in the Nectriaceae family with agricultural and clinical relevance. In recent years, various phylogenies have been presented in the literature, showing disagreement in the topologies, but only a few studies have conducted analyses on the divergence time scale of the group. Therefore, the evolutionary history of this group is still being determined. This study aimed to understand the evolutionary history of the TFC from a phylogenomic perspective. To achieve this objective, we performed a phylogenomic analysis using the available genomes in GenBank and ran eight different pipelines. We presented a new robust topology of the TFC that differs at some nodes from previous studies. These new relationships allowed us to formulate new hypotheses about the evolutionary history of the TFC. We also inferred new divergence time estimates, which differ from those of previous studies due to topology discordances and taxon sampling. The results suggested an important diversification process in the Neogene period, likely associated with the diversification and predominance of terrestrial ecosystems by angiosperms. In conclusion, we presented a robust time-scale phylogeny that allowed us to formulate new hypotheses regarding the evolutionary history of the TFC.
Collapse
Affiliation(s)
- Andrés Felipe Lizcano Salas
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMop), Universidad de los Andes, Bogotá, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Silvia Restrepo
- Chemical Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMop), Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
6
|
Klomchit A, Calabon MS, Worabandit S, Weaver JA, Karima EM, Alberti F, Greco C, Mahanil S. Unveiling novel Neocosmospora species from Thai mangroves as potent biocontrol agents against Colletotrichum species. J Appl Microbiol 2024; 135:lxae114. [PMID: 38724454 DOI: 10.1093/jambio/lxae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/29/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
AIMS Neocosmospora species are saprobes, endophytes, and pathogens belonging to the family Nectriaceae. This study aims to investigate the taxonomy, biosynthetic potential, and application of three newly isolated Neocosmospora species from mangrove habitats in the southern part of Thailand using phylogeny, bioactivity screening, genome sequencing, and bioinformatics analysis. METHODS AND RESULTS Detailed descriptions, illustrations, and a multi-locus phylogenetic tree with large subunit ribosomal DNA (LSU), internal transcribed spacer (ITS), translation elongation factor 1-alpha (ef1-α), and RNA polymerase II second largest subunit (RPB2) regions showing the placement of three fungal strains, MFLUCC 17-0253, MFLUCC 17-0257, and MFLUCC 17-0259 clustered within the Neocosmospora clade with strong statistical support. Fungal crude extracts of the new species N. mangrovei MFLUCC 17-0253 exhibited strong antifungal activity to control Colletotrichum truncatum CG-0064, while N. ferruginea MFLUCC 17-0259 exhibited only moderate antifungal activity toward C. acutatum CC-0036. Thus, N. mangrovei MFLUCC 17-0253 was sequenced by Oxford nanopore technology. The bioinformatics analysis revealed that 49.17 Mb genome of this fungus harbors 41 potential biosynthetic gene clusters. CONCLUSION Two fungal isolates of Neocosmospora and a new species of N. mangrovei were reported in this study. These fungal strains showed activity against pathogenic fungi causing anthracnose in chili. In addition, full genome sequencing and bioinformatics analysis of N. mangrovei MFLUCC 17-0253 were obtained.
Collapse
Affiliation(s)
- Anthikan Klomchit
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Mark S Calabon
- Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, Miagao, Iloilo 5024, Philippines
| | | | - Jack A Weaver
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Elfina M Karima
- Department of Biosciences, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Fabrizio Alberti
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Claudio Greco
- Department of Biosciences, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Siraprapa Mahanil
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
7
|
Wu L, Hwang SF, Strelkov SE, Fredua-Agyeman R, Oh SH, Bélanger RR, Wally O, Kim YM. Pathogenicity, Host Resistance, and Genetic Diversity of Fusarium Species under Controlled Conditions from Soybean in Canada. J Fungi (Basel) 2024; 10:303. [PMID: 38786658 PMCID: PMC11122035 DOI: 10.3390/jof10050303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Fusarium spp. are commonly associated with the root rot complex of soybean (Glycine max). Previous surveys identified six common Fusarium species from Manitoba, including F. oxysporum, F. redolens, F. graminearum, F. solani, F. avenaceum, and F. acuminatum. This study aimed to determine their pathogenicity, assess host resistance, and evaluate the genetic diversity of Fusarium spp. isolated from Canada. The pathogenicity of these species was tested on two soybean cultivars, 'Akras' (moderately resistant) and 'B150Y1' (susceptible), under greenhouse conditions. The aggressiveness of the fungal isolates varied, with root rot severities ranging from 1.5 to 3.3 on a 0-4 scale. Subsequently, the six species were used to screen a panel of 20 Canadian soybean cultivars for resistance in a greenhouse. Cluster and principal component analyses were conducted based on the same traits used in the pathogenicity study. Two cultivars, 'P15T46R2' and 'B150Y1', were consistently found to be tolerant to F. oxysporum, F. redolens, F. graminearum, and F. solani. To investigate the incidence and prevalence of Fusarium spp. in Canada, fungi were isolated from 106 soybean fields surveyed across Manitoba, Saskatchewan, Ontario, and Quebec. Eighty-three Fusarium isolates were evaluated based on morphology and with multiple PCR primers, and phylogenetic analyses indicated their diversity across the major soybean production regions of Canada. Overall, this study contributes valuable insights into host resistance and the pathogenicity and genetic diversity of Fusarium spp. in Canadian soybean fields.
Collapse
Affiliation(s)
- Longfei Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (L.W.); (S.-F.H.); (S.E.S.); (R.F.-A.); (S.-H.O.)
| | - Sheau-Fang Hwang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (L.W.); (S.-F.H.); (S.E.S.); (R.F.-A.); (S.-H.O.)
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (L.W.); (S.-F.H.); (S.E.S.); (R.F.-A.); (S.-H.O.)
| | - Rudolph Fredua-Agyeman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (L.W.); (S.-F.H.); (S.E.S.); (R.F.-A.); (S.-H.O.)
| | - Sang-Heon Oh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (L.W.); (S.-F.H.); (S.E.S.); (R.F.-A.); (S.-H.O.)
| | - Richard R. Bélanger
- Centre de Recherche en Innovation des Végétaux, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Owen Wally
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada;
| | - Yong-Min Kim
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7C 5Y3, Canada
| |
Collapse
|
8
|
Zhang C, Liu Z, Yang Y, Ma Q, Zheng Y, Xu C, Gao X, Gao W, Huang Z, Liu X. Characterization of Fusarium species causing soybean root rot in Heilongjiang, China, and mechanism underlying the differences in sensitivity to DMI fungicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105828. [PMID: 38582592 DOI: 10.1016/j.pestbp.2024.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 04/08/2024]
Abstract
Soybean root rot is a worldwide soil-borne disease threatening soybean production, causing large losses in soybean yield and quality. Fusarium species are the most detrimental pathogens of soybean root rot worldwide, causing large production losses. Fusarium root rot has been frequently reported in Heilongjiang Province of China, but the predominant Fusarium species and the sensitivity of these pathogens to different fungicides remain unclear. In this study, diseased soybean roots were collected from 14 regions of Heilongjiang province in 2021 and 2022. A total of 144 isolates of Fusarium spp. were isolated and identified as seven distinct species: F. scirpi, F. oxysporum, F. graminearum, F. clavum, F. acuminatum, F. avenaceum, and F. sporotrichioide. F. scirpi and F. oxysporum had high separation frequency and strong pathogenicity. The sensitivity of Fusarium spp. to five different fungicides was determined. Mefentrifluconazole and fludioxonil showed good inhibitory effects, and the sensitivity to pydiflumetofen and phenamacril varied between Fusarium species. In particular, the activity of DMI fungicide prothioconazole was lower than that of mefentrifluconazole. Molecular docking showed that mefentrifluconazole mainly bound to CYP51C, but prothioconazole mainly bound to CYP51B. Furthermore, the sensitivity to prothioconazole only significantly decreased in ΔFgCYP51B mutant, and the sensitivity to mefentrifluconazole changed in ΔFgCYP51C and ΔFgCYP51A mutants. The results demonstrated that the predominant Fusarium species causing soybean root rot in Heilongjiang province were F. scirpi and F. oxysporum and DMI fungicides had differences in binding cavity due to the diversity of CYP51 proteins in Fusarium.
Collapse
Affiliation(s)
- Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zhanyun Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yige Yang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Quanhe Ma
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yuxin Zheng
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Chenxi Xu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xuheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
| | - Wenna Gao
- Science and Technology Researeh Center of China Customs, Beijing 100026, China
| | - Zhongqiao Huang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
9
|
He J, Li DW, Cui WL, Zhu LH, Huang L. Morphological and phylogenetic analyses reveal three new species of Fusarium (Hypocreales, Nectriaceae) associated with leaf blight on Cunninghamialanceolata in China. MycoKeys 2024; 101:45-80. [PMID: 38229910 PMCID: PMC10790579 DOI: 10.3897/mycokeys.101.113128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
Chinese fir (Cunninghamialanceolata) is a special fast-growing commercial tree species in China with high economic value. In recent years, leaf blight disease on C.lanceolata has been observed frequently. The diversity of Fusarium species associated with leaf blight on C.lanceolata in China (Fujian, Guangxi, Guizhou, and Hunan provinces) was evaluated using morphological study and molecular multi-locus analyses based on RNA polymerase second largest subunit (RPB2), translation elongation factor 1-alpha (TEF-1α), and RNA polymerase largest subunit (RPB1) genes/region as well as the pairwise homoplasy index tests. A total of five Fusarium species belonging to four Fusarium species complexes were recognized in this study. Two known species including Fusariumconcentricum and F.fujikuroi belonged to the F.fujikuroi species complex, and three new Fusarium species were described, i.e., F.fujianense belonged to the F.lateritium species complex, F.guizhouense belonged to the F.sambucinum species complex, and F.hunanense belonged to the F.solani species complex. To prove Koch's postulates, pathogenicity tests on C.lanceolata revealed a wide variation in pathogenicity and aggressiveness among the species, of which F.hunanense HN33-8-2 caused the most severe symptoms and F.fujianense LC14 led to the least severe symptoms. To our knowledge, this study also represented the first report of F.concentricum, F.fujianense, F.fujikuroi, F.guizhouense, and F.hunanense causing leaf blight on C.lanceolata in China.
Collapse
Affiliation(s)
- Jiao He
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, USAThe Connecticut Agricultural Experiment StationWindsorUnited States of America
| | - Wen-Li Cui
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - Li-Hua Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, ChinaNanjing Forestry UniversityNanjingChina
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
10
|
Koo YM, Ahsan SM, Choi HW. Characterization of Three Fusarium spp. Causing Wilt Disease of Cannabis sativa L. in Korea. MYCOBIOLOGY 2023; 51:186-194. [PMID: 37359955 PMCID: PMC10288908 DOI: 10.1080/12298093.2023.2213911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/26/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
In July 2021, wilting symptoms were observed in adult and seedling hemp (Cannabis sativa L. cv. Cherry Blossom) plants grown in a greenhouse. As the disease progressed, yellowing and wilting symptoms on the leaves developed, resulting in whole plant death. In seedling plants, typical damping-off symptoms were observed. To identify the pathogen, the roots of diseased plants were sampled, surface sterilized, and cultured on potato dextrose agar (PDA) media. From the culture, 4 different fungal isolates were recovered and purely cultured. Each fungal isolate showed distinct growth shapes and color development on malt extract agar, oatmeal agar, sabouraud dextrose agar, and PDA media. Microscopic observation and molecular identification using ribosomal DNA internal transcribed spacer sequencing identified them as 3 Fusarium spp. and 1 Thielaviopsis paradoxa. Additional sequencing of elongation factor 1-alpha and β-tubulin regions of 3 Fusarium spp. revealed that 2 of them are Fusarium solani, and the other one is Fusarium proliferatum. To examine which isolate can act as a causal agent of wilt disease of hemp, each isolate was tested for their pathogenicity. In the pathogenicity test, F. solani AMCF1 and AMCF2, and F. proliferatum AMCF3, but not T. paradoxa AMCF4, were able to cause wilting disease in hemp seedlings. Therefore, we report that F. solani AMCF1 and AMCF2, and F. proliferatum AMCF3 as causal agents of Fusarium wilt of hemp plants. To our knowledge, this is the first report of the wilt disease of C. sativa L. caused by Fusarium spp. in Korea.
Collapse
Affiliation(s)
- Young Mo Koo
- Department of Plant Medicals, Andong National University, Andong, Korea
| | - S. M. Ahsan
- Department of Plant Medicals, Andong National University, Andong, Korea
| | - Hyong Woo Choi
- Department of Plant Medicals, Andong National University, Andong, Korea
- Institute of Cannabis Biotechnology, Andong National University, Andong, Korea
| |
Collapse
|
11
|
Yang Z, Zhang H, Jiang Z, Zhang X, Wei S, Wu Y, Gan X, Wang Y, Xie X. Two strains Neocosmosporastercicola (Sordariomycetes, Nectriaceae) with high nematicidal activity, isolated from the cysts of Globodera sp. (Heteroderidae) in China. Biodivers Data J 2023; 11:e100684. [PMID: 38327293 PMCID: PMC10848335 DOI: 10.3897/bdj.11.e100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/12/2023] [Indexed: 02/09/2024] Open
Abstract
Plant-parasitic nematodes (PPNs) are significant pests that result in considerable economic losses in global crop production. Due to the high toxicity of chemical nematicides, there is a need to develop new strategies for nematode control. In this context, nematophagous fungi may offer a viable option for biological control. Two fungal strains (GUCC2212 and GUCC2232) were isolated from cysts of Globodera sp., identified as Neocosmosporastercicola. The fungal filtrates of the strains were evaluated for their nematicidal activity against three species of PPNs: Aphelenchoidesbesseyi, Bursaphelenchusxylophilus and Ditylenchusdestructor. The fermentation filtrates of two strains exhibited substantial toxicity towards the evaluated nematodes, with mortality rates reaching up to 100% within 72 h. Concurrently, N.stercicola also demonstrated predatory and parasitic behavior. The eggs of Globodera sp. were parasitized by the two strains. N.stercicola represents a newly recorded species in China and a novel nematophagous species. In conclusion, the two strains of N.stercicola show promise as biocontrol agents for PPNs management.
Collapse
Affiliation(s)
- Zaifu Yang
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang, ChinaInstitute of Vegetable Industry Technology Research, Guizhou UniversityGuiyangChina
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Hui Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Zhaochun Jiang
- Guizhou Station of Plant Protection and Quarantine, Guiyang, ChinaGuizhou Station of Plant Protection and QuarantineGuiyangChina
| | - Xinyue Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Shan Wei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Yan Wu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Xiuhai Gan
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, ChinaCenter for Research and Development of Fine Chemicals, Guizhou UniversityGuiyangChina
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, ChinaDepartment of Plant Pathology, College of Agriculture, Guizhou UniversityGuiyangChina
| |
Collapse
|
12
|
Sabahi F, Banihashemi Z, Mirtalebi M, Rep M, Cacciola SO. Molecular Variability of the Fusarium solani Species Complex Associated with Fusarium Wilt of Melon in Iran. J Fungi (Basel) 2023; 9:jof9040486. [PMID: 37108940 PMCID: PMC10142084 DOI: 10.3390/jof9040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Species of the Fusarium solani species complex (FSSC) are responsible for the Fusarium wilt disease of melon (Cucumis melo), a major disease of this crop in Iran. According to a recent taxonomic revision of Fusarium based primarily on multilocus phylogenetic analysis, Neocosmospora, a genus distinct from Fusarium sensu stricto, has been proposed to accommodate the FSSC. This study characterized 25 representative FSSC isolates from melon collected in 2009-2011 during a field survey carried out in five provinces of Iran. Pathogenicity assays showed the isolates were pathogenic on different varieties of melon and other cucurbits, including cucumber, watermelon, zucchini, pumpkin, and bottle gourd. Based on morphological characteristics and phylogenetic analysis of three genetic regions, including nrDNA internal transcribed spacer (ITS), 28S nrDNA large subunit (LSU) and translation elongation factor 1-alpha (tef1), Neocosmospora falciformis (syn. F. falciforme), N. keratoplastica (syn. F. keratoplasticum), N. pisi (syn. F. vanettenii), and Neocosmospora sp. were identified among the Iranian FSSC isolates. The N. falciformis isolates were the most numerous. This is the first report of N. pisi causing wilt and root rot disease in melon. Iranian FSSC isolates from different regions in the country shared the same multilocus haplotypes suggesting a long-distance dispersal of FSSC, probably through seeds.
Collapse
Affiliation(s)
- Fatemeh Sabahi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran
| | - Zia Banihashemi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran
| | - Maryam Mirtalebi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy
| |
Collapse
|
13
|
Pérez-Rodríguez A, Duarte-Escalante E, Frías-De-León MG, Acosta Altamirano G, Meraz-Ríos B, Martínez-Herrera E, Arenas R, Reyes-Montes MDR. Phenotypic and Genotypic Identification of Dermatophytes from Mexico and Central American Countries. J Fungi (Basel) 2023; 9:jof9040462. [PMID: 37108916 PMCID: PMC10143779 DOI: 10.3390/jof9040462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Dermatophytes are fungi included in the genera Trichophyton, Microsporum, Epidermophyton, Nannizzia, Paraphyton, Lophophyton, and Arthroderma. Molecular techniques have contributed to faster and more precise identification, allowing significant advances in phylogenetic studies. This work aimed to identify clinical isolates of dermatophytes through phenotypic (macro- and micromorphology and conidia size) and genotypic methods (sequences of ITS regions, genes of β tubulin (BT2), and elongation factor α (Tef-1α)) and determine the phylogenetic relationships between isolates. Ninety-four dermatophyte isolates from Costa Rica, Guatemala, Honduras, Mexico, and the Dominican Republic were studied. The isolates presented macro- and micromorphology and conidia size described for the genera Trichophyton, Microsporum, and Epidermophyton. Genotypic analysis classified the isolates into the genera Trichophyton (63.8%), Nannizzia (25.5%), Arthroderma (9.6%), and Epidermophyton (1.1%). The most frequent species were T. rubrum (26 isolates, 27.6%), T. interdigitale (26 isolates, 27.6%), and N. incurvata (11 isolates, 11.7%), N. gypsea and A. otae (nine isolates, 9.6%), among others. The genotypic methods clarified the taxonomic status of closely related species. For instance, the ITS and BT2 markers of T. rubrum/T. violaceum did not differ but the Tef-1α gene did. On the other hand, the three markers differed in T. equinum/T. tonsurans. Therefore, the ITS, BT2, and Tef-1α genes are useful for typing in phylogenetic analyses of dermatophytes, with Tef-1α being the most informative locus. It should be noted that isolate MM-474 was identified as T. tonsurans when using ITS and Tef-1α, but when using BT2, it was identified as T. rubrum. On the other hand, no significant difference was found when comparing the methods for constructing phylogenies, as the topologies were similar.
Collapse
Affiliation(s)
- Angélica Pérez-Rodríguez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria No. 3000, Mexico City 04510, Mexico
| | - Esperanza Duarte-Escalante
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria No. 3000, Mexico City 04510, Mexico
| | - María Guadalupe Frías-De-León
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Gustavo Acosta Altamirano
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Beatriz Meraz-Ríos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria No. 3000, Mexico City 04510, Mexico
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Erick Martínez-Herrera
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico
| | - Roberto Arenas
- Departamento de Dermatología, Sección de Micología, Hospital General Dr. Manuel Gea González, Mexico City 10480, Mexico
| | - María Del Rocío Reyes-Montes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria No. 3000, Mexico City 04510, Mexico
| |
Collapse
|
14
|
Azuddin NF, Mohamad Noor Azmy MS, Zakaria L. Molecular identification of endophytic fungi in lawn grass (Axonopus compressus) and their pathogenic ability. Sci Rep 2023; 13:4239. [PMID: 36918601 PMCID: PMC10015033 DOI: 10.1038/s41598-023-31291-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Lawn grass (Axonopus compressus) is a widely distributed grass species from the family Poaceae that is ubiquitous in Malaysia. We isolated endophytic fungi from the leaves of A. compressus and molecularly identified them as Fusarium parceramosum, Colletotrichum siamense, C. gigasporum, C. endophyticum, Curvularia lunata, Stagonospora bicolor, Calonectria gracilis, and Albifimbria verrucari. These fungal endophytes are considered host generalists, as they have been isolated from other plants and have also been reported to be latent plant pathogens. We tested the pathogenicity of selected endophytic fungal isolates on A. compressus leaves, chili (Capsicum annum), and tomato (Solanum lycopersicum), and found that they were pathogenic to wounded A. compressus leaves with low to moderate virulence, and several were pathogenic to wounded and unwounded chili and tomato fruits. This indicated that the endophytes could infect both vegetable fruits with low to very high virulence. Pathogenicity tests demonstrated that endophytic fungi from the leaves of A. compressus can become pathogenic and infect the host and other plant species. The findings also indicated that leaves of A. compressus may harbor pathogens with latent ability that can become active due to changes in environmental conditions, thereby disrupting the balance between host-endophyte antagonism.
Collapse
Affiliation(s)
- Nurul Farizah Azuddin
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | | | - Latiffah Zakaria
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| |
Collapse
|
15
|
Conrado PCV, Vaine AA, Arita GS, Sakita KM, Gonçalves RS, Caetano W, de Souza M, Baesso ML, Malacarne LC, Razzolini E, Vicente VA, Kioshima ES, de Mendonça PDSB. Promising onychomycosis treatment with hypericin-mediated photodynamic therapy: case reports. Photodiagnosis Photodyn Ther 2023; 42:103498. [PMID: 36882144 DOI: 10.1016/j.pdpdt.2023.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Onychomycosis (OM) is a common nail plate disorder caused by dermatophyte molds, yeasts, and non-dermatophyte molds, which use keratin in the nail plate as an energy source. OM is characterized by dyschromia, increased nail thickness, subungual hyperkeratosis, and onychodystrophy, and is typically treated with conventional antifungals despite frequent reports of toxicity, fungal resistance, and OM recurrence. Photodynamic therapy (PDT) with hypericin (Hyp) as a photosensitizer (PS) stands out as a promising therapeutic modality. When excited by a specific wavelength of light and in the presence of oxygen, to lead to photochemical and photobiological reactions on the selected targets. METHODS OM diagnosis was made in three suspected cases, and the causative agents were identified by classical and molecular methods, and confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Susceptibility of planktonic cells of the clinical isolates to conventional antifungals and PDT-Hyp was evaluated, and photoacoustic spectroscopy (PAS) of Hyp permeation in nail fragments ex vivo was analyzed. Furthermore, the patients opted to undergo PDT-Hyp treatment and were subsequently followed up. The protocol was approved by the human ethics committee (CAAE, number 14107419.4.0000.0104). RESULTS The etiological agents of OM in patients ID 01 and ID 02 belonged to the Fusarium solani species complex, being identified as Fusarium keratoplasticum (CMRP 5514) and Fusarium solani (CMRP 5515), respectively. For patient ID 03, the OM agent was identified as Trichophyton rubrum (CMRP 5516). PDT-Hyp demonstrated a fungicidal effect in vitro, with reductions of ≥3 log10 (p<0.0051 and p<0.0001), and the PAS analyses indicated that Hyp could completely permeate through both healthy and OM-affected nails. After four sessions of PDT-Hyp, mycological cure was observed in all three cases, and after seventh months, clinical cure was confirmed. PDT-Hyp showed satisfactory results in terms of efficacy and safety, and thus can be considered a promising therapy for the clinical treatment of OM.
Collapse
Affiliation(s)
- Pollyanna Cristina Vincenzi Conrado
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | | | - Glaucia Sayuri Arita
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | - Karina Mayumi Sakita
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | | | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Monique de Souza
- Department of Physics, State University of Maringa, Parana, Brazil
| | | | | | - Emanuel Razzolini
- Department of Pathology Basic, Federal University of Parana State, Curitiba, Parana, Brazil
| | | | - Erika Seki Kioshima
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil
| | - Patrícia de Souza Bonfim de Mendonça
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana, Brazil.
| |
Collapse
|
16
|
Sokolova GD, Budynkov NI, Tselipanova EE, Glinushkin AP. Species Diversity in the Fusarium solani (Neocosmospora) Complex and Their Pathogenicity for Plants and Humans. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:416-427. [PMID: 36781537 DOI: 10.1134/s0012496622060217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 02/15/2023]
Abstract
The Fusarium solani species complex is a large group of soil saprotrophs with a broad adaptive potential, which allows the fungi to exist under various conditions and to parasitize on different hosts. The review analyzes the modern data concerning the genetic peculiarities of species from this complex by the example of F. solani f. sp. pisi and generalizes the data on the most widespread species pathogenic for both plants and humans. The enhanced resistance of the F. solani species complex to the most of modern antifungal agents and the need for novel therapeutic agents against fusariosis has been considered.
Collapse
Affiliation(s)
- G D Sokolova
- All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, Russia.
| | - N I Budynkov
- All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, Russia
| | - E E Tselipanova
- Moscow Regional Vladimirsky Research Clinical Institute, Moscow, Russia.
| | - A P Glinushkin
- All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, Russia
| |
Collapse
|
17
|
Rizk SM, Magdy M. An indigenous inland genotype of the black yeast Hortaea werneckii inhabiting the great pyramid of Giza, Egypt. Front Microbiol 2022; 13:997495. [PMID: 36225378 PMCID: PMC9549061 DOI: 10.3389/fmicb.2022.997495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Within the context of cultural heritage conservation, the biological study of tangible archeological sites is an important task to extend their existence and strengthen the transmission of their cultural value to future generations. In Egypt, a hyper-arid region, a microcolonial fungus with inky black growth was observed on a stone surface in the royal corridor of the Great Pyramid of Giza (King Khufu’s pyramid). The isolate was studied and characterized by microscopic morphometric measurements, evaluation of enzymatic activities, and genotyping techniques. The isolate was identified as Hortaea werneckii, a pleomorphic black yeast that naturally inhabits hypersaline environments and infects human skin. It has been reported from humid temperate, subtropical, and tropical zones, mainly from marine habitats and adjacent areas, and is associated with marine life. Since it was observed in an unusual habitat, it raises the question of its type and origin, whether environmental or clinical. The Egyptian Hortaea werneckii GPS5 isolate was profiled and characterized by adaptive extremophilic tolerance to arid salt stress, low portability to infect human skin, and the capability of solubilizing calcite; besides it was phylogenetically clustered with previous recorded environmental accessions. A profile that matches the biodeterioration fungal agents known as rock-inhabiting fungi, a potential threat to cultural heritage sites that requires attention and prevention plans.
Collapse
|
18
|
Indoung S, Chanchayanon B, Chaisut M, Buapeth KO, Morteh R, Jantrakajorn S. Feline sporotrichosis caused by Sporothrix schenckii sensu stricto in Southern Thailand: phenotypic characterization, molecular identification, and antifungal susceptibility. Med Mycol 2022; 60:6706854. [PMID: 36130102 DOI: 10.1093/mmy/myac075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 01/19/2023] Open
Abstract
Feline sporotrichosis caused by the Sporothrix schenckii complex is a global subcutaneous mycosis, having higher prevalence in Latin America and Malaysia. However, its etiological agents have not been elucidated in Thailand, a neighboring country of Malaysia, where the cases are increasing. This study identified 38 feline isolates of S. schenckii from Southern Thailand, collected between 2018 and 2021, using phenotypic characterization and molecular identification using polymerase chain reaction (PCR)-sequencing of partial calmodulin (CAL) and ß-tubulin (Bt2) genes. Phenotypic characteristics proved that the isolates were S. schenckii sensu lato, with low thermotolerance. Based on partial CAL and Bt2-PCR sequencing, all isolates were identified as S. schenckii sensu stricto. Phylogenetic analyses revealed that the isolates were clustered with S. schenckii sensu stricto isolated from the cats in Malaysia. A low degree of genetic diversity was observed among the Thai feline isolates. The antifungal susceptibility of these isolates to antifungal agents, including itraconazole (ITC), ketoconazole (KTC), fluconazole (FLC), and amphotericin B (AMB), was investigated according to the M27-A3 protocol of the Clinical and Laboratory Standards Institute. Results showed low ITC, KTC, and AMB activities against S. schenckii sensu stricto isolates, with high minimum inhibitory concentration (MIC) ranges of 1-8, 1-8, and 2-16 µg/ml, respectively, whereas FLC exhibited MICs of 64 and > 64 µg/ml. This study indicated that S. schenckii sensu stricto is the causative agent responsible for feline sporotrichosis in Southern Thailand. Their phenotypic characteristics and in vitro antifungal susceptibility profiles will help to improve our understanding of this mycosis in Thailand.
Collapse
Affiliation(s)
- Saowakon Indoung
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Baramee Chanchayanon
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Mananya Chaisut
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kanok-On Buapeth
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Rajeef Morteh
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sasibha Jantrakajorn
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
19
|
James JE, Santhanam J, Zakaria L, Mamat Rusli N, Abu Bakar M, Suetrong S, Sakayaroj J, Abdul Razak MF, Lamping E, Cannon RD. Morphology, Phenotype, and Molecular Identification of Clinical and Environmental Fusarium solani Species Complex Isolates from Malaysia. J Fungi (Basel) 2022; 8:jof8080845. [PMID: 36012833 PMCID: PMC9409803 DOI: 10.3390/jof8080845] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Fusarium infections in humans (fusariosis) and in economically important plants involve species of several Fusarium species complexes. Species of the Fusarium solani species complex (FSSC) are the most frequent cause of human fusariosis. The FSSC comprises more than 60 closely related species that can be separated into three major clades by multi-locus sequence typing (MLST) using translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II (RPB2) DNA sequences. The MLST nomenclature for clade 3 of the FSSC assigns numbers to species types (e.g., FSSC 2) and lowercase letters to identify unique haplotypes. The aim of this study was to analyse the genotypic and phenotypic characteristics of 15 environmental and 15 clinical FSSC isolates from Malaysia. MLST was used for the genotypic characterisation of FSSC isolates from various locations within Malaysia, which was complemented by their morphological characterisation on potato dextrose and carnation leaf agar. MLST identified eight different FSSC species: thirteen Fusarium keratoplasticum (i.e., FSSC 2), six Fusarium suttonianum (FSSC 20), five Fusarium falciforme (FSSC 3+4), two Fusarium cyanescens (FSSC 27), and one each of Fusarium petroliphilum (FSSC 1), Fusarium waltergamsii (FSSC 7), Fusarium sp. (FSSC 12), and Fusarium striatum (FSSC 21). Consistent with previous reports from Malaysia, most (11 of 15) clinical FSSC isolates were F. keratoplasticum and the majority (9 of 15) of environmental isolates were F. suttonianum (5) or F. falciforme (4) strains. The taxonomic relationships of the isolates were resolved phylogenetically. The eight Fusarium species also showed distinct morphological characteristics, but these were less clearly defined and reached across species boundaries. Although TEF1-α and RPB2 sequences were sufficient for the species identification of most FSSC isolates, a more precise MLST scheme needs to be established to reliably assign individual isolates of the species-rich FSSC to their geographically-, epidemiologically-, and host-associated sub-lineages.
Collapse
Affiliation(s)
- Jasper E. James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Correspondence: ; Tel.: +603-9289-7039
| | - Latiffah Zakaria
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nuraini Mamat Rusli
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mariahyati Abu Bakar
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Satinee Suetrong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Jariya Sakayaroj
- School of Science, Wailalak University, Nakhonsithammarat 80161, Thailand
| | - Mohd Fuat Abdul Razak
- Bacteriology Unit, Institute for Medical Research, National Institute of Health, Shah Alam 40170, Malaysia
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
20
|
Characterization of a novel alternavirus infecting the fungal pathogen Fusarium solani. Virus Res 2022; 317:198817. [DOI: 10.1016/j.virusres.2022.198817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022]
|
21
|
Liu Q, Zhang L, Wang L, Wu Q, Li K, Guo X. Autotoxin affects the rhizosphere microbial community structure by influencing the secretory characteristics of grapevine roots. Front Microbiol 2022; 13:953424. [PMID: 35958141 PMCID: PMC9360756 DOI: 10.3389/fmicb.2022.953424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Autotoxins secreted by roots into the soil can trigger rhizosphere microecological imbalances and affect root secretory properties resulting in conditions such as replanting disease. However, information on the effect of autotoxins on root secretion characteristics and regulation of the composition of rhizosphere microorganisms by altered root exudates is limited. In this study, autotoxin ρ-hydroxybenzoic acid (4-HBA) was added to the soil of potted grapevine seedlings, CO2 pulse-labeling, and DNA stable isotope probing were used to track the rhizosphere microbiome that assimilates root exudates. Bacterial and fungal microbiomes that assimilated plant-derived carbon were identified by high-throughput sequencing. Results showed that 4-HBA treatment altered bacterial and fungal communities in 13C-labeled organisms, with a lower abundance of beneficial bacteria (e.g., Gemmatimonas, Streptomyces, and Bacillus) and a higher abundance of potential pathogen fungi (e.g., Fusarium, Neocosmospora, Gibberella, and Fusicolla) by changing the composition of root exudates. The exogenous addition of upregulated compound mixtures of root exudates reduced the abundance of beneficial bacterial Bacillus and increased the abundance of potential pathogen fungi Gibberella. These results suggest that 4-HBA can alter root secretion properties and altered root exudates may enrich certain potential pathogens and reduce certain beneficial bacteria, thereby unbalancing the structure of the rhizosphere microbial community.
Collapse
Affiliation(s)
- Qianwen Liu
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Liheng Zhang
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Dalian Academy of Agricultural Sciences, Dalian, China
| | - Lu Wang
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Qingchun Wu
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Kun Li
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Kun Li,
| | - Xiuwu Guo
- Department of Pomology, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Xiuwu Guo,
| |
Collapse
|
22
|
Whole-Genome Sequencing and Comparative Genome Analysis of Fusarium solani-melongenae Causing Fusarium Root and Stem Rot in Sweetpotatoes. Microbiol Spectr 2022; 10:e0068322. [PMID: 35863027 PMCID: PMC9430127 DOI: 10.1128/spectrum.00683-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sweetpotato (Ipomoea batatas) is the eighth most important crop globally. However, the production and quality of sweetpotatoes are threatened by Fusarium diseases that are prevalent around the world. In this study, a Fusarium species that causes root and stem rot in sweetpotatoes was studied. The pathogenic fungus CRI 24-3 was isolated and sequenced using third- and next-generation sequencing techniques and a 49.6 Mb chromosome-level draft genome containing 15,374 putative coding genes were obtained. Molecular phylogenetic analysis showed that CRI 24-3 was an F. solani-melongenae strain within clade 3 of the F. solani species complex (FSSC). CRI 24-3 showed a relatively high number of virulence factors, such as carbohydrate-active enzymes (CAZymes), pathogen-host interaction (PHI) proteins, and terpene synthases (TSs), compared with the number of those identified in other sequenced FSSC members. Comparative genome analysis revealed considerable conservation and unique characteristics between CRI 24-3 and other FSSC species. In conclusion, the findings in the current study provide important genetic information about F. solani-melongenae and should be useful in the exploration of pathogenicity mechanisms and the development of Fusarium disease management strategies. IMPORTANCE Fusarium root and stem rot in sweetpotato are prevalent in the main sweetpotato-growing areas in China, and fungal isolation, morphological characteristics, and molecular phylogenetic analysis of the disease causal agent (F. solani-melongenae isolate CRI 24-3) were systematically studied. The genome sequence of F. solani-melongenae isolates CRI 24-3 was first reported, which should provide a basis for genome assembly of other closely related Fusarium species. Carbohydrate-active enzymes predicted in CRI 24-3 may be important to convert the substantial polysaccharides to sustainable and renewable energy. Moreover, other virulence factors facilitating Fusarium diseases, including effectors and toxic secondary metabolites, are ideal objects for pathogenicity mechanism research and molecular targets for fungicide development. The findings of comparative genome analysis of CRI 24-3 and 15 sequenced members of the F. solani species complex help promote an integral understanding of genomic features and evolutionary relationships in Fusarium.
Collapse
|
23
|
Fusarium abutilonis and F. guadeloupense, two novel species in the Fusarium buharicum clade supported by multilocus molecular phylogenetic analyses. Mycologia 2022; 114:682-696. [PMID: 35679164 DOI: 10.1080/00275514.2022.2071563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study was conducted to elucidate evolutionary relationships and species diversity within the Fusarium buharicum species complex (FBSC). We also evaluate the potential of these species to produce mycotoxins and other bioactive secondary metabolites. Maximum likelihood and maximum parsimony analyses of sequences from portions of four marker loci (ITS rDNA, TEF1, RPB1, and RPB2) and the combined 4495 bp data set support recognition of seven genealogically exclusive species within the FBSC. Two of the three newly discovered species are formally described as F. abutilonis and F. guadeloupense based on concordance of gene genealogies and morphological data. Fusarium abutilonis induces leaf, stem, and root lesions on several weedy Malvaceae (Abution theophrasti, Anoda cristata, Sida spinosa) and a fabaceous host (Senna obtusifolia) in North America and also was recovered from soil in New Caledonia. Fusarium abutilonis, together with its unnamed sister, Fusarium sp. ex common marsh mallow (Hibiscus moscheutos) from Washington state, and F. buharicum pathogenic to cotton and kenaf in Russia and Iran, respectively, were strongly supported as a clade of malvaceous pathogens. The four other species of the FBSC are not known to be phytopathogenic; however, F. guadeloupense was isolated from human blood in Texas and soil in Guadeloupe. The former isolate is unique because it represents the only known case of a fusarial infection disseminated hematogenously by a species lacking microconidia and the only documented fusariosis caused by a member of the FBSC. Whole genome sequence data and extracts of cracked maize kernel cultures were analyzed to assess the potential of FBSC isolates to produce mycotoxins, pigments, and phytohormones.
Collapse
|
24
|
Zhang Y, Chen C, Mai Z, Lin J, Nie L, Maharachchikumbura SSN, You C, Xiang M, Hyde KD, Manawasinghe IS. Co-infection of Fusarium aglaonematis sp. nov. and Fusarium elaeidis Causing Stem Rot in Aglaonema modestum in China. Front Microbiol 2022; 13:930790. [PMID: 35847104 PMCID: PMC9279562 DOI: 10.3389/fmicb.2022.930790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aglaonema modestum (A. modestum) (Araceae) is an evergreen herbage, which is intensively grown as an ornamental plant in South China. A new disease was observed in A. modestum from 2020 to 2021 in Guangdong province, China. The disease symptoms associated with plants were initial leaf wilt, stem rot, and resulting plant death, leading to severe economic losses. In total, six Fusarium isolates were obtained from diseased plants. The putative pathogen was identified using both morphological characteristics and molecular phylogenetic analysis of calmodulin A (cmdA), RNA polymerase largest subunit 1 (rpb1), RNA polymerase II (rpb2), translation elongation factor-1α (tef1-α), and beta-tubulin (β-tubulin) sequences. Two Fusarium species were identified, namely, one new species, Fusarium aglaonematis (F. aglaonematis) belonging to Fusarium fujikuroi species complex. In addition, Fusarium elaeidis (F. elaeidis) belonging to the Fusarium oxysporum (F. oxysporum) species complex was also identified. Pathogenicity assays were conducted by inoculating each species into potted A. modestum plants and co-inoculating two species. The results showed that two Fusarium species could infect plants independently and can infect them together. Co-infection of these two species enhanced the disease severity of A. modestum. Compared to single inoculation of F. elaeidis, severity was higher and disease development was quicker when plants were only inoculated with F. aglaonematis. In addition, these two Fusarium species could infect Aglaonema plants without wounds, while inoculation with a physical injury increased disease severity. This is the first report of co-infection by F. aglaonematis and F. elaeidis causing stem rot on A. modestum worldwide. This study will be an addition to the knowledge of Fusarium diseases in ornamental plants. These results will provide a baseline to identify and control diseases associated with A. modestum.
Collapse
Affiliation(s)
- Yunxia Zhang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Chao Chen
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhanglong Mai
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jieying Lin
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Liting Nie
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology, Chengdu, China
| | - Chunping You
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Meimei Xiang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Kevin D. Hyde
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Mueang, Chiang Rai, Thailand
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
25
|
Rana S, Singh SK, Dufossé L. Multigene Phylogeny, Beauvericin Production and Bioactive Potential of Fusarium Strains Isolated in India. J Fungi (Basel) 2022; 8:jof8070662. [PMID: 35887419 PMCID: PMC9320867 DOI: 10.3390/jof8070662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
The taxonomy of the genus Fusarium has been in a flux because of ambiguous circumscription of species-level identification based on morphotaxonomic criteria. In this study, multigene phylogeny was conducted to resolve the evolutionary relationships of 88 Indian Fusarium isolates based on the internal transcribed spacer region, 28S large subunit, translation elongation factor 1-alpha, RNA polymerase second largest subunit, beta-tubulin and calmodulin gene regions. Fusarium species are well known to produce metabolites such as beauvericin (BEA) and enniatins. These identified isolates were subjected to fermentation in Fusarium-defined media for BEA production and tested using TLC, HPLC and HRMS. Among 88 isolates studied, 50 were capable of producing BEA, which varied from 0.01 to 15.82 mg/g of biomass. Fusarium tardicrescens NFCCI 5201 showed maximum BEA production (15.82 mg/g of biomass). The extract of F. tardicrescens NFCCI 5201 showed promising antibacterial activity against Staphylococcus aureusMLS16 MTCC 2940 and Micrococcus luteus MTCC 2470 with MIC of 62.5 and 15.63 µg/mL, respectively. Similarly, the F. tardicrescens NFCCI 5201 extract in potato dextrose agar (40 µg/mL) exhibited antifungal activity in the food poison technique against plant pathogenic and other fungi, Rhizoctonia solani NFCCI 4327, Sclerotium rolfsii NFCCI 4263, Geotrichum candidum NFCCI 3744 and Pythium sp. NFCCI 3482, showing % inhibition of 84.31, 49.76, 38.22 and 35.13, respectively. The antibiotic effect was found to synergize when Fusarium extract and amphotericin B (20 µg/mL each in potato dextrose agar) were used in combination against Rhizopus sp. NFCCI 2108, Sclerotium rolfsii NFCCI 4263, Bipolaris sorokiniana NFCCI 4690 and Absidia sp. NFCCI 2716, showing % inhibition of 50.35, 79.37, 48.07 and 76.72, respectively. The extract also showed satisfactory dose-dependent DPPH radical scavenging activity with an IC50 value of 0.675 mg/mL. This study reveals the correct identity of the Indian Fusarium isolates based on multigene phylogeny and also throws light on BEA production potential, suggesting their possible applicability in the medicine, agriculture and industry.
Collapse
Affiliation(s)
- Shiwali Rana
- National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India;
- Faculty of Science, Savitribai Phule Pune University, Ganeshkhind Road, Ganeshkhind, Pune 411007, India
| | - Sanjay Kumar Singh
- National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India;
- Faculty of Science, Savitribai Phule Pune University, Ganeshkhind Road, Ganeshkhind, Pune 411007, India
- Correspondence: or (S.K.S.); (L.D.); Tel.: +91-20-2532-5103 (S.K.S.); +33-66-873-1906 (L.D.)
| | - Laurent Dufossé
- Chembiopro Chimie et Biotechnologie des Produits Naturels, ESIROI Département Agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France
- Correspondence: or (S.K.S.); (L.D.); Tel.: +91-20-2532-5103 (S.K.S.); +33-66-873-1906 (L.D.)
| |
Collapse
|
26
|
O'Donnell K, Whitaker BK, Laraba I, Proctor RH, Brown DW, Broders K, Kim HS, McCormick SP, Busman M, Aoki T, Torres-Cruz TJ, Geiser DM. DNA Sequence-Based Identification of Fusarium: A Work in Progress. PLANT DISEASE 2022; 106:1597-1609. [PMID: 34907805 DOI: 10.1094/pdis-09-21-2035-sr] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate species-level identification of an etiological agent is crucial for disease diagnosis and management because knowing the agent's identity connects it with what is known about its host range, geographic distribution, and toxin production potential. This is particularly true in publishing peer-reviewed disease reports, where imprecise and/or incorrect identifications weaken the public knowledge base. This can be a daunting task for phytopathologists and other applied biologists that need to identify Fusarium in particular, because published and ongoing multilocus molecular systematic studies have highlighted several confounding issues. Paramount among these are: (i) this agriculturally and clinically important genus is currently estimated to comprise more than 400 phylogenetically distinct species (i.e., phylospecies), with more than 80% of these discovered within the past 25 years; (ii) approximately one-third of the phylospecies have not been formally described; (iii) morphology alone is inadequate to distinguish most of these species from one another; and (iv) the current rapid discovery of novel fusaria from pathogen surveys and accompanying impact on the taxonomic landscape is expected to continue well into the foreseeable future. To address the critical need for accurate pathogen identification, our research groups are focused on populating two web-accessible databases (FUSARIUM-ID v.3.0 and the nonredundant National Center for Biotechnology Information nucleotide collection that includes GenBank) with portions of three phylogenetically informative genes (i.e., TEF1, RPB1, and RPB2) that resolve at or near the species level in every Fusarium species. The objectives of this Special Report, and its companion in this issue (Torres-Cruz et al. 2022), are to provide a progress report on our efforts to populate these databases and to outline a set of best practices for DNA sequence-based identification of fusaria.
Collapse
Affiliation(s)
- Kerry O'Donnell
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Briana K Whitaker
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Imane Laraba
- Oak Ridge Institute for Science and Education Fellow, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL 61604, U.S.A
| | - Robert H Proctor
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Daren W Brown
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Kirk Broders
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Hye-Seon Kim
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Susan P McCormick
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Mark Busman
- National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, U.S.A
| | - Takayuki Aoki
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Terry J Torres-Cruz
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - David M Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
27
|
Rivedal HM, Tabima JF, Stone AG, Johnson KB. Identity and Pathogenicity of Fungi Associated with Root, Crown, and Vascular Symptoms Related to Winter Squash Yield Decline. PLANT DISEASE 2022; 106:1660-1668. [PMID: 34854760 DOI: 10.1094/pdis-09-20-2090-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Winter squash (Cucurbita maxima cultivar Golden Delicious) produced in Oregon's Willamette Valley for edible seed production has experienced significant yield losses because of a soilborne disease. The symptoms associated with this disease problem include root rot, crown rot, and vascular discoloration in the stems, leading to a severe late season wilt and plant collapse. Through field surveys, Fusarium oxysporum, F. solani, F. culmorum-like fungi, Plectosphaerella cucumerina, and Setophoma terrestris were identified to be associated with diseased tissues, and each produced symptoms of root rot, crown rot, or stem discoloration in preliminary pathogenicity trials. In this study, 219 isolates of these species were characterized by molecular identity analyses using BLAST of the internal transcribed spacer and translation elongation factor 1 alpha genomic regions and by pathogenicity testing in outdoor, large-container trials. Molecular identity analyses confirmed the identity of isolates at 99 to 100% similarity to reference isolates in the database. In pathogenicity experiments, F. solani produced the most severe symptoms, followed by F. culmorum-like fungi, F. oxysporum, P. cucumerina, and S. terrestris. Some treatments of mixed-species inoculum produced symptom severity greater than what was expected from individual species. In particular, the mixture of F. culmorum-like fungi, F. oxysporum, and P. cucumerina and the mixture of F. culmorum-like fungi, F. solani, and S. terrestris had symptom ratings as high as that of F. solani by itself. Results indicate that this soilborne disease is caused primarily by Fusarium solani, but interactions between the complex of F. solani, F. culmorum-like fungi, F. oxysporum, and P. cucumerina can exacerbate disease severity.
Collapse
Affiliation(s)
- Hannah M Rivedal
- Forage Seed and Cereal Research Unit, U.S. Department of Agriculture Agricultural Research Service, Corvallis, OR 97331
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Javier F Tabima
- Department of Biology, Clark University, Worcester, MA 01610
| | - Alexandra G Stone
- Department of Horticulture, Oregon State University, Corvallis, OR 97331
| | - Kenneth B Johnson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
28
|
Crous P, Sandoval-Denis M, Costa M, Groenewald J, van Iperen A, Starink-Willemse M, Hernández-Restrepo M, Kandemir H, Ulaszewski B, de Boer W, Abdel-Azeem A, Abdollahzadeh J, Akulov A, Bakhshi M, Bezerra J, Bhunjun C, Câmara M, Chaverri P, Vieira W, Decock C, Gaya E, Gené J, Guarro J, Gramaje D, Grube M, Gupta V, Guarnaccia V, Hill R, Hirooka Y, Hyde K, Jayawardena R, Jeewon R, Jurjević Ž, Korsten L, Lamprecht S, Lombard L, Maharachchikumbura S, Polizzi G, Rajeshkumar K, Salgado-Salazar C, Shang QJ, Shivas R, Summerbell R, Sun G, Swart W, Tan Y, Vizzini A, Xia J, Zare R, González C, Iturriaga T, Savary O, Coton M, Coton E, Jany JL, Liu C, Zeng ZQ, Zhuang WY, Yu ZH, Thines M. Fusarium and allied fusarioid taxa (FUSA). 1. Fungal Syst Evol 2022; 9:161-200. [PMID: 35978986 PMCID: PMC9355104 DOI: 10.3114/fuse.2022.09.08] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/14/2022] [Indexed: 11/07/2022] Open
Abstract
Seven Fusarium species complexes are treated, namely F. aywerte species complex (FASC) (two species), F. buharicum species complex (FBSC) (five species), F. burgessii species complex (FBURSC) (three species), F. camptoceras species complex (FCAMSC) (three species), F. chlamydosporum species complex (FCSC) (eight species), F. citricola species complex (FCCSC) (five species) and the F. concolor species complex (FCOSC) (four species). New species include Fusicolla elongata from soil (Zimbabwe), and Neocosmospora geoasparagicola from soil associated with Asparagus officinalis (Netherlands). New combinations include Neocosmospora akasia, N. awan, N. drepaniformis, N. duplosperma, N. geoasparagicola, N. mekan, N. papillata, N. variasi and N. warna. Newly validated taxa include Longinectria gen. nov., L. lagenoides, L. verticilliforme, Fusicolla gigas and Fusicolla guangxiensis. Furthermore, Fusarium rosicola is reduced to synonymy under N. brevis. Finally, the genome assemblies of Fusarium secorum (CBS 175.32), Microcera coccophila (CBS 310.34), Rectifusarium robinianum (CBS 430.91), Rugonectria rugulosa (CBS 126565), and Thelonectria blattea (CBS 952.68) are also announced here. Citation: Crous PW, Sandoval-Denis M, Costa MM, Groenewald JZ, van Iperen AL, Starink-Willemse M, Hernández-Restrepo M, Kandemir H, Ulaszewski B, de Boer W, Abdel-Azeem AM, Abdollahzadeh J, Akulov A, Bakhshi M, Bezerra JDP, Bhunjun CS, Câmara MPS, Chaverri P, Vieira WAS, Decock CA, Gaya E, Gené J, Guarro J, Gramaje D, Grube M, Gupta VK, Guarnaccia V, Hill R, Hirooka Y, Hyde KD, Jayawardena RS, Jeewon R, Jurjević Ž, Korsten L, Lamprecht SC, Lombard L, Maharachchikumbura SSN, Polizzi G, Rajeshkumar KC, Salgado-Salazar C, Shang Q-J, Shivas RG, Summerbell RC, Sun GY, Swart WJ, Tan YP, Vizzini A, Xia JW, Zare R, González CD, Iturriaga T, Savary O, Coton M, Coton E, Jany J-L, Liu C, Zeng Z-Q, Zhuang W-Y, Yu Z-H, Thines M (2022). Fusarium and allied fusarioid taxa (FUSA). 1. Fungal Systematics and Evolution 9: 161-200. doi: 10.3114/fuse.2022.09.08.
Collapse
Affiliation(s)
- P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - A.L. van Iperen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - M. Starink-Willemse
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - M. Hernández-Restrepo
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - B. Ulaszewski
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - W. de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Soil Biology Group, Wageningen University, Wageningen, Netherlands
| | - A.M. Abdel-Azeem
- Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - J. Abdollahzadeh
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - A. Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022 Kharkiv, Ukraine
| | - M. Bakhshi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - J.D.P. Bezerra
- Setor de Micologia / Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Rua 235 - s/n – Setor Universitário - CEP: 74605-050, Universidade Federal de Goiás / Federal University of Goiás, Goiânia, Brasil / Goiânia, Brazil
| | - C.S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - M.P.S. Câmara
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - P. Chaverri
- Escuela de Biología and Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, Costa Rica
| | - W.A.S. Vieira
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, 52171-900, PE, Brazil
| | - C.A. Decock
- Mycothèque de l’Université catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Université catholique de Louvain, Croix du Sud 2 bte L7.05.06, B-1348 Louvain-la-Neuve, Belgium
| | - E. Gaya
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - J. Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201 Reus, Spain
| | - J. Guarro
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut i Institut d’Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, 43201 Reus, Spain
| | - D. Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logroño 26007, Spain
| | - M. Grube
- Institut für Biologie, Karl-Franzens-Universität Graz, Holteigasse 6, 8010 Graz, Austria
| | - V.K. Gupta
- Center for Safe and Improved Food, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - V. Guarnaccia
- Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco (TO), Italy
| | - R. Hill
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Y. Hirooka
- Department of Clinical Plant Science, Faculty of Bioscience, Hosei University3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| | - K.D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - R.S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - R. Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Ž. Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, USA
| | - L. Korsten
- Department of Plant and Soil Sciences, University of Pretoria, P. Bag X20 Hatfield, Pretoria 0002, South Africa
| | - S.C. Lamprecht
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch 7599, Western Cape, South Africa
| | - L. Lombard
- Dutch General Inspection Service for agricultural seeds and seed potatoes (NAK), Randweg 14, 8304 AS, Emmeloord, The Netherlands
| | - S.S.N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - G. Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - K.C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, Agharkar Research Institute, Pune, Maharashtra 411 004, India
| | - C. Salgado-Salazar
- USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Bldg. 010A, Rm. 212, BARC-West, 10300 Baltimore Ave. Beltsville, MD 20705, USA
| | - Q.-J. Shang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, People’s Republic of China
| | - R.G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - G.Y. Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - W.J. Swart
- Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Y.P. Tan
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, Queensland 4102, Australia
| | - A. Vizzini
- Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, I-10125 Torino, Italy
| | - J.W. Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
| | - R. Zare
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
| | - C.D. González
- Lab. Salud de Bosques, Fac. de Ciencias Forestales y RRNN, Universidad Austral de Chile, Chile
| | - T. Iturriaga
- Curator, Cornell University Plant Pathology Herbarium, Ithaca, NY, USA
| | - O. Savary
- Univ Brest, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - M. Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - E. Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - J.-L. Jany
- Univ Brest, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - C. Liu
- College of Life Sciences, Yangtze University, Jingzhou, Hubei 434025, China
| | - Z.-Q. Zeng
- College of Life Sciences, Yangtze University, Jingzhou, Hubei 434025, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - W.-Y. Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Z.-H. Yu
- College of Life Sciences, Yangtze University, Jingzhou, Hubei 434025, China
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, D-60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Tarafder M, Datta B. Deciphering β-tubulin gene of carbendazim resistant Fusarium solani isolate and its comparison with other Fusarium species. Curr Genet 2022; 68:429-447. [PMID: 35419713 DOI: 10.1007/s00294-022-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Exploration of molecular structure of β-tubulin is key to understand mechanism of action of carbendazim since its activity depends on strong binding to β-tubulin. Resistance against the fungicide is often associated with mutation in β-tubulin gene. A full-length (1619 bp) β-tubulin gene has been cloned and sequenced from a carbendazim resistant and a sensitive isolates of F. solani isolated from agricultural fields of Murshidabad (24.23 °N, 88.25 °E), West Bengal, India. Phylogenetic position of the isolates was confirmed using internal transcribed spacer and β-tubulin gene sequences. In the β-tubulin based phylogenetic tree, Fusarium species with available data were clustered in nine species complexes and members of both F. solani species complex and F. fujikuroi species complex were distributed into three clades each. The β-tubulin gene of F. solani was found to be shortest due to least number of non-coding sequences indicating its primitiveness among the Fusarium species. The coding region (G + C 58.54%) was organized into five exons. The protein has 446 amino acid, 49.834 KD molecular weight and 4.64 isoelectric point. Amino acid sequence of the resistant and the sensitive isolates were identical, suggesting that the mechanism of carbendazim resistance in the F. solani isolate was not due to point mutation in β-tubulin gene. The secondary and tertiary structure of β-tubulin were similar in all the species except F. oxysporum f.sp. cubense. The identification of binding sites for GDP, carbendazim and α-tubulin would resolve how carbendazim prevents tubulin polymerization. All the data are useful to design tubulin-targeted fungicide with better performance.
Collapse
Affiliation(s)
- Mrinmay Tarafder
- Mycology and Plant Pathology Research Laboratory, Department of Botany, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Bejoysekhar Datta
- Mycology and Plant Pathology Research Laboratory, Department of Botany, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
30
|
Fusarium species isolated from post-hatchling loggerhead sea turtles (Caretta caretta) in South Africa. Sci Rep 2022; 12:5874. [PMID: 35393437 PMCID: PMC8991248 DOI: 10.1038/s41598-022-06840-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Abstract
Species in the Fusarium solani species complex are fast growing, environmental saprophytic fungi. Members of this genus are filamentous fungi with a wide geographical distribution. Fusarium keratoplasticum and F. falciforme have previously been isolated from sea turtle nests and have been associated with high egg mortality rates. Skin lesions were observed in a number of stranded, post-hatchling loggerhead sea turtles (Caretta caretta) in a rehabilitation facility in South Africa. Fungal hyphae were observed in epidermal scrapes of affected turtles and were isolated. The aim of this study was to characterise the Fusarium species that were isolated from these post-hatchling loggerhead sea turtles (Caretta caretta) that washed up on beaches along the South African coastline. Three gene regions were amplified and sequenced, namely the internal transcribed spacer region (ITS), a part of the nuclear large subunit (LSU), and part of the translation elongation factor 1 α (tef1) gene region. Molecular characteristics of strains isolated during this study showed high similarity with Fusarium isolates, which have previously been associated with high egg mortality rates in loggerhead sea turtles. This is the first record of F. keratoplasticum, F. falciforme and F. crassum isolated from stranded post-hatchling loggerhead sea turtles in South Africa.
Collapse
|
31
|
Xiaofang L, Wenhuan H, Xingfu T, Yanhong Z. Identification of the roselle root rot pathogen and its sensitivity to different fungicides. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Nielsen MR, Kaniki SEK, Sørensen JL. Targeted Genetic Engineering via Agrobacterium-Mediated Transformation in Fusarium solani. Methods Mol Biol 2022; 2489:93-114. [PMID: 35524047 DOI: 10.1007/978-1-0716-2273-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Members of the Fusarium solani species complex are filamentous fungi that can act as pathogens to many crops and animals. Although relevant, a robust molecular toolbox is missing for the investigation of gene function and metabolism. In this chapter, we describe how Agrobacterium-mediated transformation can be used to facilitate gene targeting. A flexible vector system, based on in vivo recombination in Saccharomyces cerevisiae, is utilized to achieve overexpression and gene deletion of targeted biosynthetic genes in F. solani f. sp. pisi.
Collapse
Affiliation(s)
- Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Esbjerg, Denmark.
| | | | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Esbjerg, Denmark
| |
Collapse
|
33
|
Alfattani A, Marcourt L, Hofstetter V, Queiroz EF, Leoni S, Allard PM, Gindro K, Stien D, Perron K, Wolfender JL. Combination of Pseudo-LC-NMR and HRMS/MS-Based Molecular Networking for the Rapid Identification of Antimicrobial Metabolites From Fusarium petroliphilum. Front Mol Biosci 2021; 8:725691. [PMID: 34746230 PMCID: PMC8569130 DOI: 10.3389/fmolb.2021.725691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/06/2021] [Indexed: 01/31/2023] Open
Abstract
An endophytic fungal strain isolated from a seagrass endemic to the Mediterranean Sea (Posidonia oceanica) was studied in order to identify its antimicrobial constituents and further characterize the composition of its metabolome. It was identified as Fusarium petroliphilum by in-depth phylogenetic analyses. The ethyl acetate extract of that strain exhibited antimicrobial activities and an ability to inhibit quorum sensing of Staphylococcus aureus. To perform this study with a few tens of mg of extract, an innovative one-step generic strategy was devised. On one side, the extract was analyzed by UHPLC-HRMS/MS molecular networking for dereplication. On the other side, semi-preparative HPLC using a similar gradient profile was used for a single-step high-resolution fractionation. All fractions were systematically profiled by 1H-NMR. The data were assembled into a 2D contour map, which we call “pseudo-LC-NMR,” and combined with those of UHPLC-HRMS/MS. This further highlighted the connection within structurally related compounds, facilitated data interpretation, and provided an unbiased quantitative profiling of the main extract constituents. This innovative strategy led to an unambiguous characterization of all major specialized metabolites of that extract and to the localization of its bioactive compounds. Altogether, this approach identified 22 compounds, 13 of them being new natural products and six being inhibitors of the quorum sensing mechanism of S. aureus and Pseudomonas aeruginosa. Minor analogues were also identified by annotation propagation through the corresponding HRMS/MS molecular network, which enabled a consistent annotation of 27 additional metabolites. This approach was designed to be generic and applicable to natural extracts of the same polarity range.
Collapse
Affiliation(s)
- Abdulelah Alfattani
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Valérie Hofstetter
- Institute for Plant Production Sciences IPS, Agroscope, Nyon, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| | - Katia Gindro
- Institute for Plant Production Sciences IPS, Agroscope, Nyon, Switzerland
| | - Didier Stien
- Laboratoire de Biodiversité et Biotechnologie Microbienne, USR3579, CNRS, Sorbonne Université, Banyuls-sur-mer, France
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, ISPSO, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Aoki T, Liyanage PNH, Konkol JL, Ploetz RC, Smith JA, Kasson MT, Freeman S, Geiser DM, O'Donnell K. Three novel Ambrosia Fusarium Clade species producing multiseptate "dolphin-shaped" conidia, and an augmented description of Fusarium kuroshium. Mycologia 2021; 113:1089-1109. [PMID: 34343445 DOI: 10.1080/00275514.2021.1923300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The Ambrosia Fusarium Clade (AFC) is a monophyletic lineage within clade 3 of the Fusarium solani species complex (FSSC) that currently comprises 19 genealogically exclusive species. These fungi are known or predicted to be farmed by adult female Euwallacea ambrosia beetles as a nutritional mutualism (Coleoptera: Scolytinae; Xyleborini). To date, only eight of the 19 AFC species have been described formally with Latin binomials. We describe three AFC species, previously known as AF-8, AF-10, and AF-11, based on molecular phylogenetic analysis of multilocus DNA sequence data and comparative morphological/phenotypic studies. Fusarium duplospermum (AF-8) farmed by E. perbrevis on avocado in Florida, USA, is distinguished by forming two morphologically different types of multiseptate conidia and brownish orange colonies on potato dextrose agar (PDA). Fusarium drepaniforme (AF-10), isolated from an unknown woody host in Singapore and deposited as Herb IMI 351954 in the Royal Botanic Gardens, Kew, UK, under the name F. bugnicourtii, is diagnosed by frequent production of multiseptate sickle-shaped conidia. Fusarium papillatum (AF-11), isolated from mycangia of E. perbrevis infesting tea in Kandy, Sri Lanka, forms multiseptate clavate conidia that possess a papillate apical cell protruding toward the ventral side. Lastly, we prepared an augmented description of F. kuroshium (AF-12), previously isolated from the heads or galleries of E. kuroshio in a California sycamore tree, El Cajon, California, USA, and recently validated nomenclaturally as Fusarium. Conidia formed by F. kuroshium vary widely in size and shape, suggesting a close morphological relationship with F. floridanum, compared with all other AFC species. Maximum likelihood and maximum parsimony analyses of a multilocus data set resolve these three novel AFC species, and F. kuroshium, as phylogenetically distinct based on genealogical concordance. Given the promiscuous nature of several Euwallacea species, and the overlapping geographic range of several AFC species and Euwallacea ambrosia beetles, the potential for symbiont switching among sympatric species is discussed.
Collapse
Affiliation(s)
- Takayuki Aoki
- Genetic Resources Center, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Pradeepa N H Liyanage
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, No. 90, Cumaratunga Munidasa Mawatha, Colombo 3, Sri Lanka
| | - Joshua L Konkol
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611
| | - Randy C Ploetz
- Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, Florida 33031
| | - Jason A Smith
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611
| | - Matt T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia 26506
| | - Stanley Freeman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - David M Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kerry O'Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, US Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, Illinois 60604
| |
Collapse
|
35
|
Conrado PCV, Sakita KM, Arita GS, Gonçalves RS, Cesar GB, Caetano W, Hioka N, Voidaleski MF, Vicente VA, Svidzinski TIE, Bonfim-Mendonça PS, Kioshima ES. Hypericin-P123-photodynamic therapy in an ex vivo model as an alternative treatment approach for onychomycosis caused by Fusarium spp. Photodiagnosis Photodyn Ther 2021; 35:102414. [PMID: 34186264 DOI: 10.1016/j.pdpdt.2021.102414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
BackgroundFusarium has been considered an opportunistic pathogen, causing several infections in humans, including onychomycosis. In addition, a high resistance to conventional antifungals has been linked to this genus. Photodynamic Therapy (PDT), known as a non-invasive therapy, can be an alternative treatment for fungal infections, based on the excitation of a photosensitizing compound (PS) by a specific length of light, causing damage to the target. The aim of this study was to evaluate the effects of a formulation of Hypericin (Hyp) encapsulated in Pluronic™ (P123), via photodynamic therapy (PDT), on planktonic cells and biofilms in Fusarium spp. using in vitro and ex vivo assays. Materials & Methods epidemiology studies about Fusarium spp. in onychomycosis was perfomed, carried out molecular identification, compared the antifungal activity of the conventional antifungals with PDT with encapsulated Hypericin (Hyp-P123), carried out detection of reactive oxygen species, and measured the antibiofilm effect of the Hyp-P123-PDT in vitro and in an ex vivo model of onychomycosis. Results Hyp-P123-PDT exhibited a fungicidal effect in vitro with reductions ≥ 3 log10. ROS generation increased post-Hyp-P123-PDT in Fusarium spp. Hyp-P123-PDT showed a potent inhibitory effect on adhesion-phase and mature biofilms in vitro tests and an ex vivo model of onychomycosis (p<0.0001). Conclusion Hyp-P123-PDT had a potent effect against Fusarium spp., suggesting that photodynamic therapy with Hyp-P123 is a safe and promising treatment for onychomycosis in clinical practice.
Collapse
Affiliation(s)
- Pollyanna C V Conrado
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Karina M Sakita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | - Glaucia S Arita
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil
| | | | - Gabriel B Cesar
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Noboru Hioka
- Department of Chemistry, State University of Maringa, Parana, Brazil
| | - Morgana F Voidaleski
- Department of Pathology Basic, State Federal University of Parana, Parana, Brazil
| | - Vania A Vicente
- Department of Pathology Basic, State Federal University of Parana, Parana, Brazil
| | | | | | - Erika S Kioshima
- Department of Analysis Clinics and Biomedicine, State University of Maringa, Parana, Brazil.
| |
Collapse
|
36
|
Xavier JRB, Waller SB, Osório LDG, Vives PS, Albano APN, Aguiar ESVD, Ferreira MRA, Conceição FRD, Faria ROD, Meireles MCA, Gomes ADR. Human sporotrichosis outbreak caused by Sporothrix brasiliensis in a veterinary hospital in Southern Brazil. J Mycol Med 2021; 31:101163. [PMID: 34157511 DOI: 10.1016/j.mycmed.2021.101163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/05/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023]
Abstract
Sporotrichosis is a mycotic disease caused by Sporothrix spp., whose zoonotic transmission by sick cats is the main infection route in Brazil. The aim of the current study is to report a human sporotrichosis outbreak caused by zoonotic transmission from a feline, with emphasis on the importance of making differential diagnosis and of using personal protective equipment. A hospital team member presented injury in the arm after having handled a cat that had been hospitalized for being hit by a car. The animal presented skin lacerations, myiasis, and full tibial fracture - there were no other signs of skin lesions. Clinical samples were collected from both the human and the suspected cat, for mycological culture; results have shown Sporothrix sp. growth. A search was conducted to identify other hospital team members who also had contact with the animal. Other six individuals also had suspected lesions in their arms, hands and ocular area; they were all subjected to sample collection. Mycological results have also confirmed Sporothrix spp.; sequencing analysis has shown that all seven humans were infected with Sporothrix brasiliensis. Since Southern Brazil is endemic of this disease, it is worth emphasizing the importance of taking into consideration zoonotic risks at the time to provide emergency care to stray animals, mainly felines, as well as of using Personal Protective Equipment while handling them - regardless of whether they present, or not, typical clinical symptoms or history of the disease, given the potential zoonotic risk posed by Sporothrix brasiliensis.
Collapse
Affiliation(s)
- José Raphael Batista Xavier
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Departamento de Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| | - Stefanie Bressan Waller
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Departamento de Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luíza da Gama Osório
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Departamento de Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Patrícia Silva Vives
- Departamento de Clínicas Veterinárias, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ana Paula Neuschrank Albano
- Departamento de Clínicas Veterinárias, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Marcos Roberto Alves Ferreira
- Departamento de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabrício Rochedo da Conceição
- Departamento de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Renata Osório de Faria
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Departamento de Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Mário Carlos Araújo Meireles
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Departamento de Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Angelita Dos Reis Gomes
- Centro de Diagnóstico e Pesquisa em Micologia Veterinária, Departamento de Veterinária Preventiva, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
37
|
Klomchit A, Calderin JD, Jaidee W, Watla-iad K, Brooks S. Napthoquinones from Neocosmospora sp.-Antibiotic Activity against Acidovorax citrulli, the Causative Agent of Bacterial Fruit Blotch in Watermelon and Melon. J Fungi (Basel) 2021; 7:370. [PMID: 34066879 PMCID: PMC8151544 DOI: 10.3390/jof7050370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial fruit blotch (BFB) is a bacterial disease that devastates Cucurbitaceae crops worldwide, causing significant economic losses. Currently, there is no means to treat or control the disease. This study focused on exploring the antibacterial properties of endophytic fungi against Acidovorax citrulli (Aac), the causative agent of BFB. Based on disc diffusion, time kill and MIC microdilution broth assays, four endophytes showed promise in controlling Aac. Nonetheless, only one strain, Neocosmospora sp. MFLUCC 17-0253, reduced the severity of disease on watermelon and melon seedlings up to 80%. Structure analysis revealed production of several compounds by the fungus. Three of these secondary metabolites, including mixture of 2-methoxy-6-methyl-7-acetonyl-8-hydroxy-1,4-maphthalenedione and 5,8-dihydroxy-7-acetonyl-1,4-naphthalenedione, anhydrojavanicin, and fusarnaphthoquinones B exhibited antagonistic activity against Aac. The chemical profile data in planta experiment analyzed by LC-Q/TOF-MS suggested successful colonization of endophytic fungi in their host plant and different metabolic profiles between treated and untreated seedling. Biofilm assay also demonstrated that secondary metabolites of Neocosmospora sp. MFLUCC 17-0253 significantly inhibited biofilm development of Aac. To the best of our knowledge, secondary metabolites that provide significant growth inhibition of Aac are reported for the first time. Thus, Neocosmospora sp. MFLUCC 17-0253 possesses high potential as a biocontrol agent for BFB disease.
Collapse
Affiliation(s)
- Anthikan Klomchit
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.K.); (K.W.-i.)
| | - Jorge Daniel Calderin
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL 61820, USA;
| | - Wuttichai Jaidee
- Medicinal Plant Innovation Center, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Kanchana Watla-iad
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.K.); (K.W.-i.)
| | - Siraprapa Brooks
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.K.); (K.W.-i.)
| |
Collapse
|
38
|
Nili O, Azizi A, Abdollahzadeh J. Development of an efficient Tef-1α RNA hairpin structure to efficient management of Lasiodiplodia theobromae and Neofusicoccum parvum. Sci Rep 2021; 11:9612. [PMID: 33953257 PMCID: PMC8099910 DOI: 10.1038/s41598-021-88422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
Lasiodiplodia theobromae and Neofusicoccum parvum are serious worldwide-distributed plant pathogenic fungi with a wide host range in tropical and temperate climates. They cause fruit rot, canker, and dieback of twigs in various woody plants. Protection of pruning wounds using fungicides is the prevalent strategy for the management of the diseases caused by these fungi. Chemical control of plant diseases is not environmentally safe and the residues of fungicides are a threat to nature. Furthermore, genetic resources of resistance to plant diseases in woody plants are limited. The aim of this study was to investigate the efficiency of RNA silencing using an efficient hairpin structure based on Tef-1α gene for the management of L. theobromae and N. parvum. Hairpin structure of Tef-1α was cloned in pFGC5941 binary vector and the recombinant construct was named pFGC-TEF-d. Transient expression of pFGC-TEF-d using Agrobacterium LBA4404 in grapevine (Bidaneh Sefid cv.) and strawberry cultivars (Camarosa and Ventana) led to a reduction in disease progress of L. theobromae. The disease reduction in grapevine was estimated by 55% and in strawberries cultivars Camarosa and Ventana by 58% and 93%, respectively. Further analysis of transient expression of pFGC-TEF-d in strawberry (Camarosa) shown disease reduction using Neofusicoccum parvum. Here we introduce RNAi silencing using pFGC-TEF-d construct as an efficient strategy to the management of L. theobromae and N. parvum for the first time.
Collapse
Affiliation(s)
- Omid Nili
- Department of Plant Protection, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdolbaset Azizi
- Department of Plant Protection, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Jafar Abdollahzadeh
- Department of Plant Protection, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| |
Collapse
|
39
|
Fusarium Species in Mangrove Soil in Northern Peninsular Malaysia and the Soil Physico-Chemical Properties. Microorganisms 2021; 9:microorganisms9030497. [PMID: 33652900 PMCID: PMC7996719 DOI: 10.3390/microorganisms9030497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/17/2022] Open
Abstract
Fusarium genus comprises important saprophytic and phytopathogenic fungi and is widespread in nature. The present study reports the occurrence of Fusarium spp. in soils from two mangrove forests in northern Peninsular Malaysia and analyzed physico-chemical properties of the mangrove soil. Based on TEF-1α sequences, nine Fusarium species were identified: Fusarium solani species complex (FSSC) (n = 77), Fusarium verticillioides (n = 20), Fusarium incarnatum (n = 10), Fusarium proliferatum (n = 7), Fusarium lateritium (n = 4), Fusarium oxysporum (n = 3), Fusarium rigidiuscula (n = 2), Fusarium chlamydosporum (n = 1), and Fusarium camptoceras (n = 1); FSSC isolates were the most prevalent. Phylogenetic analysis of the combined TEF-1α and ITS sequences revealed diverse phylogenetic affinities among the FSSC isolates and potentially new phylogenetic clades of FSSC. Soil analysis showed varied carbon content, pH, soil moisture, and salinity, but not nitrogen content, between sampling locations. Regardless of the physico-chemical properties, various Fusarium species were recovered from the mangrove soils. These were likely saprophytes; however, some were well-known plant pathogens and opportunistic human pathogens. Thus, mangrove soils might serve as inoculum sources for plant and human pathogenic Fusarium species. The present study demonstrates the occurrence of various Fusarium species in the extreme environment of mangrove soil, thereby contributing to the knowledge on species diversity in Fusarium.
Collapse
|
40
|
Karunarathna SC, Dong Y, Karasaki S, Tibpromma S, Hyde KD, Lumyong S, Xu J, Sheng J, Mortimer PE. Discovery of novel fungal species and pathogens on bat carcasses in a cave in Yunnan Province, China. Emerg Microbes Infect 2021; 9:1554-1566. [PMID: 32573334 PMCID: PMC7473127 DOI: 10.1080/22221751.2020.1785333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Virulent infectious fungal diseases, in natural and managed landscapes, are increasing. Fungal diseases in humans, animals and plants have caused die-off and extinction events and have become a threat to food security. A caving expedition in Yunnan Province, China, revealed two bat carcasses covered in fungal mycelia. Eleven fungal isolates were obtained from these bat carcasses, and morphological observations and multigene phylogenetic analyses revealed they were Fusarium incarnatum, Mucor hiemalis and Trichoderma harzianum and four new species, Mortierella rhinolophicola, M. multispora, M. yunnanensis and Neocosmospora pallidimors. One of the more alarming findings is that a number of infections related to Neocosmospora, previously associated with human and animal mycotoxicoses, are reported to be increasing, and here we present a new species from this genus, isolated from dead bats. Due to the ecosystem services provided by bats, and the close relationship between bats and humans, future research should focus on the impacts and significance of N. pallidimors to human and animal health, examining its pathogenicity and secondary metabolites. Taxonomic descriptions, color images of the habitat, in situ samples, microstructures and cultures are presented. SEM photographs of microstructures and phylogenetic trees showing the placement of new and known species are also provided.
Collapse
Affiliation(s)
- Samantha Chandranath Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, People's Republic of China
| | - Seigi Karasaki
- Energy and Resources Group, University of California, Berkeley, CA, USA
| | - Saowaluck Tibpromma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| | - Kevin David Hyde
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chinag Rai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Jianchu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,World Agroforestry Centre, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China.,Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, People's Republic of China.,Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Peter Edward Mortimer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, People's Republic of China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
41
|
Ashfield-Crook NR, Woodward Z, Soust M, Kurtböke Dİ. Bioactive Streptomycetes from Isolation to Applications: A Tasmanian Potato Farm Example. Methods Mol Biol 2021; 2232:219-249. [PMID: 33161551 DOI: 10.1007/978-1-0716-1040-4_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The genus Streptomyces constitutes approximately 50% of all soil actinomycetes, playing a significant role in the soil microbial community through vital functions including nutrient cycling, production of bioactive metabolites, disease-suppression and plant growth promotion. Streptomyces produce many bioactive compounds and are prime targets for industrial and biotechnological applications. In addition to their agrobiological roles, some Streptomyces spp. can, however, be phytopathogenic, examples include, common scab of potato that causes economic losses worldwide. Currently used chemical control measures can have detrimental effect to environmental and human health as a result alternative methods to chemical disease control are being investigated. One alternative is the use of streptomycete specific phages to remove this pathogenic bacterium before it can cause the disease on potatoes. However, due to co-existence of non-common scab-causing species belonging to the genus Streptomyces, phage treatment is likely to affect a wide range of non-target streptomycete species including the beneficial ones in the soil. Therefore, before such treatment starts the host range of the phages within the targeted family of bacteria should be determined. In a study conducted using soil samples from a Tasmanian potato farm, streptomycetes were isolated and tested against streptomycete-specific phages. Their antifungal activity was also determined using multiple assays against selected phytopathogens. The four strongest antifungal activity-displaying isolates were further tested for their persistent antifungal activity using wheat and Fusarium solani in a pot trial. A second pot trial was also conducted to evaluate whether the beneficial streptomycetes were affected by streptophage treatment and whether their removal via the phage battery would cause opportunistic fungal infections to plants in soil. The streptomycetes prevented the reduction in wheat shoot weight caused by F. solani indicating their disease suppressive effect. However, when phages were added into the pots, the growth of wheat was detrimentally impacted. This finding might suggest that the reduced presence of antifungal streptomycetes via phage-induced lysis might encourage opportunistic fungal infections in plants.
Collapse
Affiliation(s)
- Nina R Ashfield-Crook
- GeneCology Research Centre and the School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | | | - Martin Soust
- Terragen Biotech Pty. Ltd., Coolum Beach, QLD, Australia
| | - D İpek Kurtböke
- GeneCology Research Centre and the School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, Australia.
| |
Collapse
|
42
|
No to Neocosmospora: Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus Fusarium. mSphere 2020; 5:5/5/e00810-20. [PMID: 32938701 PMCID: PMC7494836 DOI: 10.1128/msphere.00810-20] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available.
Collapse
|
43
|
Zitnick-Anderson K, Oladzadabbasabadi A, Jain S, Modderman C, Osorno JM, McClean PE, Pasche JS. Sources of Resistance to Fusarium solani and Associated Genomic Regions in Common Bean Diversity Panels. Front Genet 2020; 11:475. [PMID: 32612633 PMCID: PMC7308507 DOI: 10.3389/fgene.2020.00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/16/2020] [Indexed: 11/21/2022] Open
Abstract
Common bean (Phaseolus vulgaris L.) production worldwide is hampered by Fusarium root rot (FRR), which is caused by Fusarium solani. Screening for FRR resistance on a large scale is notoriously difficult and often yields inconsistent results due to variability within the environment and pathogen biology. A greenhouse screening assay was developed incorporating multiple isolates of F. solani to improve assay reproducibility. The Andean (ADP; n = 270) and Middle American (MDP; n = 280) Diversity Panels were screened in the greenhouse to identify genetic factors associated with FRR resistance. Forty-seven MDP and 34 ADP lines from multiple market classes were identified as resistant to FRR. Greenhouse phenotyping repeatability was confirmed via five control lines. Genome-wide association mapping using ∼200k SNPs was performed on standard phenotyping score 1–9, as well as binary and polynomial transformation of score data. Sixteen and seven significant genomic regions were identified for ADP and MDP, respectively, using all three classes of phenotypic data. Most candidate genes were associated with plant immune/defense mechanisms. For the ADP population, ortholog of glucan synthase-like enzyme, senescence-associated genes, and NAC domain protein, associated with peak genomic region Pv08:0.04–0.18 Mbp, were the most significant candidate genes. For the MDP population, the peak SNPs Pv07:15.29 Mbp and Pv01:51 Mbp mapped within gene models associated with ethylene response factor 1 and MAC/Perforin domain-containing gene respectively. The research provides a basis for bean improvement through the use of resistant genotypes and genomic regions for more durable root rot resistance.
Collapse
Affiliation(s)
| | | | - Shalu Jain
- Department of Pathology and Entomology, Syngenta, Stanton, MN, United States
| | - Chryseis Modderman
- Department of Soil, Water, and Climate, University of Minnesota, Morris, Morris, MN, United States
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Julie S Pasche
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
44
|
Kolainis S, Koletti A, Lykogianni M, Karamanou D, Gkizi D, Tjamos SE, Paraskeuopoulos A, Aliferis KA. An integrated approach to improve plant protection against olive anthracnose caused by the Colletotrichum acutatum species complex. PLoS One 2020; 15:e0233916. [PMID: 32470037 PMCID: PMC7259717 DOI: 10.1371/journal.pone.0233916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
The olive tree (Olea europaea L.) is the most important oil-producing crop of the Mediterranean basin. However, although plant protection measures are regularly applied, disease outbreaks represent an obstacle towards the further development of the sector. Therefore, there is an urge for the improvement of plant protection strategies based on information acquired by the implementation of advanced methodologies. Recently, heavy fungal infections of olive fruits have been recorded in major olive-producing areas of Greece causing devastating yield losses. Thus, initially, we have undertaken the task to identify their causal agent(s) and assess their pathogenicity and sensitivity to fungicides. The disease was identified as the olive anthracnose, and although Colletotrichum gloeosporioides and Colletotrichum acutatum species complexes are the two major causes, the obtained results confirmed that in Southern Greece the latter is the main causal agent. The obtained isolates were grouped into eight morphotypes based on their phenotypes, which differ in their sensitivities to fungicides and pathogenicity. The triazoles difenoconazole and tebuconazole were more toxic than the strobilurins being tested. Furthermore, a GC/EI/MS metabolomics model was developed for the robust chemotaxonomy of the isolates and the dissection of differences between their endo-metabolomes, which could explain the obtained phenotypes. The corresponding metabolites-biomarkers for the discrimination between morphotypes were discovered, with the most important ones being the amino acids L-tyrosine, L-phenylalanine, and L-proline, the disaccharide α,α-trehalose, and the phytotoxic pathogenesis-related metabolite hydroxyphenylacetate. These metabolites play important roles in fungal metabolism, pathogenesis, and stress responses. The study adds critical information that could be further exploited to combat olive anthracnose through its monitoring and the design of improved, customized plant protection strategies. Also, results suggest the necessity for the comprehensive mapping of the C. acutatum species complex morphotypes in order to avoid issues such as the development of fungicide-resistant genotypes.
Collapse
Affiliation(s)
- Stefanos Kolainis
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
| | - Anastasia Koletti
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
| | - Maira Lykogianni
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
- Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, Kifissia, Greece
| | - Dimitra Karamanou
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
| | - Danai Gkizi
- Laboratory of Plant Pathology, Agricultural University of Athens, Athens, Greece
| | - Sotirios E. Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, Athens, Greece
| | - Antonios Paraskeuopoulos
- Directorate of Rural Economy and Veterinary of Trifilia, Prefecture of Peloponnese, Kyparissia, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
- Department of Plant Science, Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
45
|
Paul NC, Park W, Lee S, Chung MN, Lee HU, Yang JW. Occurrence of Sweetpotato ( Ipomoea batatas) Wilt and Surface Rot Disease and Determining Resistance of Selected Varieties to the Pathogen in Korea. PLANTS (BASEL, SWITZERLAND) 2020; 9:E497. [PMID: 32295000 PMCID: PMC7238964 DOI: 10.3390/plants9040497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022]
Abstract
Fusarium wilt and Fusarium surface rot caused by Fusarium oxysporum Schltdl are the major diseases of sweetpotato (Ipomoea batatas) and was surveyed in different locations (Cheongju, Heanam, Iksan, Icheon, Kimje, Nonsan, Yeoungam, and Yeoju) in Korea from 2015 to 2017 in the field, after harvesting and in storehouse. The wilt incidence in the early stage represented 17.9%, 5.9%, and 8.3% in 2015, 2016, and 2017, respectively. Samples were collected, and the causal organism was isolated on potato dextrose agar (PDA). Ten pure cultures were stored at the Sweetpotato Research Laboratory, Bioenergy Crop Research Institute, Muan, Korea. Morphological analysis, along with molecular phylogeny of the sequences of internal-transcribed spacer (ITS) and elongation factor 1-α (EF-1α) genes and their combined phylogenetic analysis, confirmed the isolates as the Fusarium oxysporum Schltdl. Pathogenicity tests were conducted on sweetpotato stems, and storage roots by artificially inoculation methods, and the most virulent isolate was selected as SPL18019. A rapid screening method on 21 selected varieties for resistant variety selection was applied on stems. The Pungwanmi was found resistant to Fusarium wilt, whereas Annobeni was the most susceptible. On the other hand, six varieties were used to test surface rot resistance, and Yulmi and Yesumi were resistant and susceptible, respectively, to Fusarium surface rot.
Collapse
Affiliation(s)
- Narayan Chandra Paul
- Bioenergy Crop Research Institute, National Institute of Crop Science, RDA, Muan 58545, Korea; (N.C.P.); (W.P.); (S.L.); (M.N.C.); (H.-U.L.)
| | - Won Park
- Bioenergy Crop Research Institute, National Institute of Crop Science, RDA, Muan 58545, Korea; (N.C.P.); (W.P.); (S.L.); (M.N.C.); (H.-U.L.)
| | - Seungyong Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, RDA, Muan 58545, Korea; (N.C.P.); (W.P.); (S.L.); (M.N.C.); (H.-U.L.)
| | - Mi Nam Chung
- Bioenergy Crop Research Institute, National Institute of Crop Science, RDA, Muan 58545, Korea; (N.C.P.); (W.P.); (S.L.); (M.N.C.); (H.-U.L.)
| | - Hyeong-Un Lee
- Bioenergy Crop Research Institute, National Institute of Crop Science, RDA, Muan 58545, Korea; (N.C.P.); (W.P.); (S.L.); (M.N.C.); (H.-U.L.)
| | - Jung-Wook Yang
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, RDA, Suwon 16613, Korea
| |
Collapse
|
46
|
Santos ACDS, Diniz AG, Tiago PV, Oliveira NTD. Entomopathogenic Fusarium species: a review of their potential for the biological control of insects, implications and prospects. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2019.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Du XH, Wu D, Kang H, Wang H, Xu N, Li T, Chen K. Heterothallism and potential hybridization events inferred for twenty-two yellow morel species. IMA Fungus 2020; 11:4. [PMID: 32617256 PMCID: PMC7325075 DOI: 10.1186/s43008-020-0027-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023] Open
Abstract
Mating-type genes are central to sexual reproduction in ascomycete fungi and result in the establishment of reproductive barriers. Together with hybridization, they both play important roles in the evolution of fungi. Recently, potential hybridization events and MAT genes were separately found in the Elata Clade of Morchella. Herein, we characterized the MAT1-1-1 and MAT1-2-1 genes of twenty-two species in the Esculenta Clade, another main group in the genus Morchella, and proved heterothallism to be the predominant mating strategy among the twenty-two species tested. Ascospores of these species were multi-nuclear and had many mitochondrial nucleoids. The number of ascospore nuclei might be positively related with the species distribution range. Phylogenetic analyses of MAT1-1-1, MAT1-2-1, intergenic spacer (IGS), and partial histone acetyltransferase ELP3 (F1) were performed and compared with the species phylogeny framework derived from the ribosomal internal transcribed spacer region (ITS) and translation elongation factor 1-alpha (EF1-a) to evaluate their species delimitation ability and investigate potential hybridization events. Conflicting topologies among these genes genealogies and the species phylogeny were revealed and hybridization events were detected between several species. Different evolutionary patterns were suggested for MAT genes between the Esculenta and the Elata Clades. Complex evolutionary trajectories of MAT1-1-1, MAT1-2-1, F1 and IGS in the Esculenta Clade were highlighted. These findings contribute to a better understanding of the importance of hybridization and gene transfer in Morchella and especially for the appearance of reproductive modes during its evolutionary process.
Collapse
Affiliation(s)
- Xi-Hui Du
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy Agricultural Reclamation of Sciences, Shihezi, 832000 China
| | - Heng Kang
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Hanchen Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Nan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Tingting Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Keliang Chen
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| |
Collapse
|
48
|
Nielsen MR, Holzwarth AKR, Brew E, Chrapkova N, Kaniki SEK, Kastaniegaard K, Sørensen T, Westphal KR, Wimmer R, Sondergaard TE, Sørensen JL. A new vector system for targeted integration and overexpression of genes in the crop pathogen Fusarium solani. Fungal Biol Biotechnol 2019; 6:25. [PMID: 31890232 PMCID: PMC6905090 DOI: 10.1186/s40694-019-0089-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Besides their ability to produce several interesting bioactive secondary metabolites, members of the Fusarium solani species complex comprise important pathogens of plants and humans. One of the major obstacles in understanding the biology of this species complex is the lack of efficient molecular tools for genetic manipulation. Results To remove this obstacle we here report the development of a reliable system where the vectors are generated through yeast recombinational cloning and inserted into a specific site in F. solani through Agrobacterium tumefaciens-mediated transformation. As proof-of-concept, the enhanced yellow fluorescent protein (eYFP) was inserted in a non-coding genomic position of F. solani and subsequent analyses showed that the resulting transformants were fluorescent on all tested media. In addition, we cloned and overexpressed the Zn(II)2Cys6 transcriptional factor fsr6 controlling mycelial pigmentation. A transformant displayed deep red/purple pigmentation stemming from bostrycoidin and javanicin. Conclusion By creating streamlined plasmid construction and fungal transformation systems, we are now able to express genes in the crop pathogen F. solani in a reliable and fast manner. As a case study, we targeted and activated the fusarubin (PKS3: fsr) gene cluster, which is the first case study of secondary metabolites being directly associated with the responsible gene cluster in F. solani via targeted activation. The system provides an approach that in the future can be used by the community to understand the biochemistry and genetics of the Fusarium solani species complex, and is obtainable from Addgene catalog #133094. Graphic abstract
Collapse
Affiliation(s)
- Mikkel Rank Nielsen
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | | - Emmett Brew
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | - Natalia Chrapkova
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | | - Kenneth Kastaniegaard
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Trine Sørensen
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Klaus Ringsborg Westphal
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Reinhard Wimmer
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Teis Esben Sondergaard
- 2Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark
| | - Jens Laurids Sørensen
- 1Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| |
Collapse
|
49
|
Aoki T, Smith JA, Kasson MT, Freeman S, Geiser DM, Geering ADW, O’Donnell K. Three novel Ambrosia Fusarium Clade species producing clavate macroconidia known (F. floridanum and F. obliquiseptatum) or predicted (F. tuaranense) to be farmed by Euwallacea spp. (Coleoptera: Scolytinae) on woody hosts. Mycologia 2019; 111:919-935. [DOI: 10.1080/00275514.2019.1647074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Takayuki Aoki
- National Agriculture and Food Research Organization, Genetic Resources Center, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Jason A. Smith
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611-0680
| | - Matthew T. Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia 26506
| | - Stanley Freeman
- Institute of Plant Protection, ARO, The Volcani Center, Bet Dagan 50250, Israel
| | - David M. Geiser
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Andrew D. W. Geering
- The Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Kerry O’Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, US Department of Agriculture, Agricultural Research Service, 1815 North University Street, Peoria, Illinois 60604-3999
| |
Collapse
|
50
|
One stop shop III: taxonomic update with molecular phylogeny for important phytopathogenic genera: 51–75 (2019). FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00433-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|