1
|
Novakovic J, Muric M, Bradic J, Ramenskaya G, Jakovljevic V, Jeremic N. Diallyl Trisulfide and Cardiovascular Health: Evidence and Potential Molecular Mechanisms. Int J Mol Sci 2024; 25:9831. [PMID: 39337318 PMCID: PMC11431890 DOI: 10.3390/ijms25189831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Traditionally, garlic has a valuable role in preventing and reducing the incidence of many diseases and pathophysiological disorders. Consequently, some researchers have focused on the beneficial cardiovascular properties of diallyl trisulfide (DATS), the most potent polysulfide isolated from garlic. Therefore, in this review, we collected the available data on DATS, its biochemical synthesis, metabolism and pharmacokinetics, and gathered the current knowledge and the role of DATS in cardiovascular diseases. Overall, this review summarizes the cardioprotective effects of DATS and brings together all previous findings on its protective molecular mechanisms, which are mainly based on the potent anti-apoptotic, anti-inflammatory, and antioxidant potential of this polysulfide. Our review is an important cornerstone for further basic and clinical research on DATS as a new therapeutic agent for the treatment of numerous heart diseases.
Collapse
Affiliation(s)
- Jovana Novakovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja Muric
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jovana Bradic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Galina Ramenskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Vladimir Jakovljevic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
2
|
Khafaga AF, Gaballa MMS, Karam R, Shoulah SA, Shamma RN, Khalifa NE, Farrag NE, Noreldin AE. Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sci 2024; 341:122499. [PMID: 38342375 DOI: 10.1016/j.lfs.2024.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Angiogenesis is one of the defining characteristics of cancer. Vascular endothelial growth factor (VEGF) is crucial for the development of angiogenesis. A growing interest in cancer therapy is being caused by the widespread use of antiangiogenic drugs in treating several types of human cancer. However, this therapeutic approach can worsen resistance, invasion, and overall survival. As we proceed, refining combination strategies and addressing the constraint of targeted treatments are paramount. Therefore, major challenges in using novel combinations of antiangiogenic agents with cytotoxic treatments are currently focused on illustrating the potential of synergistic therapeutic strategies, alongside advancements in nanomedicine and gene therapy, present opportunities for more precise interference with angiogenesis pathways and tumor environments. Nanoparticles have the potential to regulate several crucial activities and improve several drug limitations such as lack of selectivity, non-targeted cytotoxicity, insufficient drug delivery at tumor sites, and multi-drug resistance based on their unique features. The goal of this updated review is to illustrate the enormous potential of novel synergistic therapeutic strategies and the targeted nanoparticles as an alternate strategy for t treating a variety of tumors employing antiangiogenic therapy.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Reham Karam
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, 35511, Egypt.
| | - Salma A Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt.
| | - Nehal E Farrag
- Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
3
|
Di Pietrantonio N, Cappellacci I, Mandatori D, Baldassarre MPA, Pandolfi A, Pipino C. Role of Epigenetics and Metabolomics in Predicting Endothelial Dysfunction in Type 2 Diabetes. Adv Biol (Weinh) 2023; 7:e2300172. [PMID: 37616517 DOI: 10.1002/adbi.202300172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Indexed: 08/26/2023]
Abstract
Type 2 diabetes (T2D) is a worldwide health problem and cardiovascular disease (CVD) is a leading cause of morbidity and mortality in T2D patients, making the prevention of CVD onset a major priority. It is therefore crucial to optimize diagnosis and treatment to reduce this burden. Endothelial dysfunction is one of the most important prognostic factors for CVD progression, thus novel approaches to identify the early phase of endothelial dysfunction may lead to specific preventive measures to reduce the occurrence of CVD. Nowadays, multiomics approaches have provided unprecedented opportunities to stratify T2D patients into endotypes, improve therapeutic treatment and outcome and amend the survival prediction. Among omics strategies, epigenetics and metabolomics are gaining increasing interest. Recently, a dynamic correlation between metabolic pathways and gene expression through chromatin remodeling, such as DNA methylation, has emerged, indicating new perspectives on the regulatory networks impacting cellular processes. Thus, a better understanding of epigenetic-metabolite relationships can provide insight into the physiological processes altered early in the endothelium that ultimately head to disease development. Here, recent studies on epigenetics and metabolomics related to CVD prevention potentially useful to identify disease biomarkers, as well as new therapies hopefully targeting the early phase of endothelial dysfunction are highlighted.
Collapse
Affiliation(s)
- Nadia Di Pietrantonio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Ilaria Cappellacci
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, Chieti, 66100, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, Chieti, 66100, Italy
| |
Collapse
|
4
|
Guo W, Zhang Z, Li L, Liang X, Wu Y, Wang X, Ma H, Cheng J, Zhang A, Tang P, Wang CZ, Wan JY, Yao H, Yuan CS. Gut microbiota induces DNA methylation via SCFAs predisposing obesity-prone individuals to diabetes. Pharmacol Res 2022; 182:106355. [PMID: 35842183 DOI: 10.1016/j.phrs.2022.106355] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
Obesity-prone (OP) individuals have a significant predisposition to obesity and diabetes. Previously, we have found that OP individuals, despite being normal in weight and BMI, have already exhibited diabetes-related DNA methylation signatures. However, the underlying mechanisms remain obscure. Here we determined the effects of gut microbiota on DNA methylation and investigated the underlying mechanism from microbial-derived short-chain fatty acids (SCFAs). Diabetes-related DNA methylation loci were screened and validated in a new OP cohort. Moreover, the OP group was revealed to have distinct gut microbiota compositions, and fecal microbiota transplantation (FMT) demonstrated the role of gut microbiota in inducing diabetes-related DNA methylations and glucolipid disorders. UPLC-ESI-MS/MS analysis indicated a significantly lower level of total fecal SCFAs in the OP group. The gut microbiota from OP subjects yielded markedly decreased total SCFAs, while notably enriched propionate. Additionally, propionate was also identified by variable importance in projection (VIP) score as the most symbolic SCFAs of the OP group. Further cellular experiments verified that propionate could induce hypermethylation at locus cg26345888 and subsequently inhibit the expression of the target gene DAB1, which was crucially associated with clinical vitamin D deficiency and thus may affect the development and progression of diabetes. In conclusion, our study revealed that gut microbiota-derived propionate induces specific DNA methylation, thus predisposing OP individuals to diabetes. The findings partially illuminate the mechanisms of diabetes susceptibility in OP populations, implying gut microbiota and SCFAs may serve as promising targets both for clinical treatment and medication development of diabetes.
Collapse
Affiliation(s)
- Wenqian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zengliang Zhang
- Traditional Chinese Medicine College, Inner Mongolia Medical University, Inner Mongolia 010110, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Liang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqi Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaolu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han Ma
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinjun Cheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Anqi Zhang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ping Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| | - Jin-Yi Wan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Haiqiang Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Hu Y, Zhu Q, Yang X, Yan J, Shi J. Case of type 2 diabetes mellitus with edema resulting in subcutaneous insulin resistance syndrome. J Diabetes Investig 2021; 12:2267-2270. [PMID: 34102011 PMCID: PMC8668066 DOI: 10.1111/jdi.13611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022] Open
Abstract
Subcutaneous insulin resistance syndrome caused by obesity, induration at the injection site, skin temperature and other factors is common clinically, whereas resistance events caused by edema are relatively rare. This article introduced a case of a woman with type 2 diabetes mellitus with heart failure edema. Her blood glucose control was significantly associated with the level of edema. Excluding other factors, it can be concluded that edema might lead to subcutaneous insulin resistance syndrome, even if the edema at the injection site is not obvious.
Collapse
Affiliation(s)
- Ying Hu
- Clinical Pharmacy Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Qiongwen Zhu
- Department of PharmacyGeriatric Care Hospital ZhejiangHangzhouChina
| | - Xiuli Yang
- Clinical Pharmacy Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Jieping Yan
- Clinical Pharmacy Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Jiana Shi
- Clinical Pharmacy Center, Department of PharmacyZhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
6
|
Epigenetic Signaling and RNA Regulation in Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21020509. [PMID: 31941147 PMCID: PMC7014325 DOI: 10.3390/ijms21020509] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
RNA epigenetics is perhaps the most recent field of interest for translational epigeneticists. RNA modifications create such an extensive network of epigenetically driven combinations whose role in physiology and pathophysiology is still far from being elucidated. Not surprisingly, some of the players determining changes in RNA structure are in common with those involved in DNA and chromatin structure regulation, while other molecules seem very specific to RNA. It is envisaged, then, that new small molecules, acting selectively on RNA epigenetic changes, will be reported soon, opening new therapeutic interventions based on the correction of the RNA epigenetic landscape. In this review, we shall summarize some aspects of RNA epigenetics limited to those in which the potential clinical translatability to cardiovascular disease is emerging.
Collapse
|