1
|
Hopperstad K, Truschel T, Wahlicht T, Stewart W, Eicher A, May T, Deisenroth C. Characterization of Novel Human Immortalized Thyroid Follicular Epithelial Cell Lines. APPLIED IN VITRO TOXICOLOGY 2021; 7:39-49. [PMID: 35663474 PMCID: PMC9157743 DOI: 10.1089/aivt.2020.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Investigation of normal human thyroid function using in vitro culture systems is dependent on cells that recapitulate physiology of differentiated thyrocytes. Primary thyrocytes retain features of the native organ but have limited lifespan in culture. Immortalized thyrocytes offer an alternative if challenges maintaining phenotypic stability can be overcome to retain functional features of primary cells. MATERIALS AND METHODS CI-SCREEN immortalization technology was applied to normal human thyroid tissue to generate four cell line variants. The lines were characterized for transgene integration, biomarker expression, genomic stability, and proliferation rates. Thyroid Stimulating Hormone (TSH)-dependent morphology, thyroglobulin production, thyroxine hormone synthesis, and viability were assessed using conventional 2D monolayer and 3D microtissue culture formats in huThyrEC or h7H medium. RESULTS Despite differential transgene profiles, the lines had similar biomarker expression patterns and proliferation rates. In 2D culture there was no thyroxine synthesis or changes in viability, but TSH-dependent thyroglobulin production was more significant for several lines in h7H than huThyrEC medium. Comparatively, in 3D microtissues, TSH-dependent thyroglobulin induction was greater for cell lines in h7H medium. Synthesis of thyroxine in one cell line was higher than background with TSH exposure, but not significantly different than control. DISCUSSION Immortalization of primary human thyrocytes yielded transgenic lines of epithelial origin. When evaluated in 2D or 3D culture formats, h7H medium supported thyroglobulin production to a greater magnitude than huThyrEC medium. One cell line cultured in 3D microtissue format marginally recapitulated T4 synthesis under continuous TSH exposure. CONCLUSION Select human thyroid cell lines exhibited morphological and functional features of primary thyrocytes and are a novel resource for in vitro disease modeling and toxicity testing that will enable reproducible culture models more representative of normal human thyroid function.
Collapse
Affiliation(s)
- Kristen Hopperstad
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | | | - Tom Wahlicht
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Wendy Stewart
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Andrew Eicher
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Chad Deisenroth
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| |
Collapse
|
2
|
Deisenroth C, Soldatow VY, Ford J, Stewart W, Brinkman C, LeCluyse EL, MacMillan DK, Thomas RS. Development of an In Vitro Human Thyroid Microtissue Model for Chemical Screening. Toxicol Sci 2020; 174:63-78. [PMID: 31808822 PMCID: PMC8061085 DOI: 10.1093/toxsci/kfz238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thyroid hormones (TH) are essential for regulating a number of diverse physiological processes required for normal growth, development, and metabolism. The US EPA Endocrine Disruptor Screening Program (EDSP) has identified several molecular thyroid targets relevant to hormone synthesis dynamics that have been adapted to high-throughput screening (HTS) assays to rapidly evaluate the ToxCast/Tox21 chemical inventories for potential thyroid disrupting chemicals (TDCs). The uncertainty surrounding the specificity of active chemicals identified in these screens and the relevance to phenotypic effects on in vivo human TH synthesis are notable data gaps for hazard identification of TDCs. The objective of this study was to develop a medium-throughput organotypic screening assay comprised of reconstructed human thyroid microtissues to quantitatively evaluate the disruptive effects of chemicals on TH production and secretion. Primary human thyroid cells procured from qualified euthyroid donors were analyzed for retention of NK2 homeobox 1 (NKX2-1), Keratin 7 (KRT7), and Thyroglobulin (TG) protein expression by high-content image analysis to verify enrichment of follicular epithelial cells. A direct comparison of 2-dimensional (2D) and 3-dimensional (3D) 96-well culture formats was employed to characterize the morphology, differential gene expression, TG production, and TH synthesis over the course of 20 days. The results indicate that modeling human thyroid cells in the 3D format was sufficient to restore TH synthesis not observed in the 2D culture format. Inhibition of TH synthesis in an optimized 3D culture format was demonstrated with reference chemicals for key molecular targets within the thyroid gland. Implementation of the assay may prove useful for interpreting phenotypic effects of candidate TDCs identified by HTS efforts currently underway in the EDSP.
Collapse
Affiliation(s)
- Chad Deisenroth
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | | | - Jermaine Ford
- Research Cores Unit, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina 27711
| | - Wendy Stewart
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | - Cassandra Brinkman
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| | | | - Denise K. MacMillan
- Research Cores Unit, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina 27711
| | - Russell S. Thomas
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
3
|
Barington M, Brorson MM, Hofman-Bang J, Rasmussen ÅK, Holst B, Feldt-Rasmussen U. Ghrelin-mediated inhibition of the TSH-stimulated function of differentiated human thyrocytes ex vivo. PLoS One 2017; 12:e0184992. [PMID: 28931076 PMCID: PMC5607171 DOI: 10.1371/journal.pone.0184992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/04/2017] [Indexed: 02/05/2023] Open
Abstract
Ghrelin is a peptide hormone produced mainly in the gastrointestinal tract known to regulate several physiological functions including gut motility, adipose tissue accumulation and hunger sensation leading to increased bodyweight. Studies have found a correlation between the plasma levels of thyroid hormones and ghrelin, but an effect of ghrelin on the human thyroid has never been investigated even though ghrelin receptors are present in the thyroid. The present study shows a ghrelin-induced decrease in the thyroid-stimulating hormone (TSH)-induced production of thyroglobulin and mRNA expression of thyroperoxidase in a primary culture of human thyroid cells obtained from paranodular tissue. Accordingly, a trend was noted for an inhibition of TSH-stimulated expression of the sodium-iodine symporter and the TSH-receptor. Thus, this study suggests an effect of ghrelin on human thyrocytes and thereby emphasizes the relevance of examining whether ghrelin also influences the metabolic homeostasis through altered thyroid hormone production.
Collapse
Affiliation(s)
- Maria Barington
- Department of Medical Endocrinology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Marianne Møller Brorson
- Department of Medical Endocrinology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Jacob Hofman-Bang
- Department of Medical Endocrinology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Åse Krogh Rasmussen
- Department of Medical Endocrinology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Institute of Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
4
|
Hong CM, Ahn BC, Jeong SY, Lee SW, Lee J. Distant metastatic lesions in patients with differentiated thyroid carcinoma. Clinical implications of radioiodine and FDG uptake. Nuklearmedizin 2014; 52:121-9. [PMID: 23928981 DOI: 10.3413/nukmed-0541-12-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/27/2013] [Indexed: 01/09/2023]
Abstract
AIM Many investigators have reported an inverse relationship between iodine and glucose utilization of differentiated thyroid carcinoma (DTC) according to its degree of differentiation; however, not every DTC is compatible with this phenomenon. This study was conducted to evaluate the clinical implication of iodine and glucose uptake at distant metastatic lesions in DTC patients. PATIENTS, METHODS 64 DTC patients (women 47; mean age 49.9 ± 16.4 years) with distant metastasis who underwent post (131)I treatment whole-body scan (RxWBS) and FDG PET/CT were included in the study. Radioiodine (RAI) and FDG uptake of metastatic lesions were evaluated. TSH stimulated serum thyroglobulin (s-Tg) were obtained. RESULTS 53 of 64 patients (82.8%) were RAI(+) group, and 37 patients (57.8%) were FDG(+) group. Patients in the RAI(-) group showed a higher rate of FDG uptake than RAI(+) group (100.0% vs. 49.1%, p = 0.002). Patients in the FDG(-) group showed a higher rate of RAI uptake than FDG(+) group (100.0% vs. 70.3%, p = 0.002). Patients with s-Tg < 100 ng/ml were frequently observed in the FDG(-)/RAI(+) group and the FDG(+)/RAI(-) group (p = 0.023). And patients with s-Tg ≥ 500 ng/ml were more frequently observed in the FDG(+)/RAI(+) group, compared with the FDG(+)/RAI(-) group (p = 0.036). Reduced disease-specific survival (DSS) was observed in patients with RAI(-) (p = 0.003), FDG(+) (p = 0.006), SUVmax > 3.6 (p<0.001), and s-Tg > 75.8 ng/ml (p = 0.009). In multivariate analysis, only a SUVmax > 3.6 was significantly predictive of DSS (p = 0.006). CONCLUSION An inverse relationship between RAI and FDG uptake, flip-flop phenomenon, was observed in patients with metastatic lesions of DTC. Reduced disease-specific survival was observed in patients with FDG(+), RAI(-) in metastatic lesions, or high s-Tg value.
Collapse
Affiliation(s)
- C M Hong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu, Republic of Korea
| | | | | | | | | |
Collapse
|
5
|
Lin RY, Kubo A, Keller GM, Davies TF. Committing embryonic stem cells to differentiate into thyrocyte-like cells in vitro. Endocrinology 2003; 144:2644-9. [PMID: 12746328 DOI: 10.1210/en.2002-0122] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The derivation of thyrocyte-like cells in culture is of importance in the basic study of early thyroid embryogenesis and the generation of an unlimited clinical source of thyrocytes for genetic manipulation and cell transplantation. We have established an experimental system, which shows that 6-d-old embryoid bodies (EBs) differentiated from mouse embryonic stem (ES) cells expressed a set of genes traditionally associated with thyroid cells. The genes analyzed included the thyroid transcription factor PAX8, the Na(+)/I(-) symporter, thyroperoxidase, thyroglobulin, and the TSH receptor (TSHR). Immunofluorescent analysis demonstrated the presence of TSHR-positive cells as outgrowths from 8-d-old EBs cultured on chamber slides. Accordingly, this area of cells also expressed PAX8 and another thyroid transcription factor TTF2. Of importance, TSH, the main regulator of the thyroid gland, was necessary to maintain the expression of PAX8 and TSHR genes during EB differentiation. Furthermore, thyroid-specific function, such as cAMP generation by TSH, was maintained in this model. Together, these results suggested that the developmental program associated with thyrocyte development is recapitulated in the ES/EB model system. The differentiation of mouse ES cells into thyrocyte-like cells provides a powerful model for the study of thyrocyte developmental diseases associated with this lineage and contributes to the development of thyroid hormone-secreting cell lines.
Collapse
Affiliation(s)
- Reigh-Yi Lin
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | |
Collapse
|
6
|
Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 2001; 22:631-56. [PMID: 11588145 DOI: 10.1210/edrv.22.5.0444] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
TSH via cAMP, and various growth factors, in cooperation with insulin or IGF-I stimulate cell cycle progression and proliferation in various thyrocyte culture systems, including rat thyroid cell lines (FRTL-5, WRT, PC Cl3) and primary cultures of rat, dog, sheep and human thyroid. The available data on cell signaling cascades, cell cycle kinetics, and cell cycle-regulatory proteins are thoroughly and critically reviewed in these experimental systems. In most FRTL-5 cells, TSH (cAMP) merely acts as a priming/competence factor amplifying PI3K and MAPK pathway activation and DNA synthesis elicited by insulin/IGF-I. In WRT cells, TSH and insulin/IGF-I can independently activate Ras and PI3K pathways and DNA synthesis. In dog thyroid primary cultures, TSH (cAMP) does not activate Ras and PI3K, and cAMP must be continuously elevated by TSH to directly control the progression through G(1) phase. This effect is exerted, at least in part, via the cAMP-dependent activation of the required cyclin D3, itself synthesized in response to insulin/IGF-I. This and other discrepancies show that the mechanistic logics of cell cycle stimulation by cAMP profoundly diverge in these different in vitro models of the same cell. Therefore, although these different thyrocyte systems constitute interesting models of the wide diversity of possible mechanisms of cAMP-dependent proliferation in various cell types, extrapolation of in vitro mechanistic data to TSH-dependent goitrogenesis in man can only be accepted in the cases where independent validation is provided.
Collapse
Affiliation(s)
- T Kimura
- Institute of Interdisciplinary Research (IRIBHN), School of Medicine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
For the first time, 3, 7 and 10 days growth of normal thyroid follicular FRTL-5 cell colonies in a semi-solid medium of 0.6% methocel over 1% agar base was morphometrically analyzed. It was found that the areas of FRTL-5 colonies as well as their perimeters and maximum diameters increased, while according to their form factors the FRTL-5 colonies were regular in shape. After 10 days in a semi-solid medium, 83% of the FRTL-5 colonies had maximum diameters greater than 50 microm. It is obvious that after long culturing of FRTL-5 cells under the influence of the pituitary thyroid-stimulating hormone (TSH) these cells are not uniform anymore and that they grow in a semi-solid medium.
Collapse
Affiliation(s)
- Z Pajer
- Institute of Histology and Embryology, Medical Faculty, University of Ljubljana, Slovenia.
| | | | | |
Collapse
|
8
|
Zimmermann-Belsing T, Rasmussen AK, Feldt-Rasmussen U. Lack of thyroglobulin production supports the finding of the FRTL-5 cells with a nondiploid karyotype. Thyroid 1999; 9:519-20. [PMID: 10365685 DOI: 10.1089/thy.1999.9.519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|