1
|
Hasan MN, Wang H, Luo W, Clayton YD, Gu L, Du Y, Palle SK, Chen J, Li T. Gly-β-MCA is a potent anti-cholestasis agent against "human-like" hydrophobic bile acid-induced biliary injury in mice. J Lipid Res 2024; 65:100649. [PMID: 39306039 PMCID: PMC11526081 DOI: 10.1016/j.jlr.2024.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/15/2024] [Indexed: 10/18/2024] Open
Abstract
Cholestasis is a chronic liver disease with limited therapeutic options. Hydrophobic bile acid-induced hepatobiliary injury is a major pathological driver of cholestasis progression. This study investigates the anti-cholestasis efficacy and mechanisms of action of glycine-conjugated β-muricholic acid (Gly-β-MCA). We use female Cyp2c70 KO mice, a rodent cholestasis model that does not produce endogenous muricholic acid (MCA) and exhibits a "human-like" hydrophobic bile acid pool and female-dominant progressive hepatobiliary injury and portal fibrosis. The efficacy of Gly-β-MCA and ursodeoxycholic acid (UDCA), the first line drug for cholestasis, on cholangiopathy and portal fibrosis are compared. At a clinically relevant dose, Gly-β-MCA shows comparable efficacy as UDCA in reducing serum transaminase, portal inflammation and ductular reaction, and better efficacy than UDCA against portal fibrosis. Unlike endogenous bile acids, orally administered Gly-β-MCA is absorbed at low efficiency in the gut and enters the enterohepatic circulation mainly after microbiome-mediated deconjugation, which leads to taurine-conjugated MCA enrichment in bile that alters enterohepatic bile acid pool composition and reduces bile acid pool hydrophobicity. Gly-β-MCA also promotes fecal excretion of endogenous hydrophobic bile acids and decreases total bile acid pool size, while UDCA treatment does not alter total bile acid pool. Furthermore, Gly-β-MCA treatment leads to gut unconjugated MCA enrichment and reduces gut hydrophobic lithocholic acid (LCA) exposure. In contrast, UDCA treatment drives a marked increase of LCA flux through the large intestine. In conclusion, Gly-β-MCA is a potent anti-cholestasis agent with potential clinical application in treating human cholestasis.
Collapse
Affiliation(s)
- Mohammad Nazmul Hasan
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Huaiwen Wang
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wenyi Luo
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Yung Dai Clayton
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lijie Gu
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yanhong Du
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sirish K Palle
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jianglei Chen
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Bromke MA, Krzystek-Korpacka M. Bile Acid Signaling in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:9096. [PMID: 34445800 PMCID: PMC8396648 DOI: 10.3390/ijms22169096] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease is a chronic, idiopathic and complex condition, which most often manifests itself in the form of ulcerative colitis or Crohn's disease. Both forms are associated with dysregulation of the mucosal immune system, compromised intestinal epithelial barrier, and dysbiosis of the gut microbiome. It has been observed for a long time that bile acids are involved in inflammatory disorders, and recent studies show their significant physiological role, reaching far beyond being emulsifiers helping in digestion of lipids. Bile acids are also signaling molecules, which act, among other things, on lipid metabolism and immune responses, through several nuclear and membrane receptors in hepatocytes, enterocytes and cells of the immune system. Gut microbiota homeostasis also seems to be affected, directly and indirectly, by bile acid metabolism and signaling. This review summarizes recent advances in the field of bile acid signaling, studies of inflamed gut microbiome, and the therapeutic potential of bile acids in the context of inflammatory bowel disease.
Collapse
Affiliation(s)
- Mariusz A. Bromke
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland;
| | | |
Collapse
|
3
|
Keely SJ, Steer CJ, Lajczak-McGinley NK. Ursodeoxycholic acid: a promising therapeutic target for inflammatory bowel diseases? Am J Physiol Gastrointest Liver Physiol 2019; 317:G872-G881. [PMID: 31509435 DOI: 10.1152/ajpgi.00163.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The secondary bile acid ursodeoxycholic acid (UDCA) has long been known to have medicinal properties. As the therapeutically active component of bear bile, it has been used for centuries in traditional Chinese medicine to treat a range of conditions, while manufactured UDCA has been used for decades in Western medicine to treat cholestatic liver diseases. The beneficial qualities of UDCA are thought to be due to its well-established cytoprotective and anti-inflammatory actions. In addition to its established role in treating liver diseases, UDCA is now under investigation for numerous conditions associated with inflammation and apoptosis, including neurological, ocular, metabolic, and cardiovascular diseases. Here, we review the growing evidence base from in vitro and in vivo models to suggest that UDCA may also have a role to play in the therapy of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Stephen J Keely
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Clifford J Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota.,Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Natalia K Lajczak-McGinley
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
4
|
Ward JBJ, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 2017; 312:G550-G558. [PMID: 28360029 DOI: 10.1152/ajpgi.00256.2016] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023]
Abstract
Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions.NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation.
Collapse
Affiliation(s)
- Joseph B J Ward
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Natalia K Lajczak
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Orlaith B Kelly
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Aoife M O'Dwyer
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Ashwini K Giddam
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Joan Ní Gabhann
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Placido Franco
- Department. of Chemistry, University of Bologna, Bologna, Italy
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland; and
| | - Caroline A Jefferies
- Division of Rheumatology, Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California
| | - Simon Keely
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Aldo Roda
- Department. of Chemistry, University of Bologna, Bologna, Italy
| | - Stephen J Keely
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland;
| |
Collapse
|
5
|
Effect of increased bile acid synthesis or fecal excretion in irritable bowel syndrome-diarrhea. Am J Gastroenterol 2014; 109:1621-30. [PMID: 25070056 PMCID: PMC6994231 DOI: 10.1038/ajg.2014.215] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Approximately 25% of patients with irritable bowel syndrome-diarrhea (IBS-D) have increased total fecal bile acids (BA) and serum C4 (surrogate for BA synthesis). BA synthesis-related genes (KLB and FGFR4) are associated with colonic transit (CT) in IBS-D. Our aims were: (i) to compare phenotype and pathophysiology in IBS-D patients with increased or normal fecal excretion or synthesis of BA; and (ii) to explore association of variations in two candidate bile-acid synthesis genes (KLB and FGFR4) in these two subgroups of IBS-D. METHODS A total of 64 IBS-D patients underwent on one occasion: fasting serum C4 and FGF19, total fecal fat and BA excretion, CT, intestinal and colonic permeability, and candidate genotyping (rs17618244 (KLB), rs351855 (FGFR4)). Colonic sensation and tone were measured in 47 of the IBS-D patients. IBS-D subgroups were identified by fecal BA >2,337 mM per 48 h or by serum C4 >47.1 ng/ml. RESULTS IBS-D patients with fecal BA >2,337 mM per 48 h (19/54) had significantly greater body mass index, fecal fat, percent chenodeoxycholic acid (CDCA) in feces, and intestinal permeability, and borderline increased CT (P=0.13). Those IBS-D patients with serum C4 >47.1 ng/ml (13/54) had increased total fecal BA excretion and borderline increased colonic permeability. Variants in genes involved in feedback regulation of BA synthesis (KLB, P=0.06 and FGFR4, P=0.09) were potentially associated with the subgroup with elevated serum C4. CONCLUSIONS IBS-D with increased BA excretion or synthesis is associated with significant pathophysiological changes relative to patients with normal BA profile. BA diarrhea is identified more effectively with total fecal BA than with serum C4.
Collapse
|
6
|
Kelly OB, Mroz MS, Ward JBJ, Colliva C, Scharl M, Pellicciari R, Gilmer JF, Fallon PG, Hofmann AF, Roda A, Murray FE, Keely SJ. Ursodeoxycholic acid attenuates colonic epithelial secretory function. J Physiol 2013; 591:2307-18. [PMID: 23507881 DOI: 10.1113/jphysiol.2013.252544] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dihydroxy bile acids, such as chenodeoxycholic acid (CDCA), are well known to promote colonic fluid and electrolyte secretion, thereby causing diarrhoea associated with bile acid malabsorption. However, CDCA is rapidly metabolised by colonic bacteria to ursodeoxycholic acid (UDCA), the effects of which on epithelial transport are poorly characterised. Here, we investigated the role of UDCA in the regulation of colonic epithelial secretion. Cl(-) secretion was measured across voltage-clamped monolayers of T84 cells and muscle-stripped sections of mouse or human colon. Cell surface biotinylation was used to assess abundance/surface expression of transport proteins. Acute (15 min) treatment of T84 cells with bilateral UDCA attenuated Cl(-) secretory responses to the Ca(2+) and cAMP-dependent secretagogues carbachol (CCh) and forskolin (FSK) to 14.0 ± 3.8 and 40.2 ± 7.4% of controls, respectively (n = 18, P < 0.001). Investigation of the molecular targets involved revealed that UDCA acts by inhibiting Na(+)/K(+)-ATPase activity and basolateral K(+) channel currents, without altering their cell surface expression. In contrast, intraperitoneal administration of UDCA (25 mg kg(-1)) to mice enhanced agonist-induced colonic secretory responses, an effect we hypothesised to be due to bacterial metabolism of UDCA to lithocholic acid (LCA). Accordingly, LCA (50-200 μm) enhanced agonist-induced secretory responses in vitro and a metabolically stable UDCA analogue, 6α-methyl-UDCA, exerted anti-secretory actions in vitro and in vivo. In conclusion, UDCA exerts direct anti-secretory actions on colonic epithelial cells and metabolically stable derivatives of the bile acid may offer a new approach for treating intestinal diseases associated with diarrhoea.
Collapse
Affiliation(s)
- Orlaith B Kelly
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Humbert L, Maubert MA, Wolf C, Duboc H, Mahé M, Farabos D, Seksik P, Mallet JM, Trugnan G, Masliah J, Rainteau D. Bile acid profiling in human biological samples: comparison of extraction procedures and application to normal and cholestatic patients. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 899:135-45. [PMID: 22664055 DOI: 10.1016/j.jchromb.2012.05.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/30/2012] [Accepted: 05/09/2012] [Indexed: 02/08/2023]
Abstract
The role of bile acids in cell metabolism, membrane biology and cell signaling is increasingly recognized, thus making necessary a robust and versatile technique to extract, separate and quantify a large concentration range of these numerous molecular species. HPLC-MS/MS analysis provides the highest sensitivity to detect and identify bile acids. However, due to their large chemical diversity, extraction methods are critical and quite difficult to optimize, as shown by a survey of the literature. This paper compares the performances of four bile acid extraction protocols applied to either liquid (serum, urine, bile) or solid (stool) samples. Acetonitrile was found to be the best solvent for deproteinizing liquid samples and NaOH the best one for stool extraction. These optimized extraction procedures allowed us to quantitate as much as 27 distinct bile acids including sulfated species in a unique 30 min HPLC run, including both hydrophilic and hydrophobic species with a high efficiency. Tandem MS provided a non ambiguous identification of each metabolite with a good sensitivity (LOQ below 20 nmol/l except for THDCA and TLCA). After validation, these methods, successfully applied to a group of 39 control patients, detected 14 different species in serum in the range of 30-800 nmol/l, 11 species in urine in the range of 20-200 nmol/l and 25 species in stool in the range of 0.4-2000 nmol/g. The clinical interest of this method has been then validated on cholestatic patients. The proposed protocols seem suitable for profiling bile acids in routine analysis.
Collapse
Affiliation(s)
- Lydie Humbert
- ERL INSERM U 1057/UMR 7203, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Fang C, Filipp FV, Smith JW. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα. J Lipid Res 2012; 53:664-73. [PMID: 22223860 DOI: 10.1194/jlr.m021733] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA.
Collapse
Affiliation(s)
- Changming Fang
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
9
|
Pearson JR, Gill CIR, Rowland IR. Diet, fecal water, and colon cancer--development of a biomarker. Nutr Rev 2009; 67:509-26. [PMID: 19703259 DOI: 10.1111/j.1753-4887.2009.00224.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer incidence worldwide. Lifestyle factors, especially dietary intake, affect the risk of CRC development. Suitable risk biomarkers are required in order to assess the effect that specific dietary components have on CRC risk. The relationship between dietary intake and indicators of fecal water activity has been assessed using cell and animal models as well as human studies. This review summarizes the literature on fecal water and dietary components with a view to establishing further the potential role of fecal water as a source of CRC risk biomarkers. The literature indicates that fecal water activity markers are affected by specific dietary components linked with CRC risk: red meat, saturated fats, bile acids, and fatty acids are associated with an increase in fecal water toxicity, while the converse appears to be true for calcium, probiotics, and prebiotics. However, it must be acknowledged that the study of fecal water is still in its infancy and a number of issues need to be addressed before its usefulness can be truly gauged.
Collapse
Affiliation(s)
- Jennifer R Pearson
- Northern Ireland Centre for Food and Health (NICHE), University of Ulster-Coleraine, Cromore Road, Coleraine, Northern Ireland, UK.
| | | | | |
Collapse
|
10
|
Alnouti Y. Bile Acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol Sci 2009; 108:225-46. [PMID: 19131563 DOI: 10.1093/toxsci/kfn268] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sulfotransferase-2A1 catalyzes the formation of bile acid-sulfates (BA-sulfates). Sulfation of BAs increases their solubility, decreases their intestinal absorption, and enhances their fecal and urinary excretion. BA-sulfates are also less toxic than their unsulfated counterparts. Therefore, sulfation is an important detoxification pathway of BAs. Major species differences in BA sulfation exist. In humans, only a small proportion of BAs in bile and serum are sulfated, whereas more than 70% of BAs in urine are sulfated, indicating their efficient elimination in urine. The formation of BA-sulfates increases during cholestatic diseases. Therefore, sulfation may play an important role in maintaining BA homeostasis under pathologic conditions. Farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor are potential nuclear receptors that may be involved in the regulation of BA sulfation. This review highlights current knowledge about the enzymes and transporters involved in the formation and elimination of BA-sulfates, the effect of sulfation on the pharmacologic and toxicologic properties of BAs, the role of BA sulfation in cholestatic diseases, and the regulation of BA sulfation.
Collapse
Affiliation(s)
- Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| |
Collapse
|
11
|
Ditscheid B, Keller S, Jahreis G. Faecal steroid excretion in humans is affected by calcium supplementation and shows gender-specific differences. Eur J Nutr 2008; 48:22-30. [PMID: 19009227 DOI: 10.1007/s00394-008-0755-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 10/21/2008] [Indexed: 02/03/2023]
Abstract
BACKGROUND Previous human studies on the effect of dietary calcium supplementation on faecal excretion of bile acids (BA) and faecal water concentrations of animal neutral sterols (NSt, cholesterol and its metabolites) lack detailed information about single BA and NSt. AIM OF THE STUDY We investigated whether single BA and NSt in faeces and especially in faecal water are affected by calcium supplementation and whether this affects genotoxicity of faecal water. In addition, we differentiated between men and women with regard to the concentrations of BA and NSt in faecal water. METHODS Thirty-one healthy volunteers consumed a calcium supplemented bread (1.0 g/day) and a placebo bread, respectively, for 4 weeks in a double-blind, randomised cross-over trial. Faeces were collected quantitatively for 5 days in the last week of each period. NSt and BA were analysed by GC-MS. RESULTS Due to calcium supplementation faecal concentrations of lithocholic acid (LCA, 14%, P = 0.008), deoxycholic acid (DCA, 19%, P < 0.001) and 12 keto-deoxycholic acid (12 keto DCA, 29%, P = 0.049) significantly increased whereas BA concentrations in faecal water were only marginally affected. In contrast, concentrations of cholesterol (30%, P = 0.020) and its metabolites coprostanol (43%, P = 0.004), coprostanone (36%, P = 0.003), cholestanol (44%, P = 0.001) and cholestenone (32%, P = 0.038) in faecal water significantly decreased. Total NSt concentration in faecal water was found to be significantly higher in women compared to men (P = 0.018). The genotoxicity of faecal water was neither affected by calcium supplementation nor were there gender-specific differences. CONCLUSIONS Dietary calcium supplementation diversely affects BA and NSt in faeces and in faecal water but does not influence the genotoxicity of faecal water in healthy adults.
Collapse
Affiliation(s)
- Bianka Ditscheid
- Department of Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University, Dornburger Strasse 24, 07743, Jena, Germany
| | | | | |
Collapse
|
12
|
Khare S, Mustafi R, Cerda S, Yuan W, Jagadeeswaran S, Dougherty U, Tretiakova M, Samarel A, Cohen G, Wang J, Moore C, Wali R, Holgren C, Joseph L, Fichera A, Li YC, Bissonnette M. Ursodeoxycholic acid suppresses Cox-2 expression in colon cancer: roles of Ras, p38, and CCAAT/enhancer-binding protein. Nutr Cancer 2008; 60:389-400. [PMID: 18444174 DOI: 10.1080/01635580701883003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the azoxymethane (AOM) model of experimental rodent colon cancer, cholic acid and its colonic metabolite deoxycholic acid (DCA) strongly promote tumorigenesis. In contrast, we showed that ursodeoxycholic acid (UDCA), a low abundance bile acid, inhibited AOM tumorigenesis. Dietary UDCA also blocked the development of tumors with activated Ras and suppressed cyclooxygenase-2 (Cox-2) upregulation in AOM tumors. In this study, we compared the effect of dietary supplementation with tumor-promoting cholic acid to chemopreventive UDCA on Cox-2 expression in AOM tumors. Cholic acid enhanced Cox-2 upregulation in AOM tumors, whereas UDCA inhibited this increase and concomitantly decreased CCAAT/enhancer binding protein beta (C/EBPbeta), a transcriptional regulator of Cox-2. In HCA-7 colon cancer cells, DCA activated Ras and increased C/EBPbeta and Cox-2 by a mechanism requiring the mitogen-activated protein kinase p38. UDCA inhibited DCA-induced p38 activation and decreased C/EBPbeta and Cox-2 upregulation. Using transient transfections, UDCA inhibited Cox-2 promoter and C/EBP reporter activation by DCA. Transfection with dominant-negative (17)N-Ras abolished DCA-induced p38 activation and C/EBPbeta and Cox-2 upregulation. Taken together, these studies have identified a transcriptional pathway regulating Cox-2 expression involving Ras, p38, and C/EBPbeta that is inhibited by UDCA. These signal transducers are novel targets of UDCA's chemopreventive actions.
Collapse
Affiliation(s)
- Sharad Khare
- Department of Medicine, Loyola University Medical Center, Maywood, Illinois 60153, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lepercq P, Hermier D, David O, Michelin R, Gibard C, Beguet F, Relano P, Cayuela C, Juste C. Increasing ursodeoxycholic acid in the enterohepatic circulation of pigs through the administration of living bacteria. Br J Nutr 2007; 93:457-69. [PMID: 15946407 DOI: 10.1079/bjn20041386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the feasibility of increasing ursodeoxycholic acid (UDCA) in the enterohepatic circulation of pigs by administering living bacteria capable of epimerising endogenous amidated chenodeoxycholic acid (CDCA) to UDCA. We first demonstrated that combining Bifidobacterium animalis DN-173 010, as a bile salt-hydrolysing bacterium, and Clostridium absonum ATCC 27555, as a CDCA to UDCA epimerising bacterium, led to the efficient epimerisation of glyco- and tauro-CDCA in vitro, with respective UDCA yields of 55·8 (se 2·8) and 36·6 (se 1·5)%. This strain combination was then administered to hypercholesterolaemic pigs over a 3-week period, as two daily preprandial doses of either viable (six experimental pigs) or heat-inactivated bacteria (six controls). The main effects of treatment were on unconjugated bile acids (P=0·035) and UDCA (P<0·0001) absorbed into the portal vein, which increased 1·6–1·7- and 3·5–7·5-fold, respectively, under administration of living compared with inactivated bacteria. In bile, UDCA did not increase significantly, but the increase in biliary lithocholic acid with time in the controls was not observed in the experimental pigs (P=0·007), and the same trend was observed in faeces. All other variables (biliary lipid equilibrium, plasma lipid levels and partition of cholesterol between the different lipoprotein classes) remained unaffected by treatment throughout the duration of the experiment. In conclusion, it is feasible to increase the bioavailability of UDCA to the intestine and the liver by administering active bacteria. This may represent an interesting new probiotic activity, provided that in future it could be expressed by a safe food micro-organism.
Collapse
Affiliation(s)
- Pascale Lepercq
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Portincasa P, Moschetta A, Petruzzelli M, Vacca M, Krawczyk M, Minerva F, Palmieri VO, Palasciano G. The "hemolysis model" for the study of cyto-toxicity and cyto-protection by bile salts and phospholipids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 578:93-9. [PMID: 16927676 DOI: 10.1007/0-387-29540-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Piero Portincasa
- Clinica Medica A. Murri, Department of Internal & Public Medicine, University Medical School, Piazza G. Cesare 11, 70124 Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lepercq P, Gérard P, Béguet F, Raibaud P, Grill JP, Relano P, Cayuela C, Juste C. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid byClostridium baratiiisolated from human feces. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09568.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
16
|
Ochsenkühn T, Marsteller I, Hay U, Diebold J, Paumgartner G, Göke B, Sackmann M. Does ursodeoxycholic acid change the proliferation of the colorectal mucosa? A randomized, placebo-controlled study. Digestion 2004; 68:209-16. [PMID: 14707397 DOI: 10.1159/000075927] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Accepted: 11/20/2003] [Indexed: 02/04/2023]
Abstract
BACKGROUND In animal models ursodeoxycholic acid (UDCA) showed a chemoprotective effect against colon cancer. To explain this, a reduced proliferation of the colorectal mucosal proliferation was suggested. We, therefore, examined the influence of UDCA on the proliferation of normal colorectal mucosa in humans. METHODS Following endoscopic polypectomy, 20 patients with colorectal adenomas were randomized to receive either UDCA (750 mg/day, n = 10, group A) or placebo (n = 10, group B) for 6 months in a double-blinded way. Colorectal biopsies were sampled before and at the end of the medication by total colonoscopy. Colorectal mucosal proliferation was measured by FACScan analysis of propidium iodine labeling. Serum was sampled, and serum bile acids were analyzed by gas chromatography. RESULTS The proliferation rates at the end of the study were similar in both groups (median 15.4%; range 12.0-20.9 in group A; median 16.0%, 14.0-20.2 in group B, p = 0.41). Serum lithocholic acid levels at the end of the study were significantly higher in group A (1.3 micromol/l, 0.9-1.8) than in group B (0.7 micromol/l, 0-1.7, p < 0.02), whereas serum deoxycholic acid levels were similar in both groups. CONCLUSIONS In this study, UDCA treatment for 6 months does not seem to induce changes in the proliferative behavior of the colorectal mucosa in patients with adenomas. It seems likely that a putative chemopreventive effect of UDCA in humans is not exerted by a reduction of the colorectal proliferation.
Collapse
|
17
|
Results of a Phase I Multiple-Dose Clinical Study of Ursodeoxycholic Acid. Cancer Epidemiol Biomarkers Prev 2004. [DOI: 10.1158/1055-9965.861.13.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background: The hydrophilic bile acid, ursodeoxycholic acid (UDCA), may indirectly protect against colon carcinogenesis by decreasing the overall proportion of the more hydrophobic bile acids, such as deoxycholic acid (DCA), in aqueous phase stool. In the AOM rat model, treatment with UDCA resulted in a significant decrease in adenoma formation and colorectal cancer. It was hypothesized that there is a dose-response relationship between treatment with the more hydrophilic bile acid, UDCA, and a reduction in the proportion of the more hydrophobic bile acid, DCA, in the aqueous stool phase, suggesting the potential of UDCA as a chemopreventive agent. Methods: Eighteen participants were randomized to 300, 600, or 900 mg/day UDCA for 21 days in this multiple-dose, double-blinded study. Seventy-two-hour stool samples were collected pretreatment and on days 18–20 of UDCA treatment for bile acid measurements. Pharmacokinetics were performed and blood bile acids were measured at days 1 and 21 of UDCA treatment. Results: There were no serious adverse events associated with UDCA treatment. There was a dose-response increase in the posttreatment to baseline ratio of UDCA to DCA from the 300 mg/day to the 600 mg/day group, but not between the 600 and the 900 mg/day groups, in both aqueous and solid phase stool. This posttreatment increase was statistically significant in aqueous phase stool for the 300 and 600 mg/day treatment groups (P = 0.038 and P = 0.014, respectively), but was only marginally significant in the 900 mg/day treatment group (P = 0.057). Following the first dose administration, a dose-dependent increase in plasma ursodeoxycholic concentrations was observed in fasting subjects; however, when these levels were measured postprandially following 3 weeks of treatment, the areas under the plasma concentration-time profile (AUC) were not statistically different and remained relatively unchanged over time. Conclusions: UDCA treatment did not decrease the quantity of DCA in fecal water or solids; however, it did decrease the proportion of DCA in fecal water and solids in relation to UDCA. Thus, 3 weeks of UDCA treatment resulted in an overall increase in hydrophilicity of bile acids in the aqueous phase stool, with a peak effect observed with a daily dose of 600 mg/day. Much larger studies are needed to determine the effect of ursodeoxycholic administration on deoxycholic concentration, overall hydrophilicity of stool bile acids, and the long-term effects on intermediate biomarkers of cellular damage.
Collapse
|