1
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
2
|
Sweilam SH, Ali DE, Atwa AM, Elgindy AM, Mustafa AM, Esmail MM, Alkabbani MA, Senna MM, El-Shiekh RA. A First Metabolite Analysis of Norfolk Island Pine Resin and Its Hepatoprotective Potential to Alleviate Methotrexate (MTX)-Induced Hepatic Injury. Pharmaceuticals (Basel) 2024; 17:970. [PMID: 39065818 PMCID: PMC11279851 DOI: 10.3390/ph17070970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Drug-induced liver injury (DILI) represents a significant clinical challenge characterized by hepatic dysfunction following exposure to diverse medications. Methotrexate (MTX) is a cornerstone in treating various cancers and autoimmune disorders. However, the clinical utility of MTX is overshadowed by its ability to induce hepatotoxicity. The current study aims to elucidate the hepatoprotective effect of the alcoholic extract of Egyptian Araucaria heterophylla resin (AHR) on MTX-induced liver injury in rats. AHR (100 and 200 mg/kg) significantly decreased hepatic markers (AST, ALT, and ALP), accompanied by an elevation in the antioxidant's markers (SOD, HO-1, and NQO1). AHR extract also significantly inhibited the TGF-β/NF-κB signaling pathway as well as the downstream cascade (IL-6, JAK, STAT-3, and cyclin D). The extract significantly reduced the expression of VEGF and p38 with an elevation in the BCL2 levels, in addition to a significant decrease in the IL-1β and TNF-α levels, with a prominent effect at a high dose (200 mg/kg). Using LC-HRMS/MS analysis, a total of 43 metabolites were tentatively identified, and diterpenes were the major class. This study presents AHR as a promising hepatoprotective agent through inhibition of the TGF-β/NF-κB and JAK/STAT3 pathways, besides its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Dalia E. Ali
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University, Alexandria 21648, Egypt;
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Ali M. Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Aya M. Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Manar M. Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Mahmoud Abdelrahman Alkabbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt; (A.M.A.); (A.M.E.); (A.M.M.); (M.M.E.); (M.A.A.); (M.M.S.)
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
3
|
Monteiro CEDS, de Cerqueira Fiorio B, Silva FGO, de Fathima Felipe de Souza M, Franco ÁX, Lima MADS, Sales TMAL, Mendes TS, Havt A, Barbosa ALR, Resende ÂC, de Moura RS, de Souza MHLP, Soares PMG. A polyphenol-rich açaí seed extract protects against 5-fluorouracil-induced intestinal mucositis in mice through the TLR-4/MyD88/PI3K/mTOR/NF-κBp65 signaling pathway. Nutr Res 2024; 125:1-15. [PMID: 38428258 DOI: 10.1016/j.nutres.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/03/2024]
Abstract
Açaí seed extract (ASE) is obtained from Euterpe oleracea Mart. (açaí) plant (Amazon region) has high nutritional and functional value. ASE is rich in polyphenolic compounds, mainly proanthocyanidins. Proanthocyanidins can modulate the immune system and oxidative stress by inhibiting the toll-like receptor-4 (TLR-4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) pathway. A great deal of evidence suggests that inflammatory cytokines and oxidative stress contribute to the pathogenesis of intestinal mucositis, and these events can lead to intestinal dysmotility. We hypothesized that ASE acts as an anti-inflammatory and antioxidant compound in intestinal mucositis induced by 5-fluorouracil (5-FU) through modulation of the TLR-4/MyD88/phosphatidylinositol-3-kinase α/mechanistic target of rapamycin/NF-κBp65 pathway. The animals were divided into linear 5-FU (450 mg/kg) and 5-FU + ASE (10, 30, and 100 mg/kg) groups. The weight loss of the animals was evaluated daily. Samples from duodenum, jejunum, and ileum were obtained for histopathological, biochemical, and functional analyses. ASE reduced weight loss, inflammatory parameters (interleukin-1β; tumor necrosis factor-α; myeloperoxidase activity) and the gene expression of mediators involved in the TLR-2/MyD88/NF-κB pathway. ASE prevented histopathological changes with beneficial effects on gastrointestinal transit delay, gastric emptying, and intestinal absorption/permeability. In conclusion, ASE protects the integrity of the intestinal epithelial barrier by inhibiting the TLR/MyD88/PI3K/mechanistic target of rapamycin/NF-κBp65 pathway.
Collapse
Affiliation(s)
- Carlos Eduardo da Silva Monteiro
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Bárbara de Cerqueira Fiorio
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisca Géssica Oliveira Silva
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria de Fathima Felipe de Souza
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Álvaro Xavier Franco
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Marcos Aurélio de Sousa Lima
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thiago Meneses Araujo Leite Sales
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Tiago Santos Mendes
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alexandre Havt
- Laboratory of Molecular Toxinology, LTM, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Luiz Reis Barbosa
- LAFFEX- Laboratory of Experimental Physiopharmacology, Parnaiba Delta Federal University (UFDPAR), Parnaíba, PI, Brazil
| | - Ângela Castro Resende
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pedro Marcos Gomes Soares
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
4
|
Tashkandi HM, Althagafy HS, Jaber FA, Alamri T, Al-Abbas NS, Shaer NA, Harakeh S, Hassanein EHM. Vinpocetine mitigates methotrexate-induced duodenal intoxication by modulating NF-κB, JAK1/STAT-3, and RIPK1/RIPK3/MLKL signals. Immunopharmacol Immunotoxicol 2024; 46:11-19. [PMID: 37493389 DOI: 10.1080/08923973.2023.2239491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats. MATERIALS AND METHODS VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg. RESULTS VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO2-, TNF-α, and IL-1β levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins. CONCLUSION Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.
Collapse
Affiliation(s)
- Hanaa M Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nouf S Al-Abbas
- Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nehad A Shaer
- Department of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
5
|
Rajizadeh M, Hosseini MH, Bahrami M, Hosseini NS, Rostamabadi F, Bagheri F, Khoramipour K, Najafipour H, Bejeshk M. Comparison of preventive and therapeutic effects of continuous exercise on acute lung injury induced with methotrexate. Exp Physiol 2023; 108:1215-1227. [PMID: 37497815 PMCID: PMC10988479 DOI: 10.1113/ep091162] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Methotrexate (Mtx) is used to treat various diseases, including cancer, arthritis and other rheumatic diseases. However, it induces oxidative stress and pulmonary inflammation by stimulating production of reactive oxygen species and cytokines. Considering the positive effects of physical activity, our goal was to investigate the preventive and therapeutic role of continuous training (CT) on Mtx-induced lung injury in rats. The rats were divided into five groups of 14 animals: a control group (C); a continuous exercise training group (CT; healthy rats that experienced CT); an acute lung injury with Mtx group (ALI); a pretreatment group with CT (the rats experienced CT before ALI induction), and a post-treatment group with CT (the rats experienced CT after ALI induction). One dose of 20 mg/kg Mtx intraperitoneal was administered in the Mtx and training groups. Forty-eight hours after the last exercise session all rats were sacrificed. According to our results, the levels of tumour necrosis factor-α (TNF-α), malondialdehyde (MDA), myeloperoxidase (MPO), GATA binding protein 3 (GATA3) and caspase-3 in the ALI group significantly increased compared to the control group, and the levels of superoxide dismutase (SOD), glutathione peroxidase (GPX), total antioxidant capacity (TAC), interleukin-10 (IL-10), forkhead box protein 3 (FOXP3), and T-bet decreased. In contrast, compared to the acute lung injury group, pretreatment and treatment with CT reduced TNF-α, MDA, MPO, GATA3 and caspase-3 and increased SOD, GPX, TAC, IL-10, FOXP3 and T-bet levels. The effects of CT pretreatment were more significant than the effects of CT post-treatment. Continuous exercise training effectively reduced oxidative stress and inflammatory cytokines and ameliorated Mtx-induced injury, and the effects of CT pretreatment were more significant than the effects of CT post-treatment. NEW FINDINGS: What is the central question of this study? Considering the high prevalence of lung injury in society, does exercise as a non-pharmacological intervention have ameliorating effects on lung injury? What is the main finding and its importance? Exercise can have healing effects on the lung after pulmonary injury through reducing inflammation, oxidative stress and apoptosis. Considering the lower side effects of exercise compared to drug treatments, the results of this study may be useful in the future.
Collapse
Affiliation(s)
- Mohammad‐Amin Rajizadeh
- Department of Physiology and PharmacologyKerman University of Medical SciencesKermanIran
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
| | - Mahdiyeh Haj Hosseini
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
- Faculty of Physical Education and Sports Sciences, Department of Exercise Physiology, Shahid Bahonar University of KermanKermanIran
| | - Mina Bahrami
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
- Faculty of Physical Education and Sports Sciences, Department of Exercise Physiology, Shahid Bahonar University of KermanKermanIran
| | - Najmeh Sadat Hosseini
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
- Faculty of Physical Education and Sports Sciences, Department of Exercise Physiology, Shahid Bahonar University of KermanKermanIran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research CenterBam University of Medical Sciences, BamKermanIran
- Faculty of MedicineDepartment of Medical ImmunologyRafsanjan University of Medical SciencesRafsanjanIran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Department of PathologyAfzalipour School of MedicineKermanIran
- Legal Medicine Research CenterLegal Medicine OrganizationKermanIran
| | - Kayvan Khoramipour
- Department of Physiology and PharmacologyKerman University of Medical SciencesKermanIran
| | - Hamid Najafipour
- Department of Physiology and PharmacologyKerman University of Medical SciencesKermanIran
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
| | - Mohammad‐Abbas Bejeshk
- Department of Physiology and PharmacologyKerman University of Medical SciencesKermanIran
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
6
|
Hassanein EHM, Ali FEM, Sayed MM, Mahmoud AR, Jaber FA, Kotob MH, Abd-Elhamid TH. Umbelliferone potentiates intestinal protective effect of Lactobacillus Acidophilus against methotrexate-induced intestinal injury: Biochemical and histological study. Tissue Cell 2023; 82:102103. [PMID: 37178526 DOI: 10.1016/j.tice.2023.102103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Intestinal injury is a common adverse effect of methotrexate (MTX) therapy, limiting its clinical use. Despite oxidative stress and inflammation being the most embedded mechanism of injury, pharmacological agents that exhibit antioxidant and anti-inflammatory impacts could prevent such toxicities. This study aimed to assess the enteroprotective effect of lactobacillus acidophilus (LB) and/or umbelliferone (UMB) against MTX-induced intestinal injury. Histologically, pretreatment with LB, UMB, or their combinations preserve the intestinal histological structure and mucin content with superior effect in combination therapy. In addition, oral pretreatment with UMB, LB, or their combinations significantly restored oxidant/antioxidant status, as evidenced by the upregulation of Nrf2, SOD3, HO-1, GSH, and GST levels concurrent with a decline in MDA contents. Besides, they suppressed the inflammatory burden by inhibiting STAT3, MPO, TLR4, NF-κB, TNF-α, and IL-6 levels. Moreover, LB, UMB, or their combinations significantly upregulated Wnt and β-catenin expression. Notably, pretreatment with the combination therapy is superior to monotherapy in protecting rats' small intestines from MTX-induced enteritis. In conclusion, combined pretreatment with LB and UMB could be a novel therapeutic regimen for conditions of intestinal injury induced by MTX via restoring oxidant/antioxidant balance and suppressing inflammatory burden.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Manal M Sayed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Mohamed H Kotob
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba 77110, Jordan
| |
Collapse
|
7
|
Matouk AI, Awad EM, El-Tahawy NFG, El-Sheikh AAK, Anter A. Dihydromyricetin Modulates Nrf2 and NF-κB Crosstalk to Alleviate Methotrexate-Induced Lung Toxicity. Pharmaceuticals (Basel) 2023; 16:ph16040481. [PMID: 37111238 PMCID: PMC10145727 DOI: 10.3390/ph16040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Methotrexate (MTX) is an effective anticancer, anti-inflammatory, and immunomodulatory agent. However, it induces a serious pneumonitis that leads to irreversible fibrotic lung damage. This study addresses the protective role of the natural flavonoid dihydromyricetin (DHM) against MTX-induced pneumonitis via modulation of Nrf2/NF-κB signaling crosstalk. METHODS Male Wistar rats were divided into 4 groups: control, which received the vehicle; MTX, which received a single MTX (40 mg/kg, i.p) at day 9 of the experiment; (MTX + DHM), which received oral DHM (300 mg/kg) for 14 days and methotrexate (40 mg/kg, i.p) on the 9th day; and DHM, which received DHM (300 mg/kg, p.o) for 14 days. RESULTS Lung histopathological examination and scoring showed a decline in MTX-induced alveolar epithelial damage and decreased inflammatory cell infiltration by DHM treatment. Further, DHM significantly alleviated the oxidative stress by decreasing MDA while increasing GSH and SOD antioxidant levels. Additionally, DHM suppressed the pulmonary inflammation and fibrosis through decreasing levels of NF-κB, IL-1β, and TGF-β1 while promoting the expression of Nrf2, a positive regulator of antioxidant genes, and its downstream modulator, HO-1. CONCLUSION This study identified DHM as a promising therapeutic target against MTX-induced pneumonitis via activation of Nrf2 antioxidant signaling while suppressing the NF-κB mediated inflammatory pathways.
Collapse
Affiliation(s)
- Asmaa I Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| | - Eman M Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| | - Nashwa F G El-Tahawy
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aliaa Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
8
|
Hassanein EHM, Althagafy HS, Atwa AM, Kozman MR, Kotb El-Sayed MI, Soubh AA. Taurine attenuated methotrexate-induced intestinal injury by regulating NF-κB/iNOS and Keap1/Nrf2/HO-1 signals. Life Sci 2022; 311:121180. [PMID: 36370869 DOI: 10.1016/j.lfs.2022.121180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Methotrexate (MTX) is a well-known and widely used cytotoxic chemotherapeutic agent. However, intestinal mucosa damage is a serious adverse effect of MTX. Taurine (TUR) is a sulfur-containing free β-amino acid with antioxidant and therapeutic value against several diseases. The current study aimed to determine the protective effect of TUR against MTX-induced intestinal injury. Rats were allocated into four groups. The first group received vehicles only. The second group received TUR at a dose of 250 mg/kg i.p. For induction of intestinal injury, the rats in the third group were given MTX once at a dose of 20 mg/kg, i.p. The fourth group received TUR 7 days before and 7 days after MTX, as previously described. TUR significantly attenuated the cytokine release by suppressing NF-κB and iNOS expressions. Moreover, cotreatment with TUR attenuated the increased MDA level while it enhanced the antioxidant GSH and SOD levels mediated by effective downregulation of Keap1 expression, while the expression of Nrf2, HO-1, and cytoglobin were up-regulated. Additionally, TUR mitigated the apoptosis and proliferation indices by decreasing the elevated levels of intestinal PCNA and caspase-3. Finally, TUR potently increased the cytotoxic activity of MTX toward Caco-2, MCF-7, and A549 cancer cells. In conclusion, TUR was a promising agent for relieving MTX-mediated intestinal injury via various antioxidant, anti-inflammatory, and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Magy R Kozman
- Department of Clinical Pharmacology, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt
| | - Mohamed I Kotb El-Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Cairo, Egypt
| | - Ayman A Soubh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12566, Egypt
| |
Collapse
|
9
|
The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022; 10:microorganisms10102053. [PMID: 36296329 PMCID: PMC9608860 DOI: 10.3390/microorganisms10102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are multiple concerns associated with methotrexate (MTX), widely recognized for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover, we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by modulation of gut microbiota.
Collapse
|
10
|
Zhang H, Wang J, Lang W, Liu H, Zhang Z, Wu T, Li H, Bai L, Shi Q. Albiflorin ameliorates inflammation and oxidative stress by regulating the NF-κB/NLRP3 pathway in Methotrexate-induced enteritis. Int Immunopharmacol 2022; 109:108824. [PMID: 35561481 DOI: 10.1016/j.intimp.2022.108824] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022]
Abstract
Methotrexate (MTX) treats various diseases but also damages intestinal barrier and leads to enteritis. Albiflorin (ALB) has a variety of pharmacological effects, including antioxidant, anti-inflammation and anti-apoptosis. In the present study, we evaluated the therapeutic effect of ALB on MTX-induced enteritis and investigated the possible mechanisms involved. Male SD rats were intraperitoneally injected with 7 mg/kg MTX for three consecutive days to establish the enteritis model. ALB (20 or 40 mg/kg/day) was intragastrically administrated since two days prior MTX treatment and lasted for six days. We found that ALB treatment increased body weight and intestinal weight of rats with MTX injection. The disease activity index (DAI) score was also decreased after ALB administration. In histological examination, ALB treatment attenuated inflammatory cells infiltration and promoted survival of goblet cells. In detection of inflammatory-associated factors, ALB treatment decreased CD68+ cells infiltration, inhibited myeloperoxidase activity, and suppressed intercellular cell adhesion molecule-1 and cyclooxygenase-2 expression. Additionally, ALB reduced malondialdehyde, glutathione levels, inhibited superoxide dismutase activity and suppressed reactive oxygen species production. Moreover, ALB treatment effectively inhibited NLRP3, as well as caspase 1 p20 and interleukin (IL)-1β and 18 expression. Finally, nuclear factor-κB (NF-κB) p65 phosphorylation and nuclear translocation were also demonstrated to be blocked upon ALB treatment. In conclusion, our findings indicated that ALB alleviated MTX-induced enteritis via inhibiting the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Jing Wang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Wuying Lang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, People's Republic of China
| | - Hongli Liu
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Zhiqiang Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Tonglei Wu
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Hongqiang Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Liya Bai
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Qiumei Shi
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China.
| |
Collapse
|
11
|
The Intestinal Redox System and Its Significance in Chemotherapy-Induced Intestinal Mucositis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7255497. [PMID: 35585883 PMCID: PMC9110227 DOI: 10.1155/2022/7255497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a significant dose-limiting adverse reaction brought on by the cancer treatment. Multiple studies reported that reactive oxygen species (ROS) is rapidly produced during the initial stages of chemotherapy, when the drugs elicit direct damage to intestinal mucosal cells, which, in turn, results in necrosis, mitochondrial dysfunction, and ROS production. However, the mechanism behind the intestinal redox system-based induction of intestinal mucosal injury and necrosis of CIM is still undetermined. In this article, we summarized relevant information regarding the intestinal redox system, including the composition and regulation of redox enzymes, ROS generation, and its regulation in the intestine. We innovatively proposed the intestinal redox “Tai Chi” theory and revealed its significance in the pathogenesis of CIM. We also conducted an extensive review of the English language-based literatures involving oxidative stress (OS) and its involvement in the pathological mechanisms of CIM. From the date of inception till July 31, 2021, 51 related articles were selected. Based on our analysis of these articles, only five chemotherapeutic drugs, namely, MTX, 5-FU, cisplatin, CPT-11, and oxaliplatin were shown to trigger the ROS-based pathological mechanisms of CIM. We also discussed the redox system-mediated modulation of CIM pathogenesis via elaboration of the relationship between chemotherapeutic drugs and the redox system. It is our belief that this overview of the intestinal redox system and its role in CIM pathogenesis will greatly enhance research direction and improve CIM management in the future.
Collapse
|
12
|
Sayed AM, Abdel-Fattah MM, Arab HH, Mohamed WR, Hassanein EHM. Targeting inflammation and redox aberrations by perindopril attenuates methotrexate-induced intestinal injury in rats: Role of TLR4/NF-κB and c-Fos/c-Jun pro-inflammatory pathways and PPAR-γ/SIRT1 cytoprotective signals. Chem Biol Interact 2022; 351:109732. [PMID: 34737150 DOI: 10.1016/j.cbi.2021.109732] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 01/06/2023]
Abstract
AIMS The use of methotrexate (MTX), a classical immunosuppressant and anti-cancer agent, is associated with multiple organ toxicities, including the intestinal injury. Components of the renin-angiotensin system are expressed in the intestinal epithelium and mucosal immune cells where they provoke pro-inflammatory and pro-oxidant action. The present study was conducted to investigate the potential ability of perindopril (PER), an angiotensin-converting enzyme inhibitor (ACEI), to attenuate MTX-induced intestinal injury with emphasis on the role of the pro-inflammatory TLR4/NF-κB and c-Fos/c-Jun pathways alongside PPAR-γ and SIRT1 cytoprotective signals. MATERIALS AND METHODS The intestinal injury was induced by a single-dose injection of 20 mg/kg of MTX i.p at the end of the 5th day. PER was administrated once daily in a dose of 1 mg/kg, i.p, for five days before MTX and five days later. RESULTS Herein, perindopril attenuated the intestinal injury as seen by lowering the histopathological aberrations and preserving the goblet cells in villi/crypts. These beneficial actions were associated with downregulating the expression of the pro-inflammatory angiotensin II, TNF-α, IL-1β, and IL-6 cytokines, alongside upregulating the anti-inflammatory angiotensin (1-7) and IL-10. At the molecular level, perindopril downregulated the TLR4/NF-κB and c-Fos/c-Jun pathways in inflamed intestine of rats. Moreover, it attenuated the pro-oxidant events by lowering intestinal MDA and boosting GSH, SOD, and GST antioxidants together with PPAR-γ and SIRT1 cytoprotective signals. The aforementioned findings were also highlighted using molecular docking and network pharmacology analysis. CONCLUSIONS Perindopril demonstrated notable mitigation of MTX-induced intestinal injury through suppression of TLR4/NF-κB and c-Fos/c-Jun pathways alongside the augmentation of PPAR-γ/SIRT1 cytoprotective signals.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, 71515, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
13
|
Sritawan N, Suwannakot K, Naewla S, Chaisawang P, Aranarochana A, Sirichoat A, Pannangrong W, Wigmore P, Welbat JU. Effect of metformin treatment on memory and hippocampal neurogenesis decline correlated with oxidative stress induced by methotrexate in rats. Biomed Pharmacother 2021; 144:112280. [PMID: 34628167 DOI: 10.1016/j.biopha.2021.112280] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/18/2023] Open
Abstract
Metformin is currently used as a first-line drug to treat patients with type 2 diabetes. Previous studies have demonstrated that metformin has antioxidant properties and reduces neuroinflammation and hippocampal neuronal cell loss, which eventually improves memory. Methotrexate (MTX) is an antimetabolite chemotherapeutic agent reported to activate cognitive impairment found in many patients. Moreover, MTX negatively affects the spatial working memory, related to neurogenesis reduction in animal models. Therefore, the present study aimed to investigate the antioxidant effect of metformin on the reduction of memory and neurogenesis caused by MTX. Male Sprague-Dawley rats were divided into four groups: control, MTX, metformin, and MTX+metformin. MTX (75 mg/kg, i.v.) was administered on days 7 and 14. Rats were administered metformin (200 mg/kg, i.p.) for 14 days. Memory was determined using novel object location (NOL) and novel object recognition (NOR) tests. Furthermore, cell cycle arrest was quantified by p21 immunostaining. Levels of neuronal protein expression, scavenging enzymes activity, and malondialdehyde (MDA) level changes in the hippocampus and prefrontal cortex were investigated. Rats receiving only MTX showed memory impairment. Decreases in scavenging enzyme activity and BDNF, DCX, and Nrf2 protein expressions levels were detected in the MTX-treated rats. In addition, MTX significantly increased p21-positive cell numbers and MDA levels. However, these adverse MTX effects were counteracted by co-administration with metformin. These results demonstrate that metformin can improve memory impairments, increase BDNF, DCX and Nrf2 protein expressions and antioxidant capacities, and decrease MDA levels in MTX-treated rats.
Collapse
Affiliation(s)
- Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kornrawee Suwannakot
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Salinee Naewla
- Faculty of Nursing, Ratchathani University, Ubon Ratchathani 34000, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Pornthip Chaisawang
- Faculty of Medical Science, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peter Wigmore
- Queen's Medical Centre, School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
14
|
circGLI3 Inhibits Oxidative Stress by Regulating the miR-339-5p/VEGFA Axis in IPEC-J2 Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1086206. [PMID: 34423029 PMCID: PMC8376464 DOI: 10.1155/2021/1086206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
As a new type of noncoding RNA, circular RNA (circRNA) is stable in cells and not easily degraded. This type of RNA can also competitively bind miRNAs to regulate the expression of their target genes. The role of circRNA in the mechanism of intestinal oxidative stress (OS) in weaned piglets is still unclear. In our research, diquat (DQ) was used to induce OS in small intestinal epithelial cells (IPEC-J2) to construct an OS cell model. Mechanistically, dual luciferase reporter assays, fluorescence in situ hybridization (FISH), and western blotting were performed to confirm that circGLI3 directly sponged miR-339-5p and regulated the expression of VEGFA. Overexpression of circGLI3 promoted IPEC-J2 cell proliferation, increased the proportion of S-phase cells (P < 0.01), and reduced reactive oxygen species (ROS) generation when IPEC-J2 cells were subjected to OS. circGLI3 can increase the activity of glutathione peroxidase (GSH-Px) and the total antioxidant capacity (T-AOC) in IPEC-J2 cells and reduce the malondialdehyde (MDA) content and levels of inflammatory factors. Therefore, overexpression of circGLI3 reduced oxidative damage, whereas miR-339-5p mimic counteracted these effects. We identified a regulatory network composed of circGLI3, miR-339-5p, and VEGFA and verified that circGLI3 regulates VEGFA by directly binding miR-339-5p. The expression of VEGFA affects IPEC-J2 cell proliferation, cell cycle progression, and ROS content and changes the levels of antioxidant enzymes and inflammatory factors. This study reveals the molecular mechanism by which circGLI3 inhibits OS in the intestine of piglets and provides a theoretical basis for further research on the effect of OS on intestinal function.
Collapse
|
15
|
Hassanein EHM, Kamel EO, Ali FEM, Ahmed MAR. Berberine and/or zinc protect against methotrexate-induced intestinal damage: Role of GSK-3β/NRF2 and JAK1/STAT-3 signaling pathways. Life Sci 2021; 281:119754. [PMID: 34174323 DOI: 10.1016/j.lfs.2021.119754] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
AIM The present study was undertaken to elucidate the potential protective mechanism of berberine (BBR) and/or zinc (Zn) against methotrexate (MTX)-induced intestinal injury. METHODS Five groups of rats were assigned; normal group (received vehicle), MTX group (20 mg/kg; i.p. single dose), and the other three groups received a single daily oral dose of BBR (50 mg/kg), Zn (5 mg/kg), and BBR plus Zn respectively, for 5 days before MTX and 5 days after. RESULTS Our results emphasized the toxic effect of MTX on rat's intestine as shown by disturbance of oxidant/antioxidant status, down-regulation of NRF2, SIRT1, FOXO-3, Akt, and mTOR expressions, along with up-regulation of GSK-3β, JAK1, and STAT-3 expressions. Besides, severe intestinal histopathological changes were also observed. On the contrary, BBR and/or Zn produced marked protection against MTX-induced intestinal toxicity via amelioration of oxidative stress, improving NRF2, SIRT1, FOXO-3, GSK-3β, Akt, mTOR, JAK1, and STAT-3 alterations. Moreover, our treatments significantly restored histopathological abnormalities. Interestingly, combination therapy of BBR plus Zn exhibited higher effectiveness than mono-therapy. SIGNIFICANCE BBR plus Zn could be used as a novel therapy for the treatment of MTX-induced intestinal damage through modulation of GSK-3β/NRF2, Akt/mTOR, JAK1/STAT-3, and SIRT1/FOXO-3 signaling pathways.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esam Omar Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | |
Collapse
|
16
|
Petrova B, Warren A, Vital NY, Culhane AJ, Maynard AG, Wong A, Kanarek N. Redox Metabolism Measurement in Mammalian Cells and Tissues by LC-MS. Metabolites 2021; 11:metabo11050313. [PMID: 34068241 PMCID: PMC8153172 DOI: 10.3390/metabo11050313] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Cellular redox state is highly dynamic and delicately balanced between constant production of reactive oxygen species (ROS), and neutralization by endogenous antioxidants, such as glutathione. Physiologic ROS levels can function as signal transduction messengers, while high levels of ROS can react with and damage various molecules eliciting cellular toxicity. The redox state is reflective of the cell’s metabolic status and can inform on regulated cell-state transitions or various pathologies including aging and cancer. Therefore, methods that enable reliable, quantitative readout of the cellular redox state are imperative for scientists from multiple fields. Liquid-chromatography mass-spectrometry (LC-MS) based methods to detect small molecules that reflect the redox balance in the cell such as glutathione, NADH, and NADPH, have been developed and applied successfully, but because redox metabolites are very labile, these methods are not easily standardized or consolidated. Here, we report a robust LC-MS method for the simultaneous detection of several redox-reactive metabolites that is compatible with parallel global metabolic profiling in mammalian cells. We performed a comprehensive comparison between three commercial hydrophilic interaction chromatography (HILIC) columns, and we describe the application of our method in mammalian cells and tissues. The presented method is easily applicable and will enable the study of ROS function and oxidative stress in mammalian cells by researchers from various fields.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; (B.P.); (A.W.); (N.Y.V.); (A.J.C.); (A.G.M.); (A.W.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Anna Warren
- Department of Pathology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; (B.P.); (A.W.); (N.Y.V.); (A.J.C.); (A.G.M.); (A.W.)
| | - Nuria Yulia Vital
- Department of Pathology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; (B.P.); (A.W.); (N.Y.V.); (A.J.C.); (A.G.M.); (A.W.)
| | - Andrew J. Culhane
- Department of Pathology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; (B.P.); (A.W.); (N.Y.V.); (A.J.C.); (A.G.M.); (A.W.)
| | - Adam G. Maynard
- Department of Pathology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; (B.P.); (A.W.); (N.Y.V.); (A.J.C.); (A.G.M.); (A.W.)
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Alan Wong
- Department of Pathology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; (B.P.); (A.W.); (N.Y.V.); (A.J.C.); (A.G.M.); (A.W.)
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; (B.P.); (A.W.); (N.Y.V.); (A.J.C.); (A.G.M.); (A.W.)
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
- Correspondence: ; Tel.: +1-617-919-7352
| |
Collapse
|
17
|
Dhanisha SS, Drishya S, Gangaraj KP, Rajesh MK, Guruvayoorappan C. Molecular Docking Studies of Naringenin and its Protective Efficacy against Methotrexate Induced Oxidative Tissue Injury. Anticancer Agents Med Chem 2021; 22:169-180. [PMID: 34225639 DOI: 10.2174/1871520621666210322102915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although Methotrexate (MTX) possesses a wide clinical spectrum of activity, its toxic side effects on normal cells and drug resistance often hamper its successful outcome. Naringenin (NG) one of the promising bioactive flavonoids that are extensively found in grapes, citrus fruits, and fruit arils of Pithecellobium dulce. OBJECTIVE Only a few experimental in vivo studies on the efficacy of NG against chemotherapeutic drugs have been carried out. Aiming to fill this gap, the present study was carried out to characterize and identify its possible therapeutic targets and also to explore its protective efficacy against MTX induced tissue damage. METHODS Oxidative stress was induced in mice with MTX (20 mg/kg B.wt) and animals were orally administered with 10 mg/kg B.wt NG for 10 consecutive days. On day 11, all animals were sacrificed, and hematological and serum biochemical parameters were analyzed. The antioxidant efficacy of NG against MTX was evaluated by quantifying tissue superoxide dismutase (SOD), glutatione peroxidase (GPx), reduced glutathione (GSH) and catalase along with oxidative stress markers [malondialdehyde (MDA) and nitric oxide (NO)]. Further, the histopathological analysis was performed to confirm the protective efficacy of FPD. In silico docking studies were also performed to exploring antioxidant enzyme-based targets. RESULTS Our results showed that concurrent administration of NG counteracted oxidative stress induced by MTX, as evidenced by increased expression of antioxidant markers, decreased expression of renal and hepatotoxicity serum marker enzymes (p <0.05). Molecular docking study was performed using Auto dock vina to understand the mechanism of ligand binding (S-NG and R-NG) with antioxidant enzymes. The binding affinity of S-NG with catalase, GPx, ALP, and SGPT was -10.1, -7.1, -7.1, and -7.3 kcal/mol respectively, whereas for R-NG was -10.8, -7.1, -7.6, and -7.4 kcal/mol respectively. Further, histopathological analysis affirmed the protective efficacy of NG against MTX induced hepatic and renal toxicities. CONCLUSION Treatment with NG significantly reduced MTX induced pancytopenia, renal, and hepatic toxicity.
Collapse
Affiliation(s)
- Suresh S Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Karyath P Gangaraj
- Division of Crop improvement, ICAR-Central Plantation Crops Research Institute, Kasaragod 671124, Kerala, India
| | - Muliyar K Rajesh
- Division of Crop improvement, ICAR-Central Plantation Crops Research Institute, Kasaragod 671124, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Trivandrum-695 011, Kerala, India
| |
Collapse
|
18
|
Baquero JM, Benítez-Buelga C, Rajagopal V, Zhenjun Z, Torres-Ruiz R, Müller S, Hanna BMF, Loseva O, Wallner O, Michel M, Rodríguez-Perales S, Gad H, Visnes T, Helleday T, Benítez J, Osorio A. Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects. Sci Rep 2021; 11:3490. [PMID: 33568707 PMCID: PMC7876102 DOI: 10.1038/s41598-021-82917-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most common oxidative DNA lesion is 8-oxoguanine which is mainly recognized and excised by the 8-oxoG DNA glycosylase 1 (OGG1), initiating the base excision repair (BER) pathway. Telomeres are particularly sensitive to oxidative stress (OS) which disrupts telomere homeostasis triggering genome instability. In the present study, we have investigated the effects of inactivating BER in OS conditions, by using a specific inhibitor of OGG1 (TH5487). We have found that in OS conditions, TH5487 blocks BER initiation at telomeres causing an accumulation of oxidized bases, that is correlated with telomere losses, micronuclei formation and mild proliferation defects. Moreover, the antimetabolite methotrexate synergizes with TH5487 through induction of intracellular reactive oxygen species (ROS) formation, which potentiates TH5487-mediated telomere and genome instability. Our findings demonstrate that OGG1 is required to protect telomeres from OS and present OGG1 inhibitors as a tool to induce oxidative DNA damage at telomeres, with the potential for developing new combination therapies for cancer treatment.
Collapse
Affiliation(s)
- Juan Miguel Baquero
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Carlos Benítez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden.
| | - Varshni Rajagopal
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Zhao Zhenjun
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Department of Biomedicine, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, 08036, Barcelona, Spain
| | - Sarah Müller
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Bishoy M F Hanna
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Olov Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Maurice Michel
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Helge Gad
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Torkild Visnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 17121, Solna, Sweden
- Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, S10 2RX, UK
| | - Javier Benítez
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Spanish Network on Rare Diseases (CIBERER), 28029, Madrid, Spain
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Ana Osorio
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain.
- Spanish Network on Rare Diseases (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
19
|
Cao M, Li Y, Famurewa AC, Olatunji OJ. Antidiabetic and Nephroprotective Effects of Polysaccharide Extract from the Seaweed Caulerpa racemosa in High Fructose-Streptozotocin Induced Diabetic Nephropathy. Diabetes Metab Syndr Obes 2021; 14:2121-2131. [PMID: 34012278 PMCID: PMC8126874 DOI: 10.2147/dmso.s302748] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Nephropathy is a frontline complication of diabetes mellitus (DM) associated with impaired redox-inflammatory networks. The study investigated the antidiabetic and nephroprotective potentials of PCR against diabetic nephropathy (DN) in rats. METHODS DN was induced in rats using a combination of a high fructose solution for 4 weeks and an intraperitoneal injection of streptozotocin (35 mg/kg). Diabetic rats were treated with PCR (100 and 400 mg/kg body weight) for 8 weeks. Serum biochemical parameters as well as renal oxidative stress parameters, proinflammatory cytokines, Western blot and histopathological analyses were evaluated. RESULTS There were significant increases in fasting blood glucose, urinary albumin, serum creatinine, blood urea nitrogen (BUN), total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL-C) levels in diabetic rats compared to the non-diabetic control rats. DM-induced DN prominently depressed renal superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, whereas renal malondialdehyde (MDA) level was markedly increased. Furthermore, renal inflammatory cytokines, IL-1β, IL-6, TNF-α and TGF-β, were considerably elevated compared to non-diabetic control rats. Additionally, DN rats showed a significant increase in renal fibrosis, as evidenced by increased expression of TGF-β1, collagen-1, fibronectin and alpha-smooth muscle actin (α-SMA) in the kidneys. Histopathological lesions were consistent with tubule thickening and glomerular hypertrophy. Conversely, PCR treatment exerted significant attenuation of hyperglycemia, dyslipidemia and renal oxidative stress indicators. The increased renal levels of IL-1β, IL-6, TNF-α and TGF-β were also notably reversed dose-dependently with alleviation of nephropathic histology. Furthermore, PCR reduced the expression of α-SMA, fibronectin, collagen-1 and TGF-β1 in the renal tissues. CONCLUSION Our results suggest that PCR displayed antidiabetic and nephroprotective effects against DN by impeding oxidative stress and inflammation. As such, PCR has potentials as a food supplement for alleviating renal dysfunction caused by diabetes.
Collapse
Affiliation(s)
- Meng Cao
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan Province, People’s Republic of China
| | - Yan Li
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan Province, People’s Republic of China
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike, Ebonyi State, Nigeria
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, Thailand
- Correspondence: Opeyemi Joshua Olatunji Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand Email
| |
Collapse
|
20
|
Akacha A, Badraoui R, Rebai T, Zourgui L. Effect of Opuntia ficus indica extract on methotrexate-induced testicular injury: a biochemical, docking and histological study. J Biomol Struct Dyn 2020; 40:4341-4351. [PMID: 33305699 DOI: 10.1080/07391102.2020.1856187] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methotrexate (MTX) is a chemotherapeutic medicine used in the treatment of several types of cancer and inflammatory diseases. It exhibits several drawbacks especially on highly dividing and developing cells. This study aimed to assess the role of Opuntia ficus indica ethanolic extract on testicular damage induced by MTX in rat. MTX was administrated for 10 days (20 mg/kg). Extract of cactus cladodes (Opuntia ficus indica) was given to MTX-treated rats (0.4 g/kg). Spermatozoa were collected from cauda epididymis and analyzed for sperm count and motility. Testis samples were used for histopathological and oxidative stress studies (assessment of malondialdehyde (MDA) levels, protein carbonyls (PCs), catalase (CAT) glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities). Moreover, levels of testosterone were measured in serum by radioimmunoassay. Our results showed that MTX had destructive effects on sperm count and motility associated with significant decrease in testosterone levels in MTX group. This effect was then confirmed by docking results. Testis of MTX group showed increased oxidative stress status. In fact, PCs and MDA were increased and CAT, GPx and SOD were decreased suggesting increased reactive oxygen species and deficiency in enzymatic antioxidant. These findings were associated with disrupted testicular morphology as assessed by histological study. Cladodes extract had protective effects on rat's gonad histology, oxidative stress and improve both sperm parameters (count and motility) and serum testosterone levels. In conclusion, our results suggested that Opuntia ficus indica cladodes extract improved MTX-induced testicular injury and possess potent fertility boosting effects in rats.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amira Akacha
- Higher Institute of Applied Biology (ISBAM) of Medenine, University of Gabés, Medenine, Tunisia.,Laboratory of Functional Neurophysiology and Pathology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Riadh Badraoui
- Laboratory of General Biology, Biology Department, University of Hail, Hail, Saudi Arabia.,Section of Histology - Cytology, Faculty of Medicine of Tunis, University of Tunis, Tunis, Tunisia.,Laboratory Histo-embryology and Cytogenetics, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Tarek Rebai
- Laboratory Histo-embryology and Cytogenetics, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Lazhar Zourgui
- Higher Institute of Applied Biology (ISBAM) of Medenine, University of Gabés, Medenine, Tunisia.,Laboratory of Functional Neurophysiology and Pathology, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
21
|
Zhang L, Liu S, Li M, Piao X. Effects of maternal 25-hydroxycholecalciferol during the last week of gestation and lactation on serum parameters, intestinal morphology and microbiota in suckling piglets. Arch Anim Nutr 2020; 74:445-461. [PMID: 33198510 DOI: 10.1080/1745039x.2020.1822710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This study was conducted to test the effects of maternal 25-hydroxycholecalciferol (25OHD3) supplementation on serum parameters, intestinal morphology and microbiota in suckling piglets. The experiment started on day 107 of gestation and lasted until piglets were weaned on day 21 of lactation. Thirty-two sows were allocated randomly to two treatments (ND diet, basal diet with 2000 IU/kg of vitamin D3; 25-D diet, basal diet with 50 μg/kg 25OHD3). Results showed that maternal 25-D treatment increased (p < 0.05) serum 25OHD3 concentration in the umbilical cords, which led to higher (p < 0.05) serum 25OHD3 concentration of suckling piglets from 25-D sows. The GSH-Px activity in colostrum was higher (p < 0.05), as well as SOD and GSH-Px activities in milk, were higher (p < 0.05) in 25-D sows than ND sows. Compared with piglets suckling ND sows, piglets suckling 25-D sows had higher (p < 0.05) serum SOD activity on day 7, 14 and 21 of lactation. On day 21 of lactation, piglets form 25-D sows had greater (p < 0.05) serum levels of GH and IGF-I and lower (p < 0.05) serum DAO activity than those from ND sows. Piglets from 25-D sows had higher (p < 0.05) jejunal villus height than those from ND sows. Feeding 25OHD3 to sows tended to increase (p < 0.10) the species richness in the colonic digesta of suckling piglets, as reflected by the α-diversity index of Chao-1. In the caecal digesta, the α-diversity for bacterial community analysis of Simpson and Shannon was lower (p < 0.05) in 25-D piglets than ND piglets. The relative abundances of colonic Alloprevotella and caecal Lactobacillus were significantly higher, while the population of caecal [Eubacterium]_coprostanoligenes_group was lower (p < 0.05) in 25-D piglets than ND piglets. In conclusion, maternal 25OHD3 supplementation partly improved antioxidant status in sows and suckling piglets and altered gut microbiota in the hindgut of piglets.
Collapse
Affiliation(s)
- Lianhua Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing, China
| | - Sujie Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing, China
| | - Miao Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing, China
| |
Collapse
|
22
|
ALAKAYA M, ÇITAK EÇ, TAŞKINLAR S, YILMAZ SN, ÖZÇİMEN AA, ÇİMEN MYB. Glutamin ve β-hidroksi β-metil bütiratin metotreksatin indüklediği intestinal mukozit üzerine etkisi. CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.648558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Malayeri A, Badparva R, Mombeini MA, Khorsandi L, Goudarzi M. Naringenin: a potential natural remedy against methotrexate-induced hepatotoxicity in rats. Drug Chem Toxicol 2020; 45:491-498. [DOI: 10.1080/01480545.2020.1719132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alireza Malayeri
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Badparva
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Mombeini
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Modulation of Oxidative Stress by Ozone Therapy in the Prevention and Treatment of Chemotherapy-Induced Toxicity: Review and Prospects. Antioxidants (Basel) 2019; 8:antiox8120588. [PMID: 31779159 PMCID: PMC6943601 DOI: 10.3390/antiox8120588] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Cancer is one of the leading causes of mortality worldwide. Radiotherapy and chemotherapy attempt to kill tumor cells by different mechanisms mediated by an intracellular increase of free radicals. However, free radicals can also increase in healthy cells and lead to oxidative stress, resulting in further damage to healthy tissues. Approaches to prevent or treat many of these side effects are limited. Ozone therapy can induce a controlled oxidative stress able to stimulate an adaptive antioxidant response in healthy tissue. This review describes the studies using ozone therapy to prevent and/or treat chemotherapy-induced toxicity, and how its effect is linked to a modification of free radicals and antioxidants. (2) Methods: This review encompasses a total of 13 peer-reviewed original articles (most of them with assessment of oxidative stress parameters) and some related works. It is mainly focused on four drugs: Cisplatin, Methotrexate, Doxorubicin, and Bleomycin. (3) Results: In experimental models and the few existing clinical studies, modulation of free radicals and antioxidants by ozone therapy was associated with decreased chemotherapy-induced toxicity. (4) Conclusions: The potential role of ozone therapy in the management of chemotherapy-induced toxicity merits further research. Randomized controlled trials are ongoing.
Collapse
|
25
|
Jalili C, Ghanbari A, Roshankhah S, Salahshoor MR. Toxic Effects of Methotrexate on Rat Kidney Recovered by Crocin as a Consequence of Antioxidant Activity and Lipid Peroxidation Prevention. IRANIAN BIOMEDICAL JOURNAL 2019. [PMID: 31454862 PMCID: PMC6900476 DOI: 10.29252/ibj.24.1.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The application of methotrexate (MTX) as a chemotherapy agent and immune system suppressant has various side effects. Crocin, a xanthine derivative plant, has many therapeutic benefits. This study was planned to assess the effect of crocin on renal toxicity of MTX in a rat model. Methods Forty eight rats were divided randomly into eight groups (n = 6), which received normal saline, MTX, crocin, and MTX + crocin for 28 days intraperitoneally. The levels of oxidative stress in kidney and blood serum were measured, and the kidney was analyzed histologically. Results MTX caused an enhancement in the levels of thiobarbituric acid reactive substances and biochemical marker (creatinine and BUN). Besides, a significant decrease was observed in tissue parameters and antioxidant capacity compared to the normal control group (p < 0.001). The crocin and crocin + MTX decreased the biochemical markers, the levels of thiobarbituric acid reactive species, and tissue parameters considerably at entire dose (12.5, 25, and 50 mg/kg) and enhanced the antioxidant capacity levels compared to the MTX group (p < 0.001). Conclusion Administration of crocin improves the damage caused by MTX in rats. The crocin by the establishment of balance in the levels of antioxidant prevents the damage to the renal cell membrane, and subsequently the renal damage repairs.
Collapse
Affiliation(s)
- Cyrus Jalili
- 1Medical Biology Research Center, Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Daneshgah Ave., Taghbostan, Kermanshah, Iran
| | - Ali Ghanbari
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shiva Roshankhah
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Salahshoor
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Aatif M, Shah A, Priyadarshini M, Farhan M, Bano B. Probing the structural interactions between methotrexate and dexamethasone with muscle cystatin: a biophysical study. J Biomol Struct Dyn 2019; 38:2955-2964. [PMID: 31389299 DOI: 10.1080/07391102.2019.1653374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Drug protein interactions have gained considerable attention over the past many years. In the current communication the association of muscle cystatin (MC) with anti-rheumatic drugs methotrexate and dexamethasone was studied by thiol proteinase inhibitor assay, ultra violet (UV) absorption, fluorescence spectroscopy, and fluorescence transform infra-red spectroscopy (FTIR). A static pattern of quenching was noticed between muscle cystatin and methotrexate (MTX). Binding constant (Ka) of methotrexate to muscle cystatin was found to be 1 × 10-7 M-1 and the stoichiometry of binding was calculated to be one. Fluorescence measurement of the emission quenching reveals that the quenching process of cystatin by dexamethasone (DXN) was also static. The stoichiometry of binding and binding constant was also obtained. Additional evidence regarding MTX-MC and DXN-MC was obtained from UV spectroscopy and FTIR spectroscopic results. Such spectroscopic studies would help in modelling new candidate drugs for rheumatoid arthritis based on their cystatin binding profile.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Kingdom Saudi Arabia
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, India
| | | | - Mohd Farhan
- Department of Biology, College of Basic Sciences, King Faisal University, Al Ahsa, Kingdom Saudi Arabia
| | - Bilqees Bano
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
27
|
Kalantar M, Kalantari H, Goudarzi M, Khorsandi L, Bakhit S, Kalantar H. Crocin ameliorates methotrexate-induced liver injury via inhibition of oxidative stress and inflammation in rats. Pharmacol Rep 2019; 71:746-752. [DOI: 10.1016/j.pharep.2019.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/03/2019] [Accepted: 04/08/2019] [Indexed: 11/17/2022]
|
28
|
Treatment with selenium-enriched Saccharomyces cerevisiae UFMG A-905 partially ameliorates mucositis induced by 5-fluorouracil in mice. Cancer Chemother Pharmacol 2019; 84:117-126. [PMID: 31079219 DOI: 10.1007/s00280-019-03865-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Gastrointestinal mucositis is a major problem associated with cancer therapy. To minimize these deleterious effects, simultaneous administration of antioxidant components, such as selenium, can be considered. There is a growing interest in the use of yeasts because they are able to convert inorganic selenium into selenomethionine. In the present study, oral administration of Saccharomyces cerevisiae UFMG A-905 enriched with selenium was evaluated as an alternative in minimizing the side effects of 5FU-induced mucositis in mice. METHODS Mice body weight, food consumption, faeces consistency and the presence of blood in faeces were assessed daily during experimental mucositis induced by 5-fluorouracil (5FU). Blood was used for intestinal permeability determination, and small intestine for oxidative stress, immunological and histopathological examination. RESULTS The increased intestinal permeability observed with mucositis induction was partially reverted by S. cerevisiae and selenium-enriched yeast. Both treatments were able to reduce myeloperoxidase activity, but only selenium-enriched yeast reduced eosinophil peroxidase activity. CXCL1/KC levels, histopathological tissue damage and oxidative stress (lipid peroxidation and nitrite production) in the small intestine were reduced by both treatments; however, this reduction was always higher when treatment with selenium-enriched yeast was evaluated. CONCLUSIONS Results of the present study showed that the oral administration of S. cerevisiae UFMG A-905 protected mice against mucositis induced by 5-FU, and that this effect was potentiated when the yeast was enriched with selenium.
Collapse
|
29
|
Gao Y, Sun Q, Yang X, Lu W, Zhao Y, Ge W, Yang Y, Xu X, Zhang J. Orally administered salecan ameliorates methotrexate-induced intestinal mucositis in mice. Cancer Chemother Pharmacol 2019; 84:105-116. [DOI: 10.1007/s00280-019-03854-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/02/2019] [Indexed: 01/21/2023]
|
30
|
Effects of Dietary Taurine Supplementation to Gilts during Late Gestation and Lactation on Offspring Growth and Oxidative Stress. Animals (Basel) 2019; 9:ani9050220. [PMID: 31064160 PMCID: PMC6562957 DOI: 10.3390/ani9050220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Previous studies showed that gilts had elevated oxidative stress during late gestation and lactation, and could affect offspring growth. Taurine (Tau) is an important regulator of oxidative stress and possesses growth-enhancing properties. Our results suggested that taurine supplementation during late gestation and lactation of gilts increased growth performance in piglets through improved milk quality of gilts and intestinal morphology and barrier function of offspring. Abstract Birth is one of the most important events of animal production agriculture, as newborns are abruptly forced to adapt to environmental and nutritional disruptions that can lead to oxidative damage and delay in growth. Taurine (Tau) is an important regulator of oxidative stress and possesses growth-enhancing properties. In the present study, we investigated the effects of dietary Tau supplementation in gilts during late gestation and lactation on the growth performance of piglets by assessing intestinal morphology and barrier function, and oxidative stress status. Sixteen gilts were randomly allocated to the Con (basal diet) and Tau (basal diet with 1% Tau) groups from 75 d of gestation to weaning. Maternal dietary Tau supplementation significantly increased weaning weight and average daily gain weight in piglets. Piglets in the Tau group had higher villus height and villus height-to-crypt depth ratio (VCR), ZO-1 protein expression, and secretory immunoglobulin A (sIgA) content in the jejunum. Meanwhile, Tau bebeficial affected the milk quality of gilts, as indicated by decreased malondialdehyde (MDA) concentration and increased total superoxide dismutase (T-SOD), total antioxidative capability (T-AOC), glutathione peroxidase (GPx), and catalase (CAT) activity. Furthermore, Tau supplementation increased T-SOD activity in plasma and SOD2 protein expression in the jejunum in the piglets. In conclusion, this study provides evidence that dietary Tau supplementation to gilts improves growth performance in piglets, owing to improved intestinal morphology and barrier function, as well as inhibition of oxidative stress.
Collapse
|
31
|
Cao Y, Shi H, Sun Z, Wu J, Xia Y, Wang Y, Wu Y, Li X, Chen W, Wang A, Lu Y. Protective Effects of Magnesium Glycyrrhizinate on Methotrexate-Induced Hepatotoxicity and Intestinal Toxicity May Be by Reducing COX-2. Front Pharmacol 2019; 10:119. [PMID: 30971913 PMCID: PMC6444054 DOI: 10.3389/fphar.2019.00119] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
Magnesium isoglycyrrhizinate (MgIG), which has been widely employed to treat chronic hepatitis, is synthesized from 18-β glycyrrhizic acid, a main component of traditional Chinese medicine Glycyrrhiza uralensis Fisch. Although the protective effects of MgIG on methotrexate (MTX)-induced liver toxicity have been well-documented, the underlying mechanism remains elusive. MTX was initially used to treat pediatric acute leukemia, and has been widely applied to psoriasis therapy. However, its clinical applications are limited due to hepatotoxicity and intestinal toxicity. Herein, prophylactic administration of MgIG (9 and 18 mg/kg/day) significantly reduced the levels of aspartate aminotransferase and alanine aminotransferase in the serum of rats receiving intravenous injection of MTX (20 mg/kg body weight). MgIG also attenuated MTX-induced hepatic fibrosis. Moreover, it better protected against MTX-induced hepatocyte apoptosis and decreased the serum level of malondialdehyde than reduced glutathione (80 mg/kg/day) did. Interestingly, MTX-induced cyclooxygenase-2 (COX-2) expression, intestinal permeability and inflammation were attenuated after MgIG administration. In addition, MgIG (9 and 18 mg/kg) reduced MTX-induced colocalization of zonula occludens-1 (ZO-1) and connexin 43 (Cx43) in intestinal villi. In conclusion, MgIG exerted beneficial effects on MTX-induced hepatotoxicity and intestinal damage, as a potentially eligible drug for alleviating the hepatic and intestinal side effects of MTX during chemotherapy.
Collapse
Affiliation(s)
- Yuzhu Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hang Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiguang Sun
- Department of The First College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiawei Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yawen Xia
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yufei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoman Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aiyun Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
32
|
Famurewa AC, Aja PM, Nwankwo OE, Awoke JN, Maduagwuna EK, Aloke C. Moringa oleifera seed oil or virgin coconut oil supplementation abrogates cerebral neurotoxicity induced by antineoplastic agent methotrexate by suppression of oxidative stress and neuro-inflammation in rats. J Food Biochem 2018; 43:e12748. [PMID: 31353570 DOI: 10.1111/jfbc.12748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022]
Abstract
Methotrexate (MTX) is an effective antineoplastic drug associated with wide organ toxicity. Accumulating evidence implicates oxidative stress to be a leading underlying mechanism of MTX-induced neurotoxicity. The study explores antioxidant potential of virgin coconut oil (VCO) or Moringa oleifera seed oil (MOO) in MTX-induced oxidative stress-mediated cerebral neurotoxicity and inflammation in rats. Rats treated with VCO or MOO (5 ml/kg bw) for 17 days were administered MTX (20 mg/kg, intraperitoneally) on day 14 only. Cerebral activities of acetylcholinesterase, antioxidant enzymes, lipid peroxidation, reduced glutathione and nitric oxide levels as well as cytokines were evaluated. MTX-induced neurotoxic alterations were significantly abrogated by MOO and VCO supplementation via inhibition of cholinesterase, oxidative stress, and anti-inflammatory mechanisms. VCO and MOO showed comparable antioxidant potentials with the standards in DPPH and FRAP assays. VCO and MOO are promising natural oils for modulating MTX neurotoxicity in cancer patients. PRACTICAL APPLICATIONS: Methotrexate chemotherapy induces neurotoxicity in cancer patients, and this is a source of worry for clinicians. This study reports, for the first time, the beneficial health effects of functional food oils, Moringa oleifera seed oil, and virgin coconut oil against anticancer drug methotrexate-induced cerebral neurotoxicity. Supplementation of these natural oils may be beneficial in the prevention of cerebral neurotoxic side effect in cancer patients undergoing methotrexate chemotherapy.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Patrick M Aja
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Onyebuchi E Nwankwo
- Department of Biological Sciences, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Joshua N Awoke
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Chinyere Aloke
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex-Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| |
Collapse
|
33
|
Rizk FH, Saadany AAE, Dawood L, Elkaliny HH, Sarhan NI, Badawi R, Abd-Elsalam S. Metformin ameliorated methotrexate-induced hepatorenal toxicity in rats in addition to its antitumor activity: two birds with one stone. J Inflamm Res 2018; 11:421-429. [PMID: 30519070 PMCID: PMC6233475 DOI: 10.2147/jir.s178767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Methotrexate (MTX) is a drug used in treatment of various malignancies. Unfortunately, it leads to life-threatening complications including hepatorenal toxicity. Previous studies revealed the protective effects of metformin (MET) on hepatorenal toxicity in other models in addition to its anticancer effects. The current study investigates the effect of MET on MTX-induced hepatorenal toxicity and the possible mechanisms involved in this toxicity which can be overwhelmed by MET. Thirty male rats were divided into 3 groups: normal control, MTX treated and MET/MTX treated. After 7 days, MTX induced hepatorenal toxicity as proved by histological examinations and biochemical analysis of liver and kidney functions. Also, it led to significant increase in hepatic and renal malondialdehyde levels, significant decrease in hepatic and renal total antioxidant capacity levels and Na+/K+-ATPase activities and significant up regulation of mRNA expressions of nuclear factor kappa-light-chain-enhancer of activated B cells, cyclooxygenase-2 and caspase 3 compared with the control group. While, MET could significantly reduce hepatorenal toxicity and counteract the effects of MTX on all measured parameters. In conclusion, MET can be an effective adjuvant to MTX chemotherapy that could ameliorate its hepatorenal toxicity through antioxidant, anti-inflammatory and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Fatma H Rizk
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Lamees Dawood
- Department of Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba H Elkaliny
- Department of histology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Naglaa I Sarhan
- Department of histology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab Badawi
- Department of Tropical, Faculty of Medicine, Tanta University, Tanta, Egypt,
| | - Sherief Abd-Elsalam
- Department of Tropical, Faculty of Medicine, Tanta University, Tanta, Egypt,
| |
Collapse
|
34
|
Mitochondrial dysfunction and oxidative stress are involved in the mechanism of methotrexate-induced renal injury and electrolytes imbalance. Biomed Pharmacother 2018; 107:834-840. [DOI: 10.1016/j.biopha.2018.08.050] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
|
35
|
Belhan S, Çomaklı S, Küçükler S, Gülyüz F, Yıldırım S, Yener Z. Effect of chrysin on methotrexate-induced testicular damage in rats. Andrologia 2018; 51:e13145. [DOI: 10.1111/and.13145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Saadet Belhan
- Department of Reproduction and Artificial Insemination, Veterinary Faculty; Yuzuncu Yıl University; Van Turkey
| | - Selim Çomaklı
- Department of Pathology, Veterinary Faculty; Ataturk University; Erzurum Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Veterinary Faculty; Ataturk University; Erzurum Turkey
| | - Fetih Gülyüz
- Department of Zootechnics; Akdeniz University; Antalya Turkey
| | - Serkan Yıldırım
- Department of Pathology, Veterinary Faculty; Ataturk University; Erzurum Turkey
| | - Zabit Yener
- Department of Pathology, Veterinary Faculty; Yuzuncu Yıl University; Van Turkey
| |
Collapse
|
36
|
Natarajan K, Abraham P, Kota R, Isaac B. NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem Toxicol 2018; 118:766-783. [DOI: 10.1016/j.fct.2018.06.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022]
|
37
|
Famurewa AC, Folawiyo AM, Enohnyaket EB, Azubuike-Osu SO, Abi I, Obaje SG, Famurewa OA. Beneficial role of virgin coconut oil supplementation against acute methotrexate chemotherapy-induced oxidative toxicity and inflammation in rats. Integr Med Res 2018; 7:257-263. [PMID: 30271714 PMCID: PMC6160495 DOI: 10.1016/j.imr.2018.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/13/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
Background Methotrexate (MTX) is a commonly used antineoplastic and anti-rheumatoid agent whose efficacy is limited by marked organ toxicities associated with oxidative stress. The study investigated beneficial effect of virgin coconut oil (VCO) supplementation on MTX-induced oxidative stress and inflammation in rats. Methods Rats were divided into 4 groups (n = 6): Control, MTX (20 mg/kg bw), VCO (5%) + MTX and VCO (15%) + MTX. The pre-treatment with VCO for 14 days was followed by single intraperitoneal injection of MTX and the rats were sacrificed after 3 days. Serum activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were determined. Interleukin-6 (IL-6), C-reactive protein (CRP) and nitric oxide (NO) levels were also evaluated. Results MTX induced a distinct diminution in serum activities of oxidative stress markers (SOD, CAT, GPx and GSH), while lipid peroxidation considerably increased demonstrated by MDA level. Similarly, levels of IL-6, CRP and NO increased prominently in MTX control rats. The VCO supplementation markedly enhanced resistance to the MTX-induced biochemical alterations in rats. Conclusion VCO can be a useful adjuvant natural product in MTX chemotherapy by reducing oxidative stress and pro-inflammatory responses.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Federal University, Ndufu-Alike, Ikwo, Abakaliki, Nigeria
| | - Abiola M Folawiyo
- Department of Physiology, College of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Elizabeth B Enohnyaket
- Department of Physiology, College of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Sharon O Azubuike-Osu
- Department of Physiology, Faculty of Basic Medical Sciences, Federal University, Ndufu-Alike, Ikwo, Abakaliki, Nigeria
| | - Innocent Abi
- Department of Physiology, College of Health Sciences, Benue State University, Makurdi, Nigeria
| | - Sunday G Obaje
- Department of Anatomy, Faculty of Basic Medical Sciences, Federal University, Ndufu-Alike, Ikwo, Abakaliki, Nigeria
| | - Opeyemi A Famurewa
- Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Science, University of Jos, Jos, Nigeria
| |
Collapse
|
38
|
A Synbiotic with Tumor Necrosis Factor- α Inhibitory Activity Ameliorates Experimental Jejunoileal Mucosal Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9184093. [PMID: 29862296 PMCID: PMC5971273 DOI: 10.1155/2018/9184093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/31/2018] [Indexed: 02/06/2023]
Abstract
Despite the recent development of biological modifiers for inflammatory bowel diseases (IBD), there continues to be considerable interest in fermented medicines because of its negligible adverse effects. We previously showed that the synbiotic Gut Working Tablet (GWT) alleviates experimental colitis. Here we show that GWT is capable of ameliorating jejunoileal mucosal injury, which is frequently seen with IBD. We created experimental jejunoileal mucositis in rats by injection of methotrexate (MTX) which increases intestinal permeability, a hallmark finding of IBD. Administering GWT to MTX-injected rats restored intestinal integrity by reversing villi shortening, crypt loss, and goblet cell depletion in the mucosa. Also GWT reduced activities of myeloperoxidase and lipid peroxidase and increased superoxide dismutase activity, which is critical for maintaining intestinal function. We further found that GWT suppressed mRNA expression of tumor necrosis factor-α (TNF-α) and interleukin-12 (IL-12) in macrophage and reduced TNF-α mRNA expression in specimens with experimental colitis, which is in contrast to VSL#3 that enhanced TNF-α production. Together, the current and previous animal studies clearly demonstrate the protective role of GWT in chemically induced enterocolitis. Crohn's disease, a well-known IBD, can affect any portion of the intestine, and these results suggest that GWT may be useful as a novel therapeutic or maintenance therapy for IBD.
Collapse
|
39
|
Famurewa AC, Folawiyo AM, Epete MA, Igwe EC, Okike PI, Maduagwuna EK. Abrogation of Hepatic Damage Induced by Anticancer Drug Methotrexate by Zobo (Hibiscus sabdariffaextract) Supplementation via Targeting Oxidative Hepatotoxicity in Rats. J Diet Suppl 2018; 16:318-330. [DOI: 10.1080/19390211.2018.1456502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Abiola M. Folawiyo
- Department of Physiology, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Michael A. Epete
- Department of Anatomy, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Emeka C. Igwe
- Department of Anatomy, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Paul I. Okike
- Department of Physiology, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria
| | - Ekenechukwu K. Maduagwuna
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki, Nigeria
| |
Collapse
|
40
|
Díaz-Valdivia NI, Calderón CC, Díaz JE, Lobos-González L, Sepulveda H, Ortíz RJ, Martinez S, Silva V, Maldonado HJ, Silva P, Wehinger S, Burzio VA, Torres VA, Montecino M, Leyton L, Quest AFG. Anti-neoplastic drugs increase caveolin-1-dependent migration, invasion and metastasis of cancer cells. Oncotarget 2017; 8:111943-111965. [PMID: 29340103 PMCID: PMC5762371 DOI: 10.18632/oncotarget.22955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022] Open
Abstract
Expression of the scaffolding protein Caveolin-1 (CAV1) enhances migration and invasion of metastatic cancer cells. Yet, CAV1 also functions as a tumor suppressor in early stages of cancer, where expression is suppressed by epigenetic mechanisms. Thus, we sought to identify stimuli/mechanisms that revert epigenetic CAV1 silencing in cancer cells and evaluate how this affects their metastatic potential. We reasoned that restricted tissue availability of anti-neoplastic drugs during chemotherapy might expose cancer cells to sub-therapeutic concentrations, which activate signaling pathways and the expression of CAV1 to favor the acquisition of more aggressive traits. Here, we used in vitro [2D, invasion] and in vivo (metastasis) assays, as well as genetic and biochemical approaches to address this question. Colon and breast cancer cells were identified where CAV1 levels were low due to epigenetic suppression and could be reverted by treatment with the methyltransferase inhibitor 5’-azacytidine. Exposure of these cells to anti-neoplastic drugs for short periods of time (24-48 h) increased CAV1 expression through ROS production and MEK/ERK activation. In colon cancer cells, increased CAV1 expression enhanced migration and invasion in vitro via pathways requiring Src-family kinases, as well as Rac-1 activity. Finally, elevated CAV1 expression in colon cancer cells following exposure in vitro to sub-cytotoxic drug concentrations increased their metastatic potential in vivo. Therefore exposure of cancer cells to anti-neoplastic drugs at non-lethal drug concentrations induces signaling events and changes in transcription that favor CAV1-dependent migration, invasion and metastasis. Importantly, this may occur in the absence of selection for drug-resistance.
Collapse
Affiliation(s)
- Natalia I Díaz-Valdivia
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudia C Calderón
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge E Díaz
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Lorena Lobos-González
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Hugo Sepulveda
- Gene Regulation Laboratory, Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Rina J Ortíz
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Universidad Bernardo O Higgins, Facultad de Salud, Departamento de Ciencias Químicas y Biológicas, Santiago, Chile
| | - Samuel Martinez
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Horacio J Maldonado
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Patricio Silva
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Sergio Wehinger
- Faculty of Health Sciences, University of Talca, Interdisciplinary Excellence Research Program Healthy Ageing (PIEI-ES), Talca, Chile
| | - Verónica A Burzio
- Fundación Ciencia & Vida, Santiago, Chile.,Faculty of Biological Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Martín Montecino
- Gene Regulation Laboratory, Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andrés Bello, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
41
|
Ali N, Rashid S, Nafees S, Hasan SK, Shahid A, Majed F, Sultana S. Protective effect of Chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach. Chem Biol Interact 2017; 272:80-91. [PMID: 28479099 DOI: 10.1016/j.cbi.2017.05.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/14/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
Methotrexate (MTX) is a drug which is used to treat different types of cancers but hepatotoxicity limits its clinical use. Chlorogenic acid (CGA) is one of the most abundant naturally occurring polyphenols in the human diet. Here, we assessed the effect of CGA against MTX-induced hepatotoxicity and investigated the underlying possible mechanisms in Wistar Rats. Rats were pre-treated with CGA (50 or 100 mg kg/b.w) and administered a single dose of MTX (20 mg/kg, b.w.). MTX caused hepatotoxicity as evidenced by significant increase in serum toxicity markers, histopathological changes. decreased activities of anti-oxidant armory (SOD, CAT, GPx, GR) and GSH content. MTX significantly causes upregulation of iNOS, Cox-2, Bax and downregulation of Bcl-2 expressions, it causes higher caspase 3, 9 activities. However CGA pretreatment alleviates the hepatotoxicity by decreasing the oxidative stress. CGA inhibited Cox-2, iNOS, Bax, Bcl-2 and Caspases 3, 9 mediated inflammation and apoptosis, and improve the histology induced by MTX. Thus, these findings demonstrated the hepatoprotective nature of CGA by attenuating the pro-inflammatory and apoptotic mediators and improving antioxidant competence in hepatic tissue. These results imply that CGA has perfective effect against MTX-induced liver injury. Hence CGA supplementation might be helpful in abrogation of MTX toxicity.
Collapse
Affiliation(s)
- Nemat Ali
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Summya Rashid
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Sana Nafees
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Syed Kazim Hasan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Ayaz Shahid
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Ferial Majed
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Sarwat Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
42
|
Arpag H, Gül M, Aydemir Y, Atilla N, Yiğitcan B, Cakir T, Polat C, Þehirli Ö, Sayan M. Protective Effects of Alpha-Lipoic Acid on Methotrexate-Induced Oxidative Lung Injury in Rats. J INVEST SURG 2017; 31:107-113. [PMID: 28340320 DOI: 10.1080/08941939.2017.1296513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Oxidative stress is one of the major causes of methotrexate induced lung injury (MILI). Alpha-lipoic acid (ALA), which occurs naturally in human food, has antioxidative and anti-inflammatory activities. The aim of this study was to research the potential protective role of ALA on MILI in rats. METHODS Twenty one rats were randomly subdivided into three groups: control (group I), methotrexate (MTX) treated (group II), and MTX+ALA treated (group III). Lung injury was performed with a single dose of MTX (20 mg/kg) to groups 2 and 3. On the sixth day, animals in all groups were sacrificed by decapitation and lung tissue and blood samples were removed for histological examination and also measurement the levels of interleukin-1-beta (IL-1β), malondialdehyde (MDA), glutathione (GSH), tumour necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), and sodium potassium-adenosine triphosphatase (Na+/K+ATPase). RESULTS In MTX group tissue GSH, Na+/K+ATPase activities were lower, tissue MDA, MPO and plasma IL-1?, TNF-? were significantly higher than the other groups. Histopathological examination showed that lung injury was less severe in group 2 according to group 3. CONCLUSIONS Oxidative damage of MTX in rat lung is partially reduced when combined with ALA.
Collapse
Affiliation(s)
- Huseyin Arpag
- a Department of Chest Disease , Kahramanmaras Sutcu Imam University Medical Faculty , Kahramanmaras , Turkey
| | - Mehmet Gül
- b Department of Histology , Malatya Inonu University Medical Faculty , Malatya , Turkey
| | - Yusuf Aydemir
- c Department of Chest Diseases , Sakarya University Medical Faculty , Sakarya , Turkey
| | - Nurhan Atilla
- a Department of Chest Disease , Kahramanmaras Sutcu Imam University Medical Faculty , Kahramanmaras , Turkey
| | - Birgül Yiğitcan
- b Department of Histology , Malatya Inonu University Medical Faculty , Malatya , Turkey
| | - Tugrul Cakir
- d Department of General Surgery , Antalya Education and Research Hospital , Antalya , Turkey
| | - Cemal Polat
- e Department of Biochemistry , Public Health Laboratuary , Kütahya , Turkey
| | - Özer Þehirli
- f Department of Pharmacology , Marmara University Medicine Faculty, Istanbul, Turkey and Near East University Faculty of Denstry , Nicosia , North Cyprus
| | - Muhammet Sayan
- g Department of Thoracic Surgery , Kahramanmaras Sutcu Imam University , Kahramanmaras , Turkey
| |
Collapse
|
43
|
Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats. Biomed Pharmacother 2017; 87:437-442. [DOI: 10.1016/j.biopha.2016.12.123] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 11/20/2022] Open
|
44
|
Nardini C, Devescovi V, Liu Y, Zhou X, Lu Y, Dent JE. Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation. Sci Rep 2016; 6:39043. [PMID: 28008941 PMCID: PMC5180236 DOI: 10.1038/srep39043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022] Open
Abstract
Degeneration is a hallmark of autoimmune diseases, whose incidence grows worldwide. Current therapies attempt to control the immune response to limit degeneration, commonly promoting immunodepression. Differently, mechanical stimulation is known to trigger healing (regeneration) and it has recently been proposed locally for its therapeutic potential on severely injured areas. As the early stages of healing consist of altered intra- and inter-cellular fluxes of soluble molecules, we explored the potential of this early signal to spread, over time, beyond the stimulation district and become systemic, to impact on distributed or otherwise unreachable injured areas. We report in a model of arthritis in rats how stimulations delivered in the subcutaneous dorsal tissue result, over time, in the control and healing of the degeneration of the paws' joints, concomitantly with the systemic activation of wound healing phenomena in blood and in correlation with a more eubiotic microbiome in the gut intestinal district.
Collapse
Affiliation(s)
- Christine Nardini
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, P.R. China
- CNR IAC “Mauro Picone”, Via dei Taurini 19 00185-Roma, Italy
| | - Valentina Devescovi
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, P.R. China
| | - Yuanhua Liu
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, P.R. China
- Bioinformatics Platform, Institut Pasteur of Shanghai, CAS, Shanghai 200031, P.R. China
| | - Xiaoyuan Zhou
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, P.R. China
| | - Youtao Lu
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, P.R. China
| | - Jennifer E. Dent
- Group of Clinical Genomic Networks, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031, P.R. China
- NORSAS consultancy limited, Norwich (NR12 8QP), Norfolk, UK
| |
Collapse
|
45
|
Kuduban O, Mazlumoglu MR, Kuduban SD, Erhan E, Cetin N, Kukula O, Yarali O, Cimen FK, Cankaya M. The effect of hippophae rhamnoides extract on oral mucositis induced in rats with methotrexate. J Appl Oral Sci 2016; 24:423-430. [PMID: 27812611 PMCID: PMC5083018 DOI: 10.1590/1678-775720160139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/31/2016] [Indexed: 11/22/2022] Open
Abstract
Objective: To investigate the effect of HRE (Hippophae rhamnoides extract) on oral mucositis induced in rats with MTX. Material and Methods: Experimental animals were divided into groups as healthy (HG), HRE+MTX (HMTX), and control group, which received MTX (MTXC). HMTX group received 50 mg/kg HRE while MTXC and HG groups received equivolume distilled water with gavage once a day. After one hour of HRE and distilled water administration, HMTX and MTXC groups received a single dose of oral MTX 5 mg/ kg. This procedure was repeated for one month. Results: The levels of MDA, IL-1β, and TNF-α were found to be significantly higher in the cheek, lower lip, and tongue tissue of the animals receiving MTX, compared with HG and HMTX groups; however, these parameters were lower in the cheek and low lip tissue, and a milder damage ocurred in these tissues, compared with the tongue tissue in MTXC group. No histopathologic damage was observed in the cheek, lower lip, and tongue tissues of the rats treated with HRE. Conclusion: This findings indicate that HRE as a natural product is an important advantage compared with synthetic drugs for prophylaxis of oral mucositis developed due to MTX.
Collapse
Affiliation(s)
- Ozan Kuduban
- Erzurum Education and Research Hospital, Ear Nose and Throat Head&Neck Surgery Clinic, Erzurum, Turkey
| | | | - Selma Denktas Kuduban
- Palandoken State Hospital, Department of Plastic Reconstructive and Esthetic Surgery, Erzurum, Turkey
| | - Ertugrul Erhan
- Erzincan University, Faculty of Medicine, Department of Otorhinolaryngology, Erzincan, Turkey
| | - Nihal Cetin
- Erzincan University, Faculty of Medicine, Department of Pharmacology, Erzincan, Turkey
| | - Osman Kukula
- Ondokuzmayis University, Faculty of Medicine, Department of Pharmacology, Samsun, Turkey
| | - Oguzhan Yarali
- Erzurum Training and Research Hospital, Department of Medical Genetics, Erzurum, Turkey
| | - Ferda Keskin Cimen
- Mengucek Gazi Education and Research Hospital, Department of Pathology, Erzincan, Turkey
| | - Murat Cankaya
- Erzincan University, Faculty of Arts and Sciences, Department of Biology, Erzincan, Turkey
| |
Collapse
|
46
|
Xie JH, Fan ST, Nie SP, Yu Q, Xiong T, Gong D, Xie MY. Lactobacillus plantarum NCU116 attenuates cyclophosphamide-induced intestinal mucosal injury, metabolism and intestinal microbiota disorders in mice. Food Funct 2016; 7:1584-92. [PMID: 26906433 DOI: 10.1039/c5fo01516b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anticancer drugs at high doses often damage the intestinal mucosa and metabolism. Lactobacillus plantarum NCU116 (NCU116) isolated from pickled vegetables was orally given to cyclophosphamide-treated mice to determine its effects on intestinal mucosal injury, nutrient metabolism and colon microbiota, and investigate the mechanisms accounting for its effects. Mice treated with the bacterium were found to favorably recover intestine morphology of villus height and crypt depth, and have improved mucins expression and quantity of goblet cells, as well as intestinal metabolism by increasing the level of short-chain fatty acids and reducing the concentration of ammonia in the colon feces. In addition, NCU116-treated mice showed a higher diversity of colonic microbiota than the group without bacterium supplementation. The number of Lactobacillus and Bifidobacterium in the mouse colon was increased after bacterium intake, which decreased the number of potentially pathogenic bacteria, Escherichia coli and Pseudomonas. These results indicated that NCU116 could be of significant advantage in reducing intestinal mucosal injury and improving the intestinal metabolism and the intestinal microbiota.
Collapse
Affiliation(s)
- Jun-Hua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Song-Tao Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China. and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
47
|
Najafi G, Atashfaraz E, Farokhi F. Attenuation of Methotrexate-Induced Embryotoxicity and Oxidative Stress by Ethyl Pyruvate. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2016; 10:232-8. [PMID: 27441057 PMCID: PMC4948076 DOI: 10.22074/ijfs.2016.4914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 08/01/2015] [Indexed: 01/24/2023]
Abstract
Background Methotrexate (MTX), as an anti-folate agent, is widely used in the
treatment of rheumatic disorders and malignant tumors, however it damages reproductive sys-
tem in mice. The aim of this research was to study the effects of ethyl pyruvate (EP) on embryo
development and oxidative stress changes in the testis of mice treated with MTX.
Materials and Methods In this experimental study, thirty-two adult male Naval
Medical Research Institute mice, with average weight of 26 ± 2 g, were divided into
four groups. The first group (control) received distilled water (0.1 ml/mice/day), while
the second group was intraperitoneally (IP) treated with 20 mg/kg MTX once per
week. The third group was IP treated with 40 mg/kg/day EP, and the fourth group was
IP treated with both 20 mg/kg MTX and 40 mg/kg/day EP for 30 days. At the end of
treatment fertilization rate and embryonic development were evaluated. Differences
between these groups were assessed by ANOVA using the SPSS software package for
Windows with a Tukey-Kramer multiple post-hoc comparison test. Results MTX treatment caused significant (P<0.05) increase in malondialdehyde
(MDA) and reduced catalase (CAT), as well as leading to in vitro fertilization (IVF) and
embryonic development. The improved effects of EP on the IVF were determined by the
reduced level of MDA (index of oxidative stress) and significant increased level of CAT
(a key antioxidant). We observed significant increase in fertilization rate and embryonic
development in the treated group with both MTX and EP. Conclusion It is suggested that EP can be useful in ameliorating testicular
damages and embryotoxicity induced by MTX. These effects could be attributed to its
antioxidant properties.
Collapse
Affiliation(s)
- Gholamreza Najafi
- Department of Basic Sciences (Anatomy and Embryology), Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Elham Atashfaraz
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Farah Farokhi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| |
Collapse
|
48
|
Yuksel Y, Yuksel R, Yagmurca M, Haltas H, Erdamar H, Toktas M, Ozcan O. Effects of quercetin on methotrexate-induced nephrotoxicity in rats. Hum Exp Toxicol 2016; 36:51-61. [PMID: 27005763 DOI: 10.1177/0960327116637414] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE This experimental study was conducted to elucidate the possible protective/therapeutic effects of quercetin against methotrexate (Mtx)-induced kidney toxicity with biochemical and histopathological studies. METHODS Twenty-four adult male rats were randomly divided into four groups, as follows: control group (saline intraperitoneally (i.p.), 9 days), Mtx group (20 mg/kg i.p., single dose), Mtx + quercetin group (50 mg/kg quercetin was orally administered 2 days before and 6 days after Mtx administration) and only quercetin group (50 mg/kg oral, 9 days). Structural changes were evaluated by hematoxylin-eosin and periodic acid-Schiff stainings. Apoptotic changes were investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and caspase-3 antibody. Superoxide dismutase (SOD) and malondialdehyde (MDA) levels were measured in tissue and plasma samples. RESULTS Mtx compared with the control group, there was significant increase in nephrotoxic tissue damage findings, in addition to apoptotic index (APOI) and caspase-3 expression ( p < 0.05). Mtx + quercetin group revealed significantly lower histopathological damage and APOI and caspase-3 expression decreased when compared to Mtx group. MDA levels were increased in Mtx group compared to others, and by the use of quercetin, this increase was significantly reduced. SOD levels were higher in Mtx group than others. This increase was evaluated as a relative increase arising from oxidative damage caused by Mtx. CONCLUSION As a result, Mtx administration may involve oxidative stress by causing structural and functional damage in kidney tissue in rats. Quercetin reduced the Mtx-induced oxidative stress through its antioxidant properties and so quercetin may be promising to alleviate Mtx-induced renal toxicity.
Collapse
Affiliation(s)
- Yasemin Yuksel
- 1 Department of Reproductive Endocrinology and IVF, Laboratory of ART, Dr. Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara, Turkey
| | - Ramazan Yuksel
- 2 Department of Physiology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Murat Yagmurca
- 3 Department of Histology and Embryology, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Hacer Haltas
- 4 Department of Pathology, Faculty of Medicine, Fatih University, Istanbul, Turkey
| | - Husamettin Erdamar
- 5 Department of Biochemistry, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Muhsin Toktas
- 6 Department of Anatomy, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| | - Osman Ozcan
- 3 Department of Histology and Embryology, Faculty of Medicine, Turgut Ozal University, Ankara, Turkey
| |
Collapse
|
49
|
Oktem F, Yilmaz HR, Ozguner F, Olgar S, Ayata A, Uzare E, Uz E. Methotrexate-induced renal oxidative stress in rats: the role of a novel antioxidant caffeic acid phenethyl ester. Toxicol Ind Health 2016; 22:241-7. [PMID: 16924955 DOI: 10.1191/0748233706th265oa] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The exact mechanisms of methotrexate-induced renal toxicity have not yet been determined. However, several hypotheses have been put forward, including oxidative stress. The aim of this study was to investigate the role of caffeic acid phenethyl ester (Caffeic Ester), a novel antioxidant, on methotrexate-induced renal oxidative stress in rats. Nineteen adult male rats were equally divided into three experimental groups as follows: control group, methotrexate-treated group, and methotrexate-/Caffeic Ester-treated group. A single dose of methotrexate (20 mg/kg) was administered intraperitoneally (ip). Caffeic Ester (10 mmol/kg) was administered ip, once daily for seven days. Malondialdehyde (MDA) levels (an index of lipid peroxidation) were used as a marker of oxidative stress-induced renal injury. Similarly, the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were determined to evaluate the changes of antioxidant status in renal tissue. Methotrexate administration to control rats increased MDA levels (PB < 0.0001), but decreased SOD, CAT and GSH-Px activities in renal tissue (PB < 0.0001). Caffeic Ester-/methotrexate treatment caused a significant decrease in MDA levels (PB < 0.001), and caused an increase in SOD, CAT and GSH-Px activities when compared with methotrexate treatment alone (PB < 0.001, < 0.05, < 0.0001, respectively). In conclusion, methotrexate leads to a reduction in antioxidant enzymatic defense capacity and causes lipid peroxidation in renal tissue. Similarly, Caffeic Ester exhibits protective effects on methotrexate-induced renal oxidative impairment in rats.
Collapse
Affiliation(s)
- Faruk Oktem
- Department of Pediatric Nephrology, School of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey.
| | | | | | | | | | | | | |
Collapse
|
50
|
Arslan A, Ozcicek A, Suleyman B, Coban TA, Cimen FK, Nalkiran HS, Kuzucu M, Altuner D, Cetin N, Suleyman H. Effects of nimesulide on the small intestine mucositis induced by methotrexate in rats. Exp Anim 2016; 65:329-336. [PMID: 27333839 PMCID: PMC5111835 DOI: 10.1538/expanim.15-0122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intestinal mucositis is one of the major problems in the patients receiving cancer treatment. Nimesulide is a drug with antioxidant, antiinflammatory and antiulcer features. We aimed to investigate the effect of nimesulide on the small intestine mucositis induced by methotrexate (MTX) in rats. Experimental animals were divided into the control group, MTX group (MTXG) and nimesulide+MTX administered group (NMTXG) with eight rats per group. The control and MTXG groups were given distilled water by gavage and the NMTXG was given nimesulide 100 mg/kg orally. After one hour, the NMTXG and MTXG rat groups were administered oral MTX 5 mg/kg. This procedure was repeated once a day for 15 days and the rats were sacrificed. The duodenum and jejunum of each rat was removed for the assessment of biochemical markers and histopathological evaluation. Malondialdehyde (MDA) and myeloperoxidase (MPO) levels were significantly higher in the duodenal and jejunal tissues of the animals which received MTX, compared to the control and NMTXG (P<0.001). Also, the levels of total glutathione (tGSH), glutathione reductase (GSHRd), glutathione peroxidase (GSHPx), catalase (CAT) and superoxide dismutase (SOD) were significantly lower in the MTXG (P<0.001) compared to other groups. MTX led to villus and crypt epithelial damage and inflammation containing marked PMNL and eosinophils in the intestinal tissues histopathologically. Whereas, there was only mild irregularities in the villus structures of the NMTXG. Nimesulide protected the small intestines against damage by MTX. Intestinal mucositis caused by MTX may be preventable by co-administered nimesulide.
Collapse
Affiliation(s)
- Aynur Arslan
- Department of Internal Medicine, Istinye State Hospital, 34465, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | |
Collapse
|