1
|
Chen Z, Zhang JY, Jiang Q, Bao YY, Li ZM, Zhou SH, Zhong JT, Fu ZM, Cao ZZ, Fan J, Yao HT. Pepsin Increases the Proliferation of Vocal Cord Leukoplakia Epithelial Cells by Inducing Autophagy. Otolaryngol Head Neck Surg 2023; 169:1247-1258. [PMID: 37264983 DOI: 10.1002/ohn.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To investigate the role of H+ /K+ ATPase in the proliferation of pepsin-induced vocal cord leukoplakia (VCL) cells. STUDY DESIGN Translation research. SETTING Affiliated Hospital of University. METHODS Immunohistochemistry was used to detect pepsin, H+ /K+ ATPase (ATP4A and ATP4B subunits) in VCL cells with varying degrees of dysplasia. After primary cultures of VCL cells had been established, the effects of acidified pepsin on the proliferation, autophagy, and H+ /K+ -ATPase distribution of VCL cells were investigated. RESULTS The levels of pepsin, ATP4A, and ATP4B were significantly higher in VCL tissue with moderate-to-severe dysplasia than in normal tissue (p < .05); these levels gradually increased according to dysplasia severity. The expression levels of ATP4A and ATP4B were significantly correlated with the amount of pepsin in VCL cells (p < .01). Acidified pepsin enhanced the levels of proliferation and autophagy in human VCL epithelial cells. The cloning- and autophagy-promoting effects of acidified pepsin on VCL cells were partially reversed by pantoprazole; these effects were completely blocked by the autophagy inhibitor chloroquine. Finally, acidified pepsin promoted the colocalization of H+ /K+ -ATPase and lysosomes in VCL cells; it also mediated lysosome acidification. CONCLUSION Pepsin and H+ /K+ -ATPase may contribute to the progression of VCL. Specifically, acidified pepsin may regulate lysosome acidification by promoting lysosomal localization of H+ /K+ -ATPase.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jia-Yu Zhang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Qian Jiang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhi-Mei Li
- Department of Otolaryngology, The Zhoushan Hospital of Zhejiang University, Zhoushan, Zhejiang, China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jiang-Tao Zhong
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zi-Ming Fu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zai-Zai Cao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Hong-Tian Yao
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
2
|
Uno S, Tanaka Y, Shibuya S, Okada K, Fujii S, Kusaka T, Minamiguchi S, Kushima R, Haga H. Primary pure pancreatic-type acinar cell carcinoma of the stomach. Pathol Int 2021; 71:798-800. [PMID: 34499781 DOI: 10.1111/pin.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Shunsuke Uno
- Department of Diagnostic Pathology, Kyoto Katsura Hospital, Nishikyo-ku, Kyoto, Japan.,Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Yasuyuki Tanaka
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Nishikyo-ku, Kyoto, Japan
| | - Shinsuke Shibuya
- Department of Diagnostic Pathology, Kyoto Katsura Hospital, Nishikyo-ku, Kyoto, Japan
| | - Keijiro Okada
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Nishikyo-ku, Kyoto, Japan
| | - Shigehiko Fujii
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Nishikyo-ku, Kyoto, Japan
| | - Toshihiro Kusaka
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Nishikyo-ku, Kyoto, Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Ryoji Kushima
- Department of Clinical Laboratory Medicine and Division of Diagnostic Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
3
|
Zhang Z, Bao YY, Zhou SH. Pump Proton and Laryngeal H +/K + ATPases. Int J Gen Med 2020; 13:1509-1514. [PMID: 33363399 PMCID: PMC7754099 DOI: 10.2147/ijgm.s284952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The presence of extra-gastric H+/K+ ATPases may explain the clinically significant effect of proton pump inhibitor (PPI) pharmacotherapy in patients with chronic laryngitis related to laryngopharyngeal reflux disease (LPRD) but without gastroesophageal reflux disease (GERD) symptoms. Given the need for a better understanding of GERD and LPRD, we review the various proton pumps with respect to their classification, function, and distribution. We then consider the potential role of the laryngeal H+/K+ ATPase pump in LPRD. Methods We searched databases of PubMed, EMBASE, and Web of Science to achieve related published before September 15, 2020. Results There were only seven English-literatures meeting inclusive criteria about laryngeal H+/K+ ATPases. Some studies provide convincing evidence of a laryngeal H+/K+ ATPase in normal laryngeal tissues but also suggest the potential role of the proton pump in the abnormal mucus secretion frequently seen in patients with chronic laryngitis. Conclusion A laryngeal H+/K+ ATPase expresses in normal laryngeal tissues. These findings question the current understanding of GERD and LPRD.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Otolaryngology, Peoples Hospital of Yuyao City, Yuyao 315400, Zhejiang, People's Republic of China
| | - Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| |
Collapse
|
4
|
Bao YY, Jiang Q, Li ZW, Yu E, Zhou SH, Yao HT, Fan J, Yong WW. Gastric H +/K +-ATPase Expression in Normal Laryngeal Tissue and Laryngeal Carcinoma. Onco Targets Ther 2020; 13:12919-12931. [PMID: 33363389 PMCID: PMC7751835 DOI: 10.2147/ott.s276233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Background Several studies have suggested that laryngopharyngeal reflux disease (LPRD) or gastroesophageal reflux disease (GERD) is an independent risk factor for laryngeal carcinoma. However, it remains unclear whether either condition affects the level of H+/K+-ATPase expression in laryngeal carcinoma. Materials and Methods Immunohistochemistry, real-time RT-PCR, and Western blotting were used to explore the distributions of proton pump (H+/K+-ATPase) α- and β-subunits in normal laryngeal tissue and laryngeal carcinoma. Results Messenger RNAs encoding both the α- and β-subunits were found in the normal epiglottic, ventricular fold, vocal fold, and arytenoid mucosae, as well as epiglottic cartilage. The distributions and expression levels of H+/K+-ATPase α-subunits in various laryngeal subregions did not significantly differ in IHC, RT-PCR, or Western blotting. However, Western blotting revealed a significant difference between the expression level of the β-subunit protein in the epiglottic cartilage and the levels in other sites. The expression levels of both subunits were significantly higher in carcinomatous than in paracarcinomatous tissue and normal laryngeal tissue. The mean follow-up duration was 66.2 months (range, 17–162 months). In all, 4 patients died during follow-up, 4 were lost to follow-up, and 22 were alive and free of disease at the end of follow-up. Two patients developed lung metastases and six developed disease recurrences (at 2, 8, 14, 16, 36, and 41 months). The 3- and 5-year overall survival (OS) rates were 93.0% and 77.0%, respectively. Univariate analyses showed that the 5-year OSs were significantly associated with the T, N, and clinical stages but not with age, alcohol use, pathological differentiation, or the expression levels of the α- or β-subunits (as revealed by IHC, RT-PCR, or Western blotting). However, in multivariate regression analyses, the 5-year OSs were not significantly associated with any clinicopathological factor or the expression levels of either subunit. Conclusion H+/K+-ATPase is expressed in the normal larynx, including in the epiglottic cartilage and the mucosae of the epiglottis, ventricular fold, and arytenoid vocal fold. The expression levels of the H+/K+-ATPase α- and β-subunits in laryngeal carcinomas were higher than in normal laryngeal tissues.
Collapse
Affiliation(s)
- Yang-Yang Bao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Qian Jiang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Zhen-Wei Li
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China.,Department of Otolaryngology, The First People's Hospital of Hangzhou City, Hangzhou, Zhejiang 310013, People's Republic of China
| | - Er Yu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Hong-Tian Yao
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Wei-Wei Yong
- Department of Pathology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| |
Collapse
|
5
|
McCormick CA, Samuels TL, Battle MA, Frolkis T, Blumin JH, Bock JM, Wells C, Yan K, Altman KW, Johnston N. H+/K+ATPase Expression in the Larynx of Laryngopharyngeal Reflux and Laryngeal Cancer Patients. Laryngoscope 2020; 131:130-135. [PMID: 32250454 DOI: 10.1002/lary.28643] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The gastric H+/K+ ATPase proton pump has previously been shown to be expressed in the human larynx, however its contribution to laryngopharyngeal reflux (LPR) signs, symptoms and associated diseases such as laryngeal cancer is unknown. Proton pump expression in the larynx of patients with LPR and laryngeal cancer was investigated herein. A human hypopharyngeal cell line expressing the proton pump was generated to investigate its effects. STUDY DESIGN In-vitro translational. METHODS Laryngeal biopsies were obtained from three LPR and eight LSCC patients. ATP4A, ATP4B and HRPT1 were assayed via qPCR. Human hypopharyngeal FaDu cell lines stably expressing proton pump were created using lentiviral transduction and examined via transmission electron microscopy and qPCR for genes associated with inflammation or laryngeal cancer. RESULTS Expression of ATP4A and ATP4B was detected in 3/3 LPR, 4/8 LSCC-tumor and 3/8 LSCC-adjacent specimens. Expression of ATP4A and ATP4B in FaDu elicited mitochondrial damage and expression of IL1B, PTGS2, and TNFA (P < .0001); expression of ATP4B alone did not. CONCLUSIONS Gastric proton pump subunits are expressed in the larynx of LPR and LSCC patients. Mitochondrial damage and changes in gene expression observed in cells expressing the full proton pump, absent in those expressing a single subunit, suggest that acid secretion by functional proton pumps expressed in upper airway mucosa may elicit local cell and molecular changes associated with inflammation and cancer. LEVEL OF EVIDENCE NA Laryngoscope, 131:130-135, 2021.
Collapse
Affiliation(s)
- Caroline A McCormick
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Tina L Samuels
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Michele A Battle
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Talia Frolkis
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Joel H Blumin
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Jonathan M Bock
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Clive Wells
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Ke Yan
- Department of Pediatrics Quantitative Health Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| | - Kenneth W Altman
- Department of Otolaryngology, Geisinger Health System, Danville, California, U.S.A
| | - Nikki Johnston
- Department of Otolaryngology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.,Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A
| |
Collapse
|
6
|
Abstract
1-(5-(1H-indol-5-yl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl)-N-methylmethanamine (KFP-H008),a novel and potent potassium-competitive acid blocker for the treatment of acid secretion related diseases, has not been reported previously. In this study, we demonstrated that KFP-H008 inhibits basal acid secretion, 2-deoxy-D-glucose- (2DG-) stimulated gastric acid secretion in rats. KFP-H008 blocked histamine-stimulated acid secretion in rats and heidenhain pouch dogs and reversed acid output in isolated gastric perfusion under histamine stimulation. In all the animal experiments, KFP-H008 exerted a more effective, potent and longer-lasting inhibitory action in comparison with lansoprazole, a proton pump inhibitor (PPI) commonly used in clinic. KFP-H008 inhibited H+-K+-ATPase activity both at pH 6.5 and pH 7.5, and was unaffected by pH. The inhibitory action was reversible and was achieved in a K+-competitive manner. Furthermore, KFP-H008 did not affect Na+-K+-ATPase activity, thus exhibiting high selectivity, which is different from PPIs. In all, KFP-H008, a novel potassium-competitive acid blocker, may provide new option for the patients with acid-related diseases and provide longer-lasting inhibitory action than drugs commonly used in clinical treatment.
Collapse
|
7
|
Lin S, Lin B, Wang X, Pan Y, Xu Q, He JS, Gong W, Xing R, He Y, Guo L, Lu Y, Wang JM, Huang J. Silencing of ATP4B of ATPase H +/K + Transporting Beta Subunit by Intragenic Epigenetic Alteration in Human Gastric Cancer Cells. Oncol Res 2017; 25:317-329. [PMID: 28281974 PMCID: PMC7840950 DOI: 10.3727/096504016x14734735156265] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ATPase H+/K+ Transporting Beta Subunit (ATP4B) encodes the β subunit of the gastric H+, K+-ATPase, which controls gastric acid secretion and is therefore a target for acid reduction. Downregulation of ATP4B was recently observed in human gastric cancer (GC) without known mechanisms. In the present study, we demonstrated that ATP4B expression was decreased in human GC tissues and cell lines associated with DNA hypermethylation and histone hypoacetylation of histone H3 lysine 9 at its intragenic region close to the transcriptional start site. The expression of ATP4B was restored in GC cell lines by treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-AZA), or histone deacetylase inhibitor, trichostatin A (TSA), with further enhancement by combined treatment with both drugs. In contrast, 5-AZA had no effect on ATP4B expression in human hepatocellular carcinoma (HCC) and pancreatic cancer cell lines, in which ATP4B was silenced and accompanied by intragenic methylation. Chromatin immunoprecipitation (ChIP) showed that, in BGC823 GC cells, histone H3 lysine 9 acetylation (H3K9ac) was enhanced in the intragenic region of ATP4B upon TSA treatment, whereas 5-AZA showed a minimal effect. Additionally, ATP4B expression enhanced the inhibitory effects of chemotherapeutic mediation docetaxel on GC cell growth. Thus, as opposed to HCC and pancreatic cancer cells, the silencing of ATP4B in GC cells is attributable to the interplay between intragenic DNA methylation and histone acetylation of ATP4B, the restoration of which is associated with a favorable anticancer effect of docetaxel. These results have implications for targeting epigenetic alteration at the intragenic region of ATP4B in GC cells to benefit diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Shuye Lin
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
- †Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bonan Lin
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
| | - Xiaoyue Wang
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
| | - Yuanming Pan
- ‡Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, P.R. China
| | - Qing Xu
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
| | - Jin-Shen He
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
| | - Wanghua Gong
- §Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Rui Xing
- ‡Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, P.R. China
| | - Yuqi He
- ¶Department of Gastroenterology, PLA Army General Hospital, Beijing, P.R. China
| | - Lihua Guo
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
| | - Youyong Lu
- ‡Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, P.R. China
| | - Ji Ming Wang
- †Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jiaqiang Huang
- *College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, P.R. China
- †Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
8
|
Angermeier E, Domes K, Lukowski R, Schlossmann J, Rathkolb B, Angelis MH, Hofmann F. Iron deficiency anemia in cyclic GMP kinase knockout mice. Haematologica 2017; 101:e48-51. [PMID: 26830212 DOI: 10.3324/haematol.2015.137026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Katrin Domes
- Institut für Pharmakologie und Toxikologie, Technische Universität München
| | - Robert Lukowski
- Pharmacology, Toxicology, and Clinical Pharmacy, Institute of Pharmacy, Universität Tübingen
| | - Jens Schlossmann
- Pharmacology and Toxicology, Institute of Pharmacy, Universität Regensburg
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München
| | - Martin Hraběde Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie, Technische Universität München
| |
Collapse
|
9
|
Inatomi N, Matsukawa J, Sakurai Y, Otake K. Potassium-competitive acid blockers: Advanced therapeutic option for acid-related diseases. Pharmacol Ther 2016; 168:12-22. [PMID: 27514776 DOI: 10.1016/j.pharmthera.2016.08.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023]
Abstract
Acid-related diseases (ARDs), such as peptic ulcers and gastroesophageal reflux disease, represent a major health-care concern. Some major milestones in our understanding of gastric acid secretion and ARD treatment reached during the last 50years include 1) discovery of histamine H2-receptors and development of H2-receptor antagonists, 2) identification of H+,K+-ATPase as the parietal cell proton pump and development of proton pump inhibitors (PPIs), and 3) identification of Helicobacter pylori (H. pylori) as the major cause of peptic ulcers and development of effective eradication regimens. Although PPI treatments have been effective and successful, there are limitations to their efficacy and usage, i.e. short half-life, insufficient acid suppression, slow onset of action, and large variation in efficacy among patients due to CYP2C19 metabolism. Potassium-competitive acid blockers (P-CABs) inhibit H+,K+-ATPase in a reversible and K+-competitive manner, and exhibit almost complete inhibition of gastric acid secretion from the first dose. Many pharmaceutical companies have tried to develop P-CABs, but most of their clinical development has been discontinued due to safety concerns or a similar efficacy to PPIs. Revaprazan was developed in Korea and was the first P-CAB approved for sale. Vonoprazan, approved in 2014 in Japan, has a completely different chemical structure and higher pKa value compared to other P-CABs, and exhibits rapid onset of action and prolonged control of intragastric acidity. Vonoprazan is an effective treatment for ARDs that is especially effective in healing reflux esophagitis and for H. pylori eradication. P-CABs, such as vonoprazan, promise to further improve the management of ARDs.
Collapse
Affiliation(s)
- Nobuhiro Inatomi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Jun Matsukawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan.
| | - Yuuichi Sakurai
- Japan Development Center, Takeda Pharmaceutical Company Limited, Chuo-ku, Osaka 540-8645, Japan
| | - Kazuyoshi Otake
- Global Medical Affairs Japan Department, Takeda Pharmaceutical Company Limited, Chuo-ku, Tokyo 103-8668, Japan
| |
Collapse
|
10
|
Otake K, Sakurai Y, Nishida H, Fukui H, Tagawa Y, Yamasaki H, Karashima M, Otsuka K, Inatomi N. Characteristics of the Novel Potassium-Competitive Acid Blocker Vonoprazan Fumarate (TAK-438). Adv Ther 2016; 33:1140-57. [PMID: 27287852 DOI: 10.1007/s12325-016-0345-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Kazuyoshi Otake
- Global Medical Affairs Japan Department, Takeda Pharmaceutical Co., Ltd., Tokyo, Japan.
| | - Yuuichi Sakurai
- Clinical Science, Takeda Development Center Japan, Takeda Pharmaceutical Co., Ltd., Osaka, Japan
| | - Haruyuki Nishida
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Hideo Fukui
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Yoshihiko Tagawa
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Hitomi Yamasaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Masatoshi Karashima
- Analytical Development Laboratories, CMC Center, Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan
| | - Keiichi Otsuka
- Analytical Development Laboratories, CMC Center, Takeda Pharmaceutical Co., Ltd., Osaka, Japan
| | - Nobuhiro Inatomi
- Extra Value Generation Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan
| |
Collapse
|
11
|
Proton pump (H+/K+-ATPase) expression in human larynx. Auris Nasus Larynx 2015; 42:458-62. [DOI: 10.1016/j.anl.2015.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/23/2022]
|
12
|
Walentek P, Beyer T, Hagenlocher C, Müller C, Feistel K, Schweickert A, Harland RM, Blum M. ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia. Dev Biol 2015; 408:292-304. [PMID: 25848696 DOI: 10.1016/j.ydbio.2015.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
Proton pump inhibitors (PPIs), which target gastric H(+)/K(+)ATPase (ATP4), are among the most commonly prescribed drugs. PPIs are used to treat ulcers and as a preventative measure against gastroesophageal reflux disease in hospitalized patients. PPI treatment correlates with an increased risk for airway infections, i.e. community- and hospital-acquired pneumonia. The cause for this correlation, however, remains elusive. The Xenopus embryonic epidermis is increasingly being used as a model to study airway-like mucociliary epithelia. Here we use this model to address how ATP4 inhibition may affect epithelial function in human airways. We demonstrate that atp4a knockdown interfered with the generation of cilia-driven extracellular fluid flow. ATP4a and canonical Wnt signaling were required in the epidermis for expression of foxj1, a transcriptional regulator of motile ciliogenesis. The ATP4/Wnt module activated foxj1 downstream of ciliated cell fate specification. In multiciliated cells (MCCs) of the epidermis, ATP4a was also necessary for normal myb expression, apical actin formation, basal body docking and alignment of basal bodies. Furthermore, ATP4-dependent Wnt/β-catenin signaling in the epidermis was a prerequisite for foxa1-mediated specification of small secretory cells (SSCs). SSCs release serotonin and other substances into the medium, and thereby regulate ciliary beating in MCCs and protect the epithelium against infection. Pharmacological inhibition of ATP4 in the mature mucociliary epithelium also caused a loss of MCCs and led to impaired mucociliary clearance. These data strongly suggest that PPI-associated pneumonia in human patients might, at least in part, be linked to dysfunction of mucociliary epithelia of the airways.
Collapse
Affiliation(s)
- Peter Walentek
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany; Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Tina Beyer
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Cathrin Hagenlocher
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Christina Müller
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Kerstin Feistel
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Richard M Harland
- Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| |
Collapse
|
13
|
Becker V, Drabner R, Graf S, Schlag C, Nennstiel S, Buchberger AM, Schmid RM, Saur D, Bajbouj M. New aspects in the pathomechanism and diagnosis of the laryngopharyngeal reflux-clinical impact of laryngeal proton pumps and pharyngeal pH metry in extraesophageal gastroesophageal reflux disease. World J Gastroenterol 2015; 21:982-987. [PMID: 25624734 PMCID: PMC4299353 DOI: 10.3748/wjg.v21.i3.982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/22/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the laryngeal H+K+-ATPase and pharyngeal pH in patients with laryngopharyngeal reflux (LPR)-symptoms as well as to assess the symptom scores during PPI therapy.
METHODS: Endoscopy was performed to exclude neoplasia and to collect biopsies from the posterior cricoid area (immunohistochemistry and PCR analysis). Immunohistochemical staining was performed with monoclonal mouse antibodies against human H+K+-ATPase. Quantitative real-time RT-PCR for each of the H+K+-ATPase subunits was performed. The pH values were assessed in the aerosolized environment of the oropharynx (DxpH Catheter) and compared to a subsequently applied combined pH/MII measurement.
RESULTS: Twenty patients with LPR symptoms were included. In only one patient, the laryngeal H+K+-ATPase was verified by immunohistochemical staining. In another patient, real-time RT-PCR for each H+K+-ATPase subunit was positive. Fourteen out of twenty patients had pathological results in DxpH, and 6/20 patients had pathological results in pH/MII. Four patients had pathological results in both functional tests. Nine out of twenty patients responded to PPIs.
CONCLUSION: The laryngeal H+K+-ATPase can only be sporadically detected in patients with LPR symptoms and is unlikely to cause the LPR symptoms. Alternative hypotheses for the pathomechanism are needed. The role of pharyngeal pH-metry remains unclear and its use can only be recommended for patients in a research study setting.
Collapse
|
14
|
Decreased bone mineral density and reduced bone quality in H+/K+ATPase beta-subunit deficient mice. J Cell Biochem 2011; 113:141-7. [DOI: 10.1002/jcb.23337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Altman KW, Kinoshita Y, Tan M, Burstein D, Radosevich JA. Western Blot Confirmation of the H+/K+-ATPase Proton Pump in the Human Larynx and Submandibular Gland. Otolaryngol Head Neck Surg 2011; 145:783-8. [DOI: 10.1177/0194599811415589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objective. The authors have previously demonstrated the H+/K+-ATPase (proton pump) in human larynx and lung glands via immunohistochemistry (IHC). The present hypothesis is that the proton pump is expressed in other seromucinous glands of the digestive tract that can be confirmed by IHC and Western blot analysis. Study Design. Prospective controlled tissue analysis study. Setting. Academic medical institution. Methods. Ten anonymous fresh-frozen donor specimens were obtained, comprising 3 submandibular glands, 4 larynges, and 3 normal stomach specimens for control. Submandibular gland sections were immunostained with 2 monoclonal antibodies selectively reactive with α or β subunits of the H+/K+-ATPase. Western blot analysis was performed on all specimens. Results. Consistent IHC staining was observed in the submandibular gland specimens for both α and β subunits. Western blot analysis revealed very strong expression for the stomach at 100 kDa, corresponding to the α protein, and weak but notable banding for all larynx and submandibular gland specimens. Similar findings were noted for the 60- to 80-kDa glycosylated β subunit protein, as well as the 52-kDa β subunit precursor for all specimens. Conclusion. The H+/K+-ATPase (proton) pump is present in the human larynx and submandibular gland although in much lower concentrations than in the stomach. Proton pump involvement in human aerodigestive seromucinous glands may have a role in protecting mucosa from acid environments (local or systemic), explain heightened laryngeal sensitivity in those patients with laryngopharyngeal reflux, and be a site of action for proton pump inhibitor pharmacotherapy.
Collapse
Affiliation(s)
- Kenneth W. Altman
- Department of Otolaryngology–Head & Neck Surgery, Mount Sinai School of Medicine, New York, New York, USA
| | - Yayoi Kinoshita
- Department of Pathology, Mount Sinai School of Medicine, New York, New York, USA
| | - Melin Tan
- Department of Otolaryngology–Head & Neck Surgery, Mount Sinai School of Medicine, New York, New York, USA
| | - David Burstein
- Department of Pathology, Mount Sinai School of Medicine, New York, New York, USA
| | - James A. Radosevich
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
16
|
Selige J, Hatzelmann A, Dunkern T. The differential impact of PDE4 subtypes in human lung fibroblasts on cytokine-induced proliferation and myofibroblast conversion. J Cell Physiol 2011; 226:1970-80. [DOI: 10.1002/jcp.22529] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Novak I, Wang J, Henriksen KL, Haanes KA, Krabbe S, Nitschke R, Hede SE. Pancreatic bicarbonate secretion involves two proton pumps. J Biol Chem 2010; 286:280-9. [PMID: 20978133 DOI: 10.1074/jbc.m110.136382] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreas secretes fluid rich in digestive enzymes and bicarbonate. The alkaline secretion is important in buffering of acid chyme entering duodenum and for activation of enzymes. This secretion is formed in pancreatic ducts, and studies to date show that plasma membranes of duct epithelium express H(+)/HCO(3)(-) transporters, which depend on gradients created by the Na(+)/K(+)-ATPase. However, the model cannot fully account for high-bicarbonate concentrations, and other active transporters, i.e. pumps, have not been explored. Here we show that pancreatic ducts express functional gastric and non-gastric H(+)-K(+)-ATPases. We measured intracellular pH and secretion in small ducts isolated from rat pancreas and showed their sensitivity to H(+)-K(+) pump inhibitors and ion substitutions. Gastric and non-gastric H(+)-K(+) pumps were demonstrated on RNA and protein levels, and pumps were localized to the plasma membranes of pancreatic ducts. Quantitative analysis of H(+)/HCO(3)(-) and fluid transport shows that the H(+)-K(+) pumps can contribute to pancreatic secretion in several species. Our results call for revision of the bicarbonate transport physiology in pancreas, and most likely other epithelia. Furthermore, because pancreatic ducts play a central role in several pancreatic diseases, it is of high relevance to understand the role of H(+)-K(+) pumps in pathophysiology.
Collapse
Affiliation(s)
- Ivana Novak
- Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
18
|
Hori Y, Imanishi A, Matsukawa J, Tsukimi Y, Nishida H, Arikawa Y, Hirase K, Kajino M, Inatomi N. 1-[5-(2-Fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate (TAK-438), a novel and potent potassium-competitive acid blocker for the treatment of acid-related diseases. J Pharmacol Exp Ther 2010; 335:231-8. [PMID: 20624992 DOI: 10.1124/jpet.110.170274] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proton pump inhibitors (PPIs) are widely used in the treatment of acid-related diseases. However, several unmet medical needs, such as suppression of night-time acid secretion and rapid symptom relief, remain. In this study, we investigated the pharmacological effects of 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methylmethanamine monofumarate (TAK-438), a novel potassium-competitive acid blocker (P-CAB), on gastric acid secretion in comparison with lansoprazole, a typical PPI, and SCH28080 [3-(cyanomethyl)-2-methyl,8-(phenylmethoxy)imidazo(1,2-a)pyridine], a prototype of P-CAB. TAK-438, SCH28080, and lansoprazole inhibited H(+),K(+)-ATPase activity in porcine gastric microsomes with IC(50) values of 0.019, 0.14, and 7.6 μM, respectively, at pH 6.5. The inhibitory activity of TAK-438 was unaffected by ambient pH, whereas the inhibitory activities of SCH28080 and lansoprazole were weaker at pH 7.5. The inhibition by TAK-438 and SCH28080 was reversible and achieved in a K(+)-competitive manner, quite different from that by lansoprazole. TAK-438, at a dose of 4 mg/kg (as the free base) orally, completely inhibited basal and 2-deoxy-d-glucose-stimulated gastric acid secretion in rats, and its effect on both was stronger than that of lansoprazole. TAK-438 increased the pH of gastric perfusate to a higher value than did lansoprazole or SCH28080, and the effect of TAK-438 was sustained longer than that of lansoprazole or SCH28080. These results indicate that TAK-438 exerts a more potent and longer-lasting inhibitory action on gastric acid secretion than either lansoprazole or SCH28080. TAK-438 is a novel antisecretory drug that may provide a new option for the patients with acid-related disease that is refractory to, or inadequately controlled by, treatment with PPIs.
Collapse
Affiliation(s)
- Yasunobu Hori
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Selige J, Tenor H, Hatzelmann A, Dunkern T. Cytokine-dependent balance of mitogenic effects in primary human lung fibroblasts related to cyclic AMP signaling and phosphodiesterase 4 inhibition. J Cell Physiol 2010; 223:317-26. [PMID: 20082309 DOI: 10.1002/jcp.22037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin-1beta (IL-1beta) and basic fibroblast growth factor (bFGF) are important regulators of proliferation, and their expression is increased in lungs of patients with asthma, idiopathic pulmonary fibrosis (IPF), or chronic obstructive pulmonary disease (COPD). We investigated the effect of IL-1beta and bFGF on proliferation of human lung fibroblasts and the role of COX-2, PGE(2), and cAMP in this process. Furthermore, the effect of phosphodiesterase (PDE) 3 and 4 inhibition was analyzed. In primary human lung fibroblasts low concentrations of IL-1beta (<10 pg/ml) potentiated the bFGF-induced DNA synthesis, whereas higher concentrations revealed antiproliferative effects. Higher concentrations of IL-1beta-induced COX-2 mRNA and protein associated with an increase in PGE(2) and cAMP, and all of these parameters were potentiated by bFGF. The PDE4 inhibitor piclamilast concentration-dependently reduced proliferation by a partial G1 arrest. The PDE3 inhibitor motapizone was inactive by itself but enhanced the effect of the PDE4 inhibitor. This study demonstrates that bFGF and IL-1beta act in concert to fine-tune lung fibroblast proliferation resulting in amplification or reduction. The antiproliferative effect of IL-1beta is likely attributed to the induction of COX-2, which is further potentiated by bFGF, and the subsequent generation of PGE(2) and cAMP. Inhibition of PDE4 inhibition (rather than PDE3) may diminish proliferation of human lung fibroblasts and therefore could be useful in the therapy of pathological remodeling in lung diseases.
Collapse
Affiliation(s)
- Jens Selige
- Department of In-Vitro Biology 1, Nycomed GmbH, Konstanz, Germany.
| | | | | | | |
Collapse
|
20
|
Didych DA, Akopov SB, Snezhkov EV, Skaptsova NV, Nikolaev LG, Sverdlov ED. Identification and mapping of ten new potential insulators in the FXYD5-COX7A1 region of human chromosome 19q13.12. BIOCHEMISTRY (MOSCOW) 2009; 74:728-33. [PMID: 19747092 DOI: 10.1134/s0006297909070049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A positive-negative selection system revealed 10 potential insulators able to block enhancer interaction with promoter in the 10(6) bp human chromosome 19 region between genes FXYD5 and COX7A1. Relative positions of insulators and genes are in accord with the hypothesis that insulators subdivide genomic DNA into independently regulated loop domains.
Collapse
Affiliation(s)
- D A Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This review summarizes the past year's literature regarding the regulation and assessment of gastric acid secretion. RECENT FINDINGS Gastric acid secretion is regulated by biologic agents produced and released by enteroendocrine cells and neurons as well as by exogenously administered substances and infection. Too much acid can lead to gastroesophageal reflux disease, peptic ulcer disease, and stress-related erosion/ulcer disease. Too little acid can interfere with the absorption of certain nutrients, predispose to enteric infection, and interfere with the absorption of some medications. Gastrin, histamine, gastrin-releasing peptide, ghrelin, orexin, and glucocorticoids stimulate whereas leptin, glucagon-like peptide 1, and Helicobacter pylori inhibit acid secretion. Helicobacter pylori inhibits the transcriptional activity of HK-ATPase, the proton pump of the parietal cell. SUMMARY A better understanding of the pathways and mechanisms regulating gastric acid secretion should lead to improved management of patients with acid-induced disorders as well as those who secrete too little acid.
Collapse
|