1
|
Kępińska AP, Iyegbe CO, Vernon AC, Yolken R, Murray RM, Pollak TA. Schizophrenia and Influenza at the Centenary of the 1918-1919 Spanish Influenza Pandemic: Mechanisms of Psychosis Risk. Front Psychiatry 2020; 11:72. [PMID: 32174851 PMCID: PMC7054463 DOI: 10.3389/fpsyt.2020.00072] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Associations between influenza infection and psychosis have been reported since the eighteenth century, with acute "psychoses of influenza" documented during multiple pandemics. In the late 20th century, reports of a season-of-birth effect in schizophrenia were supported by large-scale ecological and sero-epidemiological studies suggesting that maternal influenza infection increases the risk of psychosis in offspring. We examine the evidence for the association between influenza infection and schizophrenia risk, before reviewing possible mechanisms via which this risk may be conferred. Maternal immune activation models implicate placental dysfunction, disruption of cytokine networks, and subsequent microglial activation as potentially important pathogenic processes. More recent neuroimmunological advances focusing on neuronal autoimmunity following infection provide the basis for a model of infection-induced psychosis, potentially implicating autoimmunity to schizophrenia-relevant protein targets including the N-methyl-D-aspartate receptor. Finally, we outline areas for future research and relevant experimental approaches and consider whether the current evidence provides a basis for the rational development of strategies to prevent schizophrenia.
Collapse
Affiliation(s)
- Adrianna P. Kępińska
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Conrad O. Iyegbe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Johns Hopkins Medical Center, Baltimore, MD, United States
| | - Robin M. Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Thomas A. Pollak
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Neal JW, Gasque P. The role of primary infection of Schwann cells in the aetiology of infective inflammatory neuropathies. J Infect 2016; 73:402-418. [PMID: 27546064 DOI: 10.1016/j.jinf.2016.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 02/08/2023]
Abstract
Numerous different pathogens are responsible for infective peripheral neuropathies and this is generally the result of the indirect effects of pathogen infection, namely anti pathogen antibodies cross reacting with epitopes on peripheral nerve, auto reactive T cells attacking myelin, circulating immune complexes and complement fixation. Primary infection of Schwann cells (SC) associated with peripheral nerve inflammation is rare requiring pathogens to cross the Blood Peripheral Nerve Barrier (BPNB) evade anti-pathogen innate immune pathways and invade the SC. Spirochetes Borrelia bourgdorferi and Trepomema pallidum are highly invasive, express surface lipo proteins, but despite this SC are rarely infected. However, Trypanosoma cruzi (Chaga's disease) and Mycobacterium leprae. Leprosy are two important causes of peripheral nerve infection and both demonstrate primary infection of SC. This is due to two novel strategies; T. cruzi express a trans-silalidase that mimics host neurotrophic factors and infects SC via tyrosine kinase receptors. M. leprae demonstrates multi receptor SC tropism and subsequent infection promotes nuclear reprogramming and dedifferentiation of host SC into progenitor stem like cells (pSLC) that are vulnerable to M. leprae infection. These two novel pathogen evasion strategies, involving stem cells and receptor mimicry, provide potential therapeutic targets relevant to the prevention of peripheral nerve inflammation by inhibiting primary SC infection.
Collapse
Affiliation(s)
- J W Neal
- Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff CF14 4XN, United Kingdom.
| | - P Gasque
- Laboratoire d'Immunologie Clinique et Expérimentale de l'OI (LICE-OI), Centre recherche Immuno-clinique des agents pathogènes de l'OI (CRIC-AP OI) Pôle Biologie Santé, Hôpital Félix Guyon, CHU de la Réunion, Reunion.
| |
Collapse
|
3
|
Lee LN, Dias P, Han D, Yoon S, Shea A, Zakharov V, Parham D, Sarawar SR. A mouse model of lethal synergism between influenza virus and Haemophilus influenzae. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:800-11. [PMID: 20042666 PMCID: PMC2808086 DOI: 10.2353/ajpath.2010.090596] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2009] [Indexed: 11/20/2022]
Abstract
Secondary bacterial infections that follow infection with influenza virus result in considerable morbidity and mortality in young children, the elderly, and immunocompromised individuals and may also significantly increase mortality in normal healthy adults during influenza pandemics. We herein describe a mouse model for investigating the interaction between influenza virus and the bacterium Haemophilus influenzae. Sequential infection with sublethal doses of influenza and H. influenzae resulted in synergy between the two pathogens and caused mortality in immunocompetent adult wild-type mice. Lethality was dependent on the interval between administration of the bacteria and virus, and bacterial growth was prolonged in the lungs of dual-infected mice, although influenza virus titers were unaffected. Dual infection induced severe damage to the airway epithelium and confluent pneumonia, similar to that observed in victims of the 1918 global influenza pandemic. Increased bronchial epithelial cell death was observed as early as 1 day after bacterial inoculation in the dual-infected mice. Studies using knockout mice indicated that lethality occurs via a mechanism that is not dependent on Fas, CCR2, CXCR3, interleukin-6, tumor necrosis factor, or Toll-like receptor-4 and does not require T or B cells. This model suggests that infection with virulent strains of influenza may predispose even immunocompetent individuals to severe illness on secondary infection with H. influenzae by a mechanism that involves innate immunity, but does not require tumor necrosis factor, interleukin-6, or signaling via Toll-like receptor-4.
Collapse
Affiliation(s)
- Lian Ni Lee
- Viral Immunology, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Fatemi SH. Potential microbial origins of schizophrenia and their treatments. DRUGS OF TODAY (BARCELONA, SPAIN : 1998) 2009; 45:305-18. [PMID: 19499095 DOI: 10.1358/dot.2009.45.4.1353924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Schizophrenia is a severe brain disease that affects approximately 1% of the world's population. Extensive study into the indication of and causes of this disease has been ongoing for decades. Historical review of research into associated abnormalities and markers common in schizophrenic patients has demonstrated a correlation with potential microbial origins in the development of the disease. While infectious etiologies could be responsible for some cases of schizophrenia, no consistent use of anti-infective agents has been developed for its prevention or treatment. Elucidation of the mechanisms for infectious roots of schizophrenia may open new avenues for effective treatment.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research and Departments of Pharmacology and Neuroscience, University of Minnesota Medical School, USA.
| |
Collapse
|
5
|
Abstract
While multiple theories have been put forth regarding the origin of schizophrenia, by far the vast majority of evidence points to the neurodevelopmental model in which developmental insults as early as late first or early second trimester lead to the activation of pathologic neural circuits during adolescence or young adulthood leading to the emergence of positive or negative symptoms. In this report, we examine the evidence from brain pathology (enlargement of the cerebroventricular system, changes in gray and white matters, and abnormal laminar organization), genetics (changes in the normal expression of proteins that are involved in early migration of neurons and glia, cell proliferation, axonal outgrowth, synaptogenesis, and apoptosis), environmental factors (increased frequency of obstetric complications and increased rates of schizophrenic births due to prenatal viral or bacterial infections), and gene-environmental interactions (a disproportionate number of schizophrenia candidate genes are regulated by hypoxia, microdeletions and microduplications, the overrepresentation of pathogen-related genes among schizophrenia candidate genes) in support of the neurodevelopmental model. We relate the neurodevelopmental model to a number of findings about schizophrenia. Finally, we also examine alternate explanations of the origin of schizophrenia including the neurodegenerative model.
Collapse
|
6
|
Lee H, Park C, Cho IH, Kim HY, Jo EK, Lee S, Kho HS, Choi SY, Oh SB, Park K, Kim JS, Lee SJ. Double-stranded RNA induces iNOS gene expression in Schwann cells, sensory neuronal death, and peripheral nerve demyelination. Glia 2007; 55:712-22. [PMID: 17348024 DOI: 10.1002/glia.20493] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inflammation in the peripheral nervous system (PNS) is one of the characteristics of virus-induced peripheral neuropathy. In this inflammatory response, Schwann cells are actively involved. Previously, toll-like receptor 3 (TLR3) was reported as a receptor for double-stranded RNA (dsRNA) that induces antiviral and inflammatory responses in cells of the innate immune system. In this study, we investigated the expression and putative role of TLR3 in Schwann cells. TLR3 was constitutively expressed in Schwann cells. Stimulation with polyinosinic-polycytidylic acid, a synthetic dsRNA analogue, induced the expression of inducible nitric oxide synthase (iNOS) gene in Schwann cells. Studies on the intracellular signal transduction pathways using iSC, an immortalized Schwann cell line, revealed that dsRNA induces the activation of NF-kappaB, p38, and c-Jun N-terminal kinase (JNK). The activation of NF-kappaB, p38, JNK, and dsRNA-dependent protein kinase is required for dsRNA-mediated iNOS gene expression. However, the activation of PI3 kinase and GSK-3beta inhibited iNOS gene induction, a process mediated by their inhibitory effects on NF-kappaB and p38 activation. dsRNA-induced NO production caused neuronal cell death in cultured dorsal root ganglion. Finally, the introduction of dsRNA into the rat sciatic nerve induced iNOS gene expression and peripheral nerve demyelination in vivo. Taken together, these data suggest that viral RNA may induce inflammatory Schwann cell activation via TLR3 and peripheral nerve damage in the PNS.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Line, Transformed
- Cells, Cultured
- Coculture Techniques
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/pathology
- Demyelinating Diseases/physiopathology
- Enzyme Induction/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Inflammation/chemically induced
- Inflammation/enzymology
- Inflammation/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Degeneration/chemically induced
- Nerve Degeneration/enzymology
- Nerve Degeneration/genetics
- Neurons, Afferent/drug effects
- Neurons, Afferent/pathology
- Nitric Oxide Synthase Type II/biosynthesis
- Nitric Oxide Synthase Type II/genetics
- Peripheral Nerves/drug effects
- Peripheral Nerves/pathology
- Peripheral Nerves/physiopathology
- Peripheral Nervous System Diseases/chemically induced
- Peripheral Nervous System Diseases/enzymology
- Peripheral Nervous System Diseases/pathology
- Poly I-C/pharmacology
- RNA, Double-Stranded/pharmacology
- Rats
- Rats, Sprague-Dawley
- Schwann Cells/drug effects
- Schwann Cells/enzymology
- Signal Transduction/physiology
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Hyunkyoung Lee
- Program in Molecular and Cellular Neuroscience, Dental Research Institute, Seoul National University, 28 Yeongun-dong, Jongno-gu, Seoul 110-749, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Drescher KM, Tracy SM. Injection of the sciatic nerve with TMEV: a new model for peripheral nerve demyelination. Virology 2006; 359:233-42. [PMID: 17028060 PMCID: PMC1847644 DOI: 10.1016/j.virol.2006.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
Demyelination of the human peripheral nervous system (PNS) can be caused by diverse mechanisms including viral infection. Despite association of several viruses with the development of peripheral demyelination, animal models of the condition have been limited to disease that is either autoimmune or genetic in origin. We describe here a model of PNS demyelination based on direct injection of sciatic nerves of mice with the cardiovirus, Theiler's murine encephalomyelitis virus (TMEV). Sciatic nerves of FVB mice develop inflammatory cell infiltration following TMEV injection. Schwann cells and macrophages are infected with TMEV. Viral replication is observed initially in the sciatic nerves and subsequently the spinal cord. Sciatic nerves are demyelinated by day 5 post-inoculation (p.i.). Injecting sciatic nerves of scid mice resulted in increased levels of virus recovered from the sciatic nerve and spinal cord relative to FVB mice. Demyelination also occurred in scid mice and by 12 days p.i., hindlimbs were paralyzed. This new model of virus-induced peripheral demyelination may be used to dissect processes involved in protection of the PNS from viral insult and to study the early phases of lesion development.
Collapse
Affiliation(s)
- Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, 2500 California Plaza, Criss II, Room 424, Omaha, NE 68178, USA.
| | | |
Collapse
|
8
|
Matsuda K, Shibata T, Sakoda Y, Kida H, Kimura T, Ochiai K, Umemura T. In vitro demonstration of neural transmission of avian influenza A virus. J Gen Virol 2005; 86:1131-1139. [PMID: 15784907 DOI: 10.1099/vir.0.80704-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neural involvement following infections of influenza viruses can be serious. The neural transport of influenza viruses from the periphery to the central nervous system has been indicated by using mouse models. However, no direct evidence for neuronal infection has been obtained in vitro and the mechanisms of neural transmission of influenza viruses have not been reported. In this study, the transneural transmission of a neurotropic influenza A virus was examined using compartmentalized cultures of neurons from mouse dorsal root ganglia, and the results were compared with those obtained using the pseudorabies virus, a virus with well-established neurotransmission. Both viruses reached the cell bodies of the neurons via the axons. This is the first report on axonal transport of influenza A virus in vitro. In addition, the role of the cytoskeleton (microtubules, microfilaments and intermediate filaments) in the neural transmission of influenza virus was investigated by conducting cytoskeletal perturbation experiments. The results indicated that the transport of avian influenza A virus in the neurons was independent of microtubule integrity but was dependent on the integrity of intermediate filaments, whereas pseudorabies virus needed both for neural spread.
Collapse
Affiliation(s)
- Kazuya Matsuda
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takuma Shibata
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hiroshi Kida
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kenji Ochiai
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Umemura
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|