1
|
Mukherjee A, Kar I, Patra AK. Understanding anthelmintic resistance in livestock using "omics" approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125439-125463. [PMID: 38015400 DOI: 10.1007/s11356-023-31045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Animal Biotechnology, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Nadia, Mohanpur, West Bengal, India
| | - Amlan Kumar Patra
- American Institute for Goat Research, Langston University, Oklahoma, 73050, USA.
| |
Collapse
|
2
|
Synergism of macrocyclic lactones against Haemonchus contortus. Parasitol Res 2023; 122:867-876. [PMID: 36764962 DOI: 10.1007/s00436-023-07790-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
A possible synergistic effect of macrocyclic lactones' (MLs) combination has been previously described against resistant gastrointestinal nematodes of cattle. In addition to synergism, drug-drug interactions between MLs can also result in additive or antagonistic effect, considering the different MLs pharmacokinetics, pharmacodynamics, and interactions with molecular mechanisms of resistance. Therefore, the aim of the current work was evaluated the effect of different MLs combinations against Haemonchus contortus. Infecting larvae of two isolates (one susceptible and one resistant to ivermectin) were used in the larval migration inhibition test. After estimating the half maximal effective concentration of abamectin (ABA), eprinomectin, (EPR), ivermectin (IVM), and moxidectin (MOX) for both isolates, combinations were delineated by a simplex-centroid mixture experiment, and the mixture regression analysis was applied to the special cubic model. A synergistic effect was found for the EPR + MOX against the susceptible isolate as well as the EPR + MOX, IVM + MOX, and ABA + EPR + IVM against the resistant isolate. An antagonistic effect of ABA + IVM + MOX was found against the susceptible isolate. For the susceptible isolate, a higher inhibition was found with greater proportions of EPR and lower proportions of the other drugs compared to the reference mixture. For the resistant isolate, inhibition greater than that of the reference mixture was found with higher proportions of IVM as well as lower proportions of the other drugs. The synergistic and antagonistic effects were dependent on the following: (a) parasite drug resistance profile, (b) the composition of the combination, and (c) the proportions used, with EPR and IVM exerting a greater impact on these effects.
Collapse
|
3
|
Baudinette E, O’Handley R, Trengove C. Anthelmintic Resistance of Gastrointestinal Nematodes in Goats: A Systematic Review and Meta-Analysis. Vet Parasitol 2022; 312:109809. [DOI: 10.1016/j.vetpar.2022.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022]
|
4
|
Ahuir-Baraja AE, Cibot F, Llobat L, Garijo MM. Anthelmintic resistance: is a solution possible? Exp Parasitol 2021; 230:108169. [PMID: 34627787 DOI: 10.1016/j.exppara.2021.108169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/05/2023]
Abstract
More than 50 years after anthelmintic resistance was first identified, its prevalence and impact on the animal production industry continues to increase across the world. The term "anthelmintic resistance" (AR) can be briefly defined as the reduction in efficacy of a certain dose of anthelmintic drugs (AH) in eliminating the presence of a parasite population that was previously susceptible. The main aim of this study is to examine anthelmintic resistance in domestic herbivores. There are numerous factors playing a role in the development of AR, but the most important is livestock management. The price of AH and the need to treat a high number of animals mean that farmers face significant costs in this regard, yet, since 1981, little progress has been made in the discovery of new molecules and the time and cost required to bring a new AH to market has increased dramatically in recent decades. Furthermore, resistance has also emerged for new AH, such as monepantel or derquantel. Consequently, ruminant parasitism cannot be controlled solely by using synthetic chemicals. A change in approach is needed, using a range of preventive measures in order to achieve a sustainable control programme. The use of nematophagous fungi or of plant extracts rich in compounds with anthelmintic properties, such as terpenes, condensed tannins, or flavonoids, represent potential alternatives. Nevertheless, although new approaches are showing promising results, there is still much to do. More research focused on the control of AR is needed.
Collapse
Affiliation(s)
- A E Ahuir-Baraja
- Parasitology and Parasitic Diseases Research Group (PARAVET), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain
| | - F Cibot
- Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain
| | - L Llobat
- Microbiological Agents Associated with Animal Reproduction Research Group (PROVAGINBIO), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain.
| | - M M Garijo
- Parasitology and Parasitic Diseases Research Group (PARAVET), Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Spain
| |
Collapse
|
5
|
Zajíčková M, Nguyen LT, Skálová L, Raisová Stuchlíková L, Matoušková P. Anthelmintics in the future: current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov Today 2019; 25:430-437. [PMID: 31883953 DOI: 10.1016/j.drudis.2019.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022]
Abstract
The control of gastrointestinal nematodes (GINs), the most abundant and serious parasites of livestock, has become difficult because of the limited number of available drugs and fast development of drug resistance. Thus, considerable efforts have been devoted to developing new anthelmintics that are efficient against nematodes, especially resistant species. Here, we summarize the most recent results using various approaches: target-based or high-throughput screening (HTS) of compound libraries; the synthesis of new derivatives or new combinations of current anthelmintics; the repurposing of drugs currently approved for other indications; and lastly, the identification of active plant products. We also evaluate the advantages and disadvantages of each of these approaches.
Collapse
Affiliation(s)
- Markéta Zajíčková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Linh Thuy Nguyen
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Lucie Raisová Stuchlíková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic.
| |
Collapse
|
6
|
Muchiut SM, Fernández AS, Steffan PE, Riva E, Fiel CA. Anthelmintic resistance: Management of parasite refugia for Haemonchus contortus through the replacement of resistant with susceptible populations. Vet Parasitol 2018; 254:43-48. [DOI: 10.1016/j.vetpar.2018.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 11/17/2022]
|
7
|
Partridge FA, Brown AE, Buckingham SD, Willis NJ, Wynne GM, Forman R, Else KJ, Morrison AA, Matthews JB, Russell AJ, Lomas DA, Sattelle DB. An automated high-throughput system for phenotypic screening of chemical libraries on C. elegans and parasitic nematodes. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 8:8-21. [PMID: 29223747 PMCID: PMC5734697 DOI: 10.1016/j.ijpddr.2017.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 11/16/2022]
Abstract
Parasitic nematodes infect hundreds of millions of people and farmed livestock. Further, plant parasitic nematodes result in major crop damage. The pipeline of therapeutic compounds is limited and parasite resistance to the existing anthelmintic compounds is a global threat. We have developed an INVertebrate Automated Phenotyping Platform (INVAPP) for high-throughput, plate-based chemical screening, and an algorithm (Paragon) which allows screening for compounds that have an effect on motility and development of parasitic worms. We have validated its utility by determining the efficacy of a panel of known anthelmintics against model and parasitic nematodes: Caenorhabditis elegans, Haemonchus contortus, Teladorsagia circumcincta, and Trichuris muris. We then applied the system to screen the Pathogen Box chemical library in a blinded fashion and identified compounds already known to have anthelmintic or anti-parasitic activity, including tolfenpyrad, auranofin, and mebendazole; and 14 compounds previously undescribed as anthelmintics, including benzoxaborole and isoxazole chemotypes. This system offers an effective, high-throughput system for the discovery of novel anthelmintics.
Collapse
Affiliation(s)
- Frederick A Partridge
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Anwen E Brown
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Steven D Buckingham
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Nicky J Willis
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Graham M Wynne
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Ruth Forman
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Kathryn J Else
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alison A Morrison
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, United Kingdom
| | - Jacqueline B Matthews
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, United Kingdom
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - David A Lomas
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
8
|
Alonso-Díaz M, Arnaud-Ochoa R, Becerra-Nava R, Torres-Acosta J, Rodriguez-Vivas R, Quiroz-Romero R. Frequency of cattle farms with ivermectin resistant gastrointestinal nematodes in Veracruz, Mexico. Vet Parasitol 2015; 212:439-43. [DOI: 10.1016/j.vetpar.2015.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 11/28/2022]
|