1
|
Katagi T, Fujisawa T. Acute toxicity and metabolism of pesticides in birds. JOURNAL OF PESTICIDE SCIENCE 2021; 46:305-321. [PMID: 34908891 PMCID: PMC8640698 DOI: 10.1584/jpestics.d21-028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/04/2021] [Indexed: 06/14/2023]
Abstract
The median lethal dose of pesticide in acute oral toxicity, used as a conservative index in avian risk assessment, varies by the species with differences of less than one order of magnitude, depending on body size, feeding habit, and metabolic enzyme activity. The profiles of pesticide metabolism in birds with characteristic conjugations are basically common to those in mammals, but less information is available on their relevant enzymes. The higher toxicity of some pesticides in birds than in mammals is due to the lower activity of avian metabolic enzymes. The bioaccumulation in birds is limited for very hydrophobic pesticides resistant to metabolic degradation. Several in silico approaches using the descriptors of a pesticide molecule have recently been employed to estimate the profiles of acute oral toxicity and bioaccumulation.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd., 3–1–98 Kasugadenaka, Konohana-ku, Osaka 554–8558, Japan
| | - Takuo Fujisawa
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 4–2–1 Takatsukasa, Takarazuka, Hyogo 665–8555, Japan
| |
Collapse
|
2
|
Katagi T. In vitro metabolism of pesticides and industrial chemicals in fish. JOURNAL OF PESTICIDE SCIENCE 2020; 45:1-15. [PMID: 32110158 PMCID: PMC7024743 DOI: 10.1584/jpestics.d19-074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Metabolism is one of the most important factors in controlling the toxicity and bioaccumulation of pesticides in fish. In vitro systems using subcellular fractions, cell lines, hepatocytes and tissues of a specific organ, each of which is characterized by usability, enzyme activity and chemical transport via membrane, have been applied to investigate the metabolic profiles of pesticides. Not only species and organs but also the fishkeeping conditions are known to greatly affect the in vitro metabolism of pesticides. A comparison of the metabolic profiles of pesticides and industrial chemicals taken under similar conditions has shown that in vitro systems using a subcellular S9 fraction and hepatocytes qualitatively reproduce many in vivo metabolic reactions. More investigation of these in vitro systems for pesticides is necessary to verify their applicability to the estimation of pesticide metabolism in fish.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Bioscience Research Laboratory, Sumitomo Chemical Co., Ltd., 3–1–98 Kasugadenaka, Konohana-ku, Osaka 554–8558, Japan
| |
Collapse
|
3
|
Giuliani ME, Sparaventi E, Lanzoni I, Pittura L, Regoli F, Gorbi S. Precision-Cut Tissue Slices (PCTS) from the digestive gland of the Mediterranean mussel Mytilus galloprovincialis: An ex vivo approach for molecular and cellular responses in marine invertebrates. Toxicol In Vitro 2019; 61:104603. [PMID: 31330176 DOI: 10.1016/j.tiv.2019.104603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 11/25/2022]
Abstract
The precision-cut tissue slices (PCTS) represent a largely used biological model in mammalian research. This ex vivo approach offers the main advantages of in vitro systems, while maintaining the natural architecture of the tissue. The use of PCTS in toxicological research has been proposed for investigating the cellular effects of xenobiotics or bioactive compounds mostly in mammalian models. Their application is increasing also in marine organisms, but still limited to fish. This work validates the use of PCTS in an invertebrate species, the Mediterranean mussel Mytilus galloprovincialis. Intact tissue slices of different thicknesses (300, 350 and 400 μm) were successfully obtained from the digestive gland. The slices maintained the histological integrity and the viability after 6 h and 24 h incubation in culture medium, with some differences depending on the thickness. The enzymatic activities and mRNA levels of catalase and glutathione S-transferase, chosen as model biological endpoints, were measured until 24 h incubation, revealing the functionality of such systems. This work demonstrates the suitability of mussel PCTS for investigating molecular and cellular responses in ecotoxicological research.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Erica Sparaventi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Ilaria Lanzoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Lucia Pittura
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Regoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Stefania Gorbi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
| |
Collapse
|
4
|
Cao L, Ding W, Jia R, Du J, Wang T, Zhang C, Gu Z, Yin G. Anti-inflammatory and hepatoprotective effects of glycyrrhetinic acid on CCl 4-induced damage in precision-cut liver slices from Jian carp (Cyprinus carpio var. jian) through inhibition of the nf-kƁ pathway. FISH & SHELLFISH IMMUNOLOGY 2017; 64:234-242. [PMID: 28288912 DOI: 10.1016/j.fsi.2017.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
In order to evaluate the antioxidant and anti-inflammatory effects of glycyrrhetinic acid (GA) on carbon tetrachloride (CCl4)-induced damage in precision-cut liver slices (PCLS) from Jian carp (Cyprinus carpio. Jian), an acute liver damage model was established in this study. The viability of PCLS, levels of anti-oxidases in liver homogenates, expression of inflammation-related genes including nuclear factor-κB (nf-κB)/c-rel, inducible nitric oxide synthase (inos), interleukin-1β (il-1β), interleukin-6 (il-6) and interleukin-8 (il-8), and protein levels of (nf-κB)/c-rel in liver tissues were measured. The results showed that pretreatment of PCLS with GA at 5 and 10 μg/mL for 6 h significantly inhibited the cytotoxicity of CCl4. GA attenuated CCl4-induced oxidative stress in PCLS through promoting the recovery of superoxide dismutase (SOD) and glutathione (GSH) levels, and inhibiting malondialdehyde (MDA) synthesis. In inflammatory response, GA at both 5 and 10 μg/mL significantly inhibited the increase in mRNA levels of inflammatory cytokines including nf-kƁ/c-rel, inos, il-1β, il-6 and il-8, and the protein level of Nf-kƁ/C-rel induced by CCl4. Furthermore, treatment with pyrrolyl dithiocarbamate (PDTC, 4 μg/mL), an inhibitor of nuclear transcription factor nf-kB, significantly inhibited nf-kB levels, and transcription of downstream cytokines inos, il-1β, il-6 and il-8, also the viability of PCLS was significantly increased. These results indicated that GA suppressed inflammation and reduced cytotoxicity by inhibiting the nf-kƁ signaling pathway, and plays a role in liver protection.
Collapse
Affiliation(s)
- Liping Cao
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Weidong Ding
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jingliang Du
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Tao Wang
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chunyun Zhang
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhengyan Gu
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guojun Yin
- International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
5
|
Bischof I, Köster J, Segner H, Schlechtriem C. Hepatocytes as in vitro test system to investigate metabolite patterns of pesticides in farmed rainbow trout and common carp: Comparison between in vivo and in vitro and across species. Comp Biochem Physiol C Toxicol Pharmacol 2016; 187:62-73. [PMID: 27185525 DOI: 10.1016/j.cbpc.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022]
Abstract
In vitro tools using isolated primary fish hepatocytes have been proposed as a useful model to study the hepatic metabolism of xenobiotics in fish. In order to evaluate the potential of in vitro fish hepatocyte assays to provide information on in vivo metabolite patterns of pesticides in farmed fish, the present study addressed the following questions: Are in vitro and in vivo metabolite patterns comparable? Are species specific differences of metabolite patterns in vivo reflected in vitro? Are metabolite patterns obtained from cryopreserved hepatocytes comparable to those from freshly isolated cells? Rainbow trout and common carp were dosed orally with feed containing the pesticide methoxychlor (MXC) for 14days. In parallel, in vitro incubations using suspensions of freshly isolated or cryopreserved primary hepatocytes obtained from both species were performed. In vivo and in vitro samples were analyzed by thin-layer chromatography with authentic standards supported by HPLC-MS. Comparable metabolite patterns from a qualitative perspective were observed in liver in vivo and in hepatocyte suspensions in vitro. Species specific differences of MXC metabolite patterns observed between rainbow trout and common carp in vivo were well reflected by experiments with hepatocytes in vitro. Finally, cryopreserved hepatocytes produced comparable metabolite patterns to freshly isolated cells. The results of this study indicate that the in vitro hepatocyte assay could be used to identify metabolite patterns of pesticides in farmed fish and could thus serve as a valuable tool to support in vivo studies as required for pesticides approval according to the EU regulation 1107.
Collapse
Affiliation(s)
- Ina Bischof
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany; Centre for Fish and Wildlife Health, University of Bern, Switzerland.
| | - Jessica Köster
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Switzerland
| | - Christian Schlechtriem
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|
6
|
Hutchinson TH, Madden JC, Naidoo V, Walker CH. Comparative metabolism as a key driver of wildlife species sensitivity to human and veterinary pharmaceuticals. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0583. [PMID: 25405970 DOI: 10.1098/rstb.2013.0583] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human and veterinary drug development addresses absorption, distribution, metabolism, elimination and toxicology (ADMET) of the Active Pharmaceutical Ingredient (API) in the target species. Metabolism is an important factor in controlling circulating plasma and target tissue API concentrations and in generating metabolites which are more easily eliminated in bile, faeces and urine. The essential purpose of xenobiotic metabolism is to convert lipid-soluble, non-polar and non-excretable chemicals into water soluble, polar molecules that are readily excreted. Xenobiotic metabolism is classified into Phase I enzymatic reactions (which add or expose reactive functional groups on xenobiotic molecules), Phase II reactions (resulting in xenobiotic conjugation with large water-soluble, polar molecules) and Phase III cellular efflux transport processes. The human-fish plasma model provides a useful approach to understanding the pharmacokinetics of APIs (e.g. diclofenac, ibuprofen and propranolol) in freshwater fish, where gill and liver metabolism of APIs have been shown to be of importance. By contrast, wildlife species with low metabolic competency may exhibit zero-order metabolic (pharmacokinetic) profiles and thus high API toxicity, as in the case of diclofenac and the dramatic decline of vulture populations across the Indian subcontinent. A similar threat looms for African Cape Griffon vultures exposed to ketoprofen and meloxicam, recent studies indicating toxicity relates to zero-order metabolism (suggesting P450 Phase I enzyme system or Phase II glucuronidation deficiencies). While all aspects of ADMET are important in toxicity evaluations, these observations demonstrate the importance of methods for predicting API comparative metabolism as a central part of environmental risk assessment.
Collapse
Affiliation(s)
- Thomas H Hutchinson
- School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Vinny Naidoo
- Departmental of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Gauteng 0110, South Africa
| | | |
Collapse
|
7
|
O-Demethylation and successive oxidative dechlorination of methoxychlor by Bradyrhizobium sp. strain 17-4, isolated from river sediment. Appl Environ Microbiol 2012; 78:5313-9. [PMID: 22635993 DOI: 10.1128/aem.01180-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
O-Demethylation of insecticide methoxychlor is well known as a phase I metabolic reaction in various eukaryotic organisms. Regarding prokaryotic organisms, however, no individual species involved in such reaction have been specified and characterized so far. Here we successfully isolated a bacterium that mediates oxidative transformation of methoxychlor, including O-demethylation and dechlorination, from river sediment. The isolate was found to be closely related to Bradyrhizobium elkanii at the 16S rRNA gene sequence level (100% identical). However, based on some differences in the physiological properties of this bacterium, we determined that it was actually a different species, Bradyrhizobium sp. strain 17-4. The isolate mediated O-demethylation of methoxychlor to yield a monophenolic derivative [Mono-OH; 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane] as the primary degradation product. The chiral high-performance liquid chromatography (HPLC) analysis revealed that the isolate possesses high enantioselectivity favoring the formation of (S)-Mono-OH (nearly 100%). Accompanied by the sequential O-demethylation to form the bis-phenolic derivative Bis-OH [1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane], oxidative dechlorination of the side chain proceeded, and monophenolic carboxylic acid accumulated, followed by the formation of multiple unidentified polar degradation products. The breakdown proceeded more rapidly when reductively dechlorinated (dichloro-form) methoxychlor was applied as the initial substrate. The resultant carboxylic acids and polar degradation products are likely further biodegraded by ubiquitous bacteria. The isolate possibly plays an important role for complete degradation (mineralization) of methoxychlor by providing the readily biodegradable substrates.
Collapse
|
8
|
|
9
|
Satsuma K, Masuda M. Reductive dechlorination of methoxychlor by bacterial species of environmental origin: evidence for primary biodegradation of methoxychlor in submerged environments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2018-2023. [PMID: 22292429 DOI: 10.1021/jf2048614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Methoxychlor [1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane] is an organochlorine insecticide that undergoes dechlorination in natural submerged environments. We investigated the ability to dechlorinate this compound in seven environmental bacterial species ( Aeromonas hydrophila , Enterobacter amnigenus , Klebsiella terrigena , Bacillus subtilis , Achromobacter xylosoxidans , Acinetobacter calcoaceticus , and Mycobacterium obuense ) and the enteric bacterium Escherichia coli as a positive control. In R2A broth at 25 °C under aerobic, static culture, all species except Ach. xylosoxidans were observed to convert methoxychlor to dechlorinated methoxychlor [1,1-dichloro-2,2-bis(4-methoxyphenyl)ethane]. The medium was aerobic at first, but bacterial growth resulted in the consumption of oxygen and generated microaerobic and weakly reductive conditions. Replacement of the headspace of the culture tubes with nitrogen gas was found to decrease the dechlorination rate. Our findings suggest that extensive bacterial species ubiquitously inhabiting the subsurface water environment play an important role in the primary dechlorination of methoxychlor.
Collapse
Affiliation(s)
- Koji Satsuma
- The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan.
| | | |
Collapse
|
10
|
Abstract
The use of organochlorine insecticides such as DDT, lindane and cyclodieneshas declined markedly worldwide over the last decades. Most are now banned or not used. At an acute toxicity level they have been relatively safe in use for humans. However, the greatest concerns are their persistence in people, wildlife and the environment due to their slow metabolism. Although their carcinogenicity for humans has not been supported by strong epidemiological evidence, their potential to be modulators of endocrine and immune function at levels remaining in the environment or associated with residual spraying of DDT continue to be of concern. At present, DDT is still allowed by the United Nations for combating malaria, with continual monitoring and assessment where possible. The toxicological consequences of exposure of animals and people to DDT is discussed as well as some analogues and other insecticides such as lindane, dieldrin and chlordecone that, although little used, continue to persist in surroundings and people. Because of circumstances of world health brought about by climate change or human activities that have yet to develop, there may come a time when the importance of some may re-emerge.
Collapse
Affiliation(s)
- Andrew G Smith
- MRC Toxicology Unit, University of Leicester Lancaster Road, Leicester UK.
| |
Collapse
|
11
|
Effects of CYP inhibitors on precocene I metabolism and toxicity in rat liver slices. Chem Biol Interact 2011; 193:109-18. [PMID: 21741958 DOI: 10.1016/j.cbi.2011.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/20/2011] [Accepted: 05/28/2011] [Indexed: 01/26/2023]
Abstract
We present a comprehensive in vitro approach to assessing metabolism-mediated hepatotoxicity using male Sprague-Dawley rat liver slices incubated with the well characterized hepatotoxicant, precocene I, and inhibitors of cytochrome P450 (CYP) enzymes. This approach combines liquid chromatography mass spectrometry (LC MS) detection methods with multiple toxicity endpoints to enable identification of critical metabolic pathways for hepatotoxicity. The incubations were performed in the absence and presence of the non-specific CYP inhibitor, 1-aminobenzotriazole (ABT) and isoform-specific inhibitors. The metabolite profile of precocene I in rat liver slices shares some features of the in vivo profile, but also had a major difference in that epoxide dihydrodiol hydrolysis products were not observed to a measurable extent. As examples of our liver slice metabolite identification procedure, a minor glutathione adduct and previously unreported 7-O-desmethyl and glucuronidated metabolites of precocene I are reported. Precocene I induced hepatocellular necrosis in a dose- and time-dependent manner. ABT decreased the toxicity of precocene I, increased exposure to parent compound, and decreased metabolite levels in a dose-dependent manner. Of the isoform-specific CYP inhibitors tested for an effect on the precocene I metabolite profile, only tranylcypromine was noticeably effective, indicating a role of CYPs 2A6, 2C9, 2Cl9, and 2E1. With respect to toxicity, the order of CYP inhibitor effectiveness was ABT>diethyldithiocarbamate∼tranylcypromine>ketoconazole. Furafylline and sulfaphenazole had no effect, while quinidine appeared to augment precocene I toxicity. These results suggest that rat liver slices do not reproduce the reported in vivo biotransformation of precocene I and therefore may not be an appropriate model for precocene I metabolism. However, these results provide an example of how small molecule manipulation of CYP activity in an in vitro model can be used to confirm metabolism-mediated toxicity.
Collapse
|
12
|
Masuda M, Ohyama K, Hayashi O, Satsuma K, Sato K. Bioconcentration and biotransformation of [¹⁴C]methoxychlor in the brackish water bivalve Corbicula japonica. Xenobiotica 2011; 41:818-25. [PMID: 21521078 DOI: 10.3109/00498254.2011.574164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To obtain basic information on the metabolic fate of xenobiotics in the brackish water, bivalve Corbicula japonica, bioconcentration and biotransformation experiments were performed using methoxychlor (MXC) as a model compound. Bivalves were exposed to [ring-U-¹⁴C]MXC (10 µg L⁻¹) for 28 days under semi-static conditions followed by a 14-day depuration phase. The ¹⁴C concentration in the bivalves rapidly increased and reached a steady state after exposure for 7 days (BCFss = 2010); however, it rapidly decreased with a half-life of 2.2 days in the depuration phase. Mono- and bis-demethylated MXC, and their corresponding sulphate conjugates, were identified as minor metabolites. No glycoside conjugates (including glucuronide and glucoside) were detected. Despite this biotransformation system, bivalves were found to excrete retained MXC mostly unchanged although its relatively hydrophobic nature.
Collapse
Affiliation(s)
- Minoru Masuda
- The Institute of Environmental Toxicology, Laboratory of Metabolism, Joso-shi, Japan.
| | | | | | | | | |
Collapse
|
13
|
Precision-Cut Liver Slices of Salmo salar as a tool to investigate the oxidative impact of CYP1A-mediated PCB 126 and 3-methylcholanthrene metabolism. Toxicol In Vitro 2010; 25:335-42. [PMID: 20946947 DOI: 10.1016/j.tiv.2010.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 10/19/2022]
Abstract
Fish isolated cell systems have long been used to predict in vivo toxicity of man-made chemicals. In present study, we tested the suitability of Precision-Cut Liver Slices (PCLS) as an alternative to these models that allows the evaluation of a global tissue response to toxicants, to investigate oxidative stress response to cytochrome P450 1A (CYP1A) induction in fish liver. PCLS of Salmo salar were exposed for 21 h to increasing doses of 3-methylcholanthrene (3-MC) and Polychlorobiphenyl 126 (PCB 126). 3-MC (25 μM) strongly induced CYP1A transcription. In dose-response analysis (25-100 μM), EROD activity was strongly increased at intermediate 3-MC concentrations. We found the counter-intuitive decline of EROD at the highest 3-MC doses to result from reversible competition with ethoxyresorufin. No increases of H(2)O(2) production, antioxidant enzymes activities or oxidative damage to lipids were found with 3-MC treatments. PCLS subjected to PCB 126 (2-200 nM) showed increased contamination levels and a parallel increased CYP1A mRNA synthesis and EROD activity. H(2)O(2) production tended to increase but no oxidative damage to lipids was found. As antioxidant enzymes activities declined at the highest PCB 126 dose, it is suggested that longer incubation periods could be required to generate oxidative stress in PCLS.
Collapse
|
14
|
Mattsson A, Brunström B. Effects on differentiation of reproductive organs and sexual behaviour in Japanese quail by excessive embryonic ERalpha activation. Reprod Fertil Dev 2010; 22:416-25. [PMID: 20047727 DOI: 10.1071/rd08293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Accepted: 08/11/2009] [Indexed: 02/04/2023] Open
Abstract
Exposure of Japanese quail (Coturnix japonica) embryos to oestrogenic substances disrupts sexual differentiation of the reproductive tract of both sexes and impairs the copulatory behaviour of the adult male. To examine whether these effects can be induced by selective activation of oestrogen receptor alpha (ERalpha), Japanese quail eggs were injected with various doses of the selective ERalpha agonist 16alpha-lactone-oestradiol (16alpha-LE(2)). The natural oestrogen 17beta-oestradiol (E(2)) was used as a positive control. Both 16alpha-LE(2) and E(2) induced formation of an ovary-like cortex in the left testis (ovotestis) and reduced the size of the right testis in male embryos. The asymmetry in testis size remained in sexually mature males. Both substances induced retention and malformation of the Müllerian ducts in embryos of both sexes and malformed oviducts in juveniles. Male copulatory behaviour was suppressed by embryonic exposure to E(2) and the highest dose of 16alpha-LE(2). However, the lower dose of 16alpha-LE(2), which markedly affected development of the reproductive organs, was without effects on behaviour. It can therefore not be excluded that the behavioural demasculinisation at the 100-fold higher dose involved cross-activation of oestrogen receptor beta (ERbeta). In conclusion, our results suggest that oestrogen-induced disruption of reproductive organ development in Japanese quail can be mediated via ERalpha, whereas the role of ERalpha in demasculinisation of copulatory behaviour remains to be clarified.
Collapse
Affiliation(s)
- Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden
| | | |
Collapse
|
15
|
Nyagode BA, James MO, Kleinow KM. Influence of dietary Coexposure to benzo(a)pyrene on the biotransformation and distribution of 14C-methoxychlor in the channel catfish (Ictalurus punctatus). Toxicol Sci 2009; 108:320-9. [PMID: 19181613 DOI: 10.1093/toxsci/kfp018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Methoxychlor (MXC) is an organochlorine pesticide whose mono- and bis-demethylated metabolites, 2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)-1,1,1-trichloroethane (OH-MXC) and 2,2-bis(4-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), respectively, are estrogenic and antiandrogenic. Studies in vitro showed that treatment of channel catfish with a polycyclic aromatic hydrocarbon increased phase I and phase II metabolism of MXC. To determine the in vivo significance, groups of four channel catfish were treated by gavage for 6 days with 2 mg/kg (14)C-MXC alone or 2 mg/kg (14)C-MXC and 2 mg/kg benzo(a)pyrene (BaP). On day 7, blood and tissue samples were taken for analysis. Hepatic ethoxyresorufin O-deethylase activity was 10-fold higher in the BaP-treated catfish, indicating CYP1A induction. More MXC-derived radioactivity remained in control (42.8 +/- 4.1%) than BaP-induced catfish (28.5 +/- 3.2%), mean percent total dose +/- SE. Bile, muscle and fat contained approximately 90% of the radioactivity remaining in control and induced catfish. Extraction and chromatographic analysis showed that liver contained MXC, OH-MXC, HPTE, and glucuronide but not sulfate conjugates of OH-MXC and HPTE. Liver mitochondria contained more MXC, OH-MXC, and HPTE than other subcellular fractions. Bile contained glucuronides of OH-MXC and HPTE, and hydrolysis of bile gave HPTE and both enantiomers of OH-MXC. The muscle, visceral fat, brain and gonads contained MXC, OH-MXC, and HPTE in varying proportions, but no conjugates. This study showed that catfish coexposed to BaP and MXC retained less MXC and metabolites in tissues than those exposed to MXC alone, suggesting that induction enhanced the elimination of MXC, and further showed that potentially toxic metabolites of MXC were present in the edible tissues.
Collapse
Affiliation(s)
- Beatrice A Nyagode
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610-0485, USA
| | | | | |
Collapse
|
16
|
Ohyama K, Maki S, Sato K, Kato Y. Comparativein vitrometabolism of the suspected pro-oestrogenic compound, methoxychlor in precision-cut liver slices from male and female rats. Xenobiotica 2008; 35:331-42. [PMID: 16019955 DOI: 10.1080/00498250500087309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The in vitro metabolism of [14C]methoxychlor (MXC), a suspected pro-oestrogenic compound, by male and female Fischer rats (F344) was compared in precision-cut liver slices. The results demonstrated time-dependent metabolism of MXC with integrated phase I and II reactions, and the sex differences were detected in the metabolic profiles. In liver slices from male rats, MXC was metabolized to bis-demethylated MXC (bis-OH-MXC) by sequential O-demethylation followed by subsequent O-glucuronidation. The doubly conjugated metabolite, bis-OH-MXC 4-O-sulphate 4'-O-glucuronide was additionally produced. In the case of the female rat, the glucuronides of both mono- and bis-OH-MXC were formed as the main metabolites, and the mono-OH-MXC glucuronide appeared to be specific to the female rat. The ratios of bis-/mono-demethylated metabolite, which include the amounts of corresponding conjugates, were approximately 95/5 for the male rats and 40/60 for the female. These results imply that demethylation to the intermediate metabolite, (S)-mono-OH-MXC, is a key step for the sex-dependent metabolism of MXC in the rats. The phase I metabolites produced were extensively conjugated with D-glucuronic acid in both male and female rats.
Collapse
Affiliation(s)
- K Ohyama
- The Institute of Environmental Toxicology, Mitsukaido, Japan.
| | | | | | | |
Collapse
|
17
|
Mazur CS, Kenneke JF. Cross-species comparison of conazole fungicide metabolites using rat and rainbow trout (Onchorhynchus mykiss) hepatic microsomes and purified human CYP 3A4. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:947-954. [PMID: 18323127 DOI: 10.1021/es072049b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ecological risk assessment frequently relies on cross-species extrapolation to predict acute toxicity from chemical exposures. A major concern for environmental risk characterization is the degree of uncertainty in assessing xenobiotic biotransformation processes. Although inherently complex, metabolite identification is critical to risk assessment since the product(s) formed may pose a greater toxicological threat than the parent molecule. This issue is further complicated by differences observed in metabolic transformation pathways among species. Conazoles represent an important class of azole fungicides that are widely used in both pharmaceutical and agricultural applications. The antifungal property of conazoles occurs via complexation with the cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell wall synthesis. This mode of action has cause for concern regarding the potential adverse impact of conazoles on the broad spectrum of CYP-based processes within mammalian and aquatic species. In this study, in vitro metabolic profiles were determined for thirteen conazole fungicides using rat and rainbow trout (Oncorhynchus mykiss) liver microsomes and purified human CYP 3A4. Results showed that 10 out of the 13 conazoles tested demonstrated identical metabolite profiles among rat and trout microsomes, and these transformations were well conserved via both aromatic and aliphatic hydroxylation and carbonyl reduction processes. Furthermore, nearly all metabolites detected in the rat and trout microsomal assays were detected within the human CYP 3A4 assays. These results indicate a high degree of metabolic conservation among species with an equivalent isozyme activity of human CYP 3A4 being present in both the rat and trout, and provides insight into xenobiotic biotransformations needed for accurate risk assessment.
Collapse
Affiliation(s)
- Christopher S Mazur
- U.S. EPA, National Exposure Research Laboratory, Ecosystems Research Division, 960 College Station Rd., Athens, GA 30605, USA.
| | | |
Collapse
|
18
|
James MO, Stuchal LD, Nyagode BA. Glucuronidation and sulfonation, in vitro, of the major endocrine-active metabolites of methoxychlor in the channel catfish, Ictalurus punctatus, and induction following treatment with 3-methylcholanthrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 86:227-38. [PMID: 18078677 PMCID: PMC2268215 DOI: 10.1016/j.aquatox.2007.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 05/18/2023]
Abstract
The organochlorine pesticide, methoxychlor (MXC), is metabolized in animals to phenolic mono- and bis-demethylated metabolites (OH-MXC and HPTE, respectively) that interact with estrogen receptors and may be endocrine disruptors. The phase II detoxication of these compounds will influence the duration of action of the estrogenic metabolites, but has not been investigated extensively. In this study, the glucuronidation and sulfonation of OH-MXC and HPTE were investigated in subcellular fractions of liver and intestine from untreated, MXC-treated and 3-methylcholanthrene (3-MC)-treated channel catfish, Ictalurus punctatus. MXC-treated fish were given i.p. injections of 2mg MXC/kg daily for 6 days and sacrificed 24h after the last dose. The 3-MC treatment was a single 10mg/kg i.p. dose 5 days prior to sacrifice. In hepatic microsomes from control fish, the V(max) value (mean+/-S.D., n=4) for glucuronidation of OH-MXC was 270+/-50pmol/min/mg protein, higher than found for HPTE (110+/-20pmol/min/mg protein). For each substrate, the V(max) values observed in intestinal microsomes were approximately twice those found in the liver. The K(m) values for OH-MXC and HPTE glucuronidation in control liver were not significantly different and were 0.32+/-0.04mM for OH-MXC and 0.26+/-0.06mM for HPTE. The K(m) for the co-substrate, UDPGA, was higher in liver (0.28+/-0.09mM) than intestine (0.04+/-0.02mM). Treatment with 3-MC but not MXC increased the V(max) for glucuronidation in liver and intestine. Glucuronidation was a more efficient pathway than sulfonation for both substrates, in both tissues. The V(max) values for sulfonation of OH-MXC and HPTE, respectively, in liver cytosol were 7+/-3 and 17+/-4pmol/min/mg protein and in intestinal cytosol were 13+/-3 and 30+/-5pmol/min/mg protein. Treatment with 3-MC but not MXC increased rates of sulfonation of OH-MXC and HPTE and the model substrate, 3-hydroxy-benzo(a)pyrene in both intestine and liver. Comparison of the kinetics of the conjugation pathways with those published for the demethylation of MXC showed that formation of the endocrine-active metabolites was more efficient than either conjugation pathway. Residues of OH-MXC and HPTE were detected in extracts of liver microsomes from MXC-treated fish. This work showed that although OH-MXC and HPTE could be eliminated by glucuronidation and sulfonation, the phase II pathways were less efficient than the phase I pathway leading to formation of these endocrine-active metabolites.
Collapse
Affiliation(s)
- Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610-0485, United States.
| | | | | |
Collapse
|
19
|
Ohyama K, Maki S, Sato K, Kato Y. Comparative in vitro metabolism of methoxychlor in male and female rats: metabolism of demethylated methoxychlor metabolites by precision-cut rat liver slices. Xenobiotica 2005; 35:683-95. [PMID: 16316928 DOI: 10.1080/00498250500230693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The in vitro metabolism of demethylated methoxychlor (MXC) metabolites, mono-OH-MXC (including (R)- and (S)-isomers) and bis-OH-MXC (mono- and bis-demethylated MXC, respectively), was conducted using precision-cut liver slices to understand the sex-dependent metabolism of MXC in rats. In the study with bis-OH-MXC, the substrate underwent extensive conjugation producing its glucuronide and glucuronide/sulphate diconjugate, and no significant sex differences were found. On the contrary, the metabolism of mono-OH-MXC appeared to exhibit the sex differences in the metabolic profiles. The bis-OH-MXC glucuronide and glucuronide/sulphate diconjugate were major metabolites in male rat, whereas the mono- and bis-OH-MXC glucuronides predominated in the female. The per cent distribution of the demethylated products (sum of bis-OH-MXC derivatives) was approximately 90% for the male (for both isomers) and 81 (R-) to 56% (S-) for the female. The metabolic profiles in (S)-mono-OH-MXC, which is the predominant enantiomer preferentially produced in MXC metabolism in rats, showed a similar pattern to that of MXC compared with the (R)-isomer. The results indicate that the sex differences in oxidative demethylation of the intermediate, (S)-mono-OH-MXC, could be one of the probable reasons for the sex-dependent metabolism of MXC in rats, and the stereo-structural preference of the contributing demethylase enzymes appear to be involved.
Collapse
Affiliation(s)
- K Ohyama
- Institute of Environmental Toxicology, Ibaraki, Japan.
| | | | | | | |
Collapse
|