1
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
2
|
Fan N, Du L, Guo T, Liu M, Chen X. Pharmacokinetic Interaction Between Imatinib and Metformin in Rats. Eur J Drug Metab Pharmacokinet 2024; 49:171-179. [PMID: 38141154 DOI: 10.1007/s13318-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Imatinib is primarily transported into the liver by organic cation transporter 1 (OCT1), organic anion transporting polypeptide 1B3 (OATP1B3), and novel organic cation transporter 2 (OCTN2), which is the first step in the metabolic and elimination of imatinib. Patients taking imatinib may concurrently take metformin, a substrate for OCT1. Drug-drug interactions (DDI) may occur between imatinib and metformin, affecting the clinical efficacy of imatinib. This experiment aimed to investigate the pharmacokinetic effects of metformin on imatinib and its active metabolism of N-desmethyl imatinib in rats. METHODS Twenty healthy Sprague-Dawley rats were selected and randomly divided into control and experimental groups (10 rats per group). The control group was orally administered imatinib (30 mg/kg) for 14 days, and the experimental group was orally co-administered imatinib (30 mg/kg) and metformin (200 mg/kg) for 14 days. The plasma concentrations of imatinib and N-desmethyl imatinib in rats were determined by ultra-performance liquid chromatography-mass spectrometry. Pharmacokinetic parameters were calculated by DAS2.0 software. RESULTS After single-dose co-administration of imatinib and metformin on day 1, the AUC0-24 (area under the plasma concentration-time curve) and Cmax (maximum concentration) of imatinib and the MRT (mean residence time) and Cmax of N-desmethyl imatinib in the experimental group were significantly decreased compared with the control group (P < 0.05). After multiple-dose co-administration of imatinib and metformin for 14 days, the AUC0-24 and Cmax of both imatinib and N-desmethyl imatinib were significantly decreased in the experimental group (P < 0.05). CONCLUSION With both single and multiple co-administration doses, metformin significantly changed the pharmacokinetic parameters of imatinib and N-desmethyl imatinib. The results suggest that care should be taken when metformin and imatinib are co-administered.
Collapse
Affiliation(s)
- Naling Fan
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of clinical Pharmacy, Health Road, Chang'an District, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Liying Du
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of clinical Pharmacy, Health Road, Chang'an District, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Teng Guo
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of clinical Pharmacy, Health Road, Chang'an District, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Mingfeng Liu
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of clinical Pharmacy, Health Road, Chang'an District, Shijiazhuang City, Hebei Province, People's Republic of China
| | - Xinran Chen
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of clinical Pharmacy, Health Road, Chang'an District, Shijiazhuang City, Hebei Province, People's Republic of China.
| |
Collapse
|
3
|
Gülave B, Budda D, Saleh MAA, van Hasselt JGC, de Lange ECM. Does nonlinear blood-brain barrier transport matter for (lower) morphine dosing strategies? Eur J Pharm Sci 2023; 187:106482. [PMID: 37247795 DOI: 10.1016/j.ejps.2023.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Morphine blood-brain barrier (BBB) transport is governed by passive diffusion, active efflux and saturable active influx. This may result in nonlinear plasma concentration-dependent brain extracellular fluid (brainECF) pharmacokinetics of morphine. In this study, we aim to evaluate the impact of nonlinear BBB transport on brainECF pharmacokinetics of morphine and its metabolites for different dosing strategies using a physiologically based pharmacokinetic simulation study. We extended the human physiologically based pharmacokinetic LeiCNS-PK3.0, model with equations for nonlinear BBB transport of morphine. Simulations for brainECF pharmacokinetics were performed for various dosing strategies: intravenous (IV), oral immediate (IR) and extended release (ER) with dose range of 0.25-150 mg and dosing frequencies of 1-6 times daily. The impact of nonlinear BBB transport on morphine CNS pharmacokinetics was evaluated by quantifying (i) the relative brainECF to plasma exposure (AUCu,brainECF/AUCu,plasma) and (ii) the impact on the peak-to-trough ratio (PTR) of concentration-time profiles in brainECF and plasma. We found that the relative morphine exposure and PTRs are dose dependent for the evaluated dose range. The highest relative morphine exposure value of 1.4 was found for once daily 0.25 mg ER and lowest of 0.1 for 6-daily 150 mg IV dosing. At lower doses the PTRs were smaller and increased with increasing dose and stabilized at higher doses independent of dosing frequency. Relative peak concentrations of morphine in relation to its metabolites changed with increasing dose. We conclude that nonlinearity of morphine BBB transport affects the relative brainECF exposure and the fluctuation of morphine and its metabolites mainly at lower dosing regimens.
Collapse
Affiliation(s)
- Berfin Gülave
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 CC, the Netherlands
| | - Divakar Budda
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 CC, the Netherlands
| | - M A A Saleh
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 CC, the Netherlands
| | - J G C van Hasselt
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 CC, the Netherlands
| | - E C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 CC, the Netherlands.
| |
Collapse
|
4
|
Hsin CH, Kuehne A, Gu Y, Jedlitschky G, Hagos Y, Gründemann D, Fuhr U. In vitro validation of an in vivo phenotyping drug cocktail for major drug transporters in humans. Eur J Pharm Sci 2023; 186:106459. [PMID: 37142000 DOI: 10.1016/j.ejps.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 05/02/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE Cocktails of transporter probe drugs are used in vivo to assess transporter activity and respective drug-drug interactions. An inhibitory effect of components on transporter activities should be ruled out. Here, for a clinically tested cocktail consisting of adefovir, digoxin, metformin, sitagliptin, and pitavastatin, inhibition of major transporters by individual probe substrates was investigated in vitro. METHODS Transporter transfected HEK293 cells were used in all evaluations. Cell-based assays were applied for uptake by human organic cation transporters 1/2 (hOCT1/2), organic anion transporters 1/3 (hOAT1/3), multidrug and toxin extrusion proteins 1/2K (hMATE1/2K), and organic anion transporter polypeptide 1B1 (hOATP1B1). For P-glycoprotein (hMDR1) a cell-based efflux assay was used whereas an inside-out vesicle-based assay was used for the bile salt export pump (hBSEP). All assays used standard substrates and established inhibitors (as positive controls). Inhibition experiments using clinically achievable concentrations of potential perpetrators at the relevant transporter expression site were carried out initially. If there was a significant effect, the inhibition potency (Ki) was studied in detail. RESULTS In the inhibition tests, only sitagliptin had an effect and reduced hOCT1- and hOCT2- mediated metformin uptake and hMATE2K mediated MPP+ uptake by more than 70%, 80%, and 30%, respectively. The ratios of unbound Cmax (observed clinically) to Ki of sitagliptin were low with 0.009, 0.03, and 0.001 for hOCT1, hOCT2, and hMATE2K, respectively. CONCLUSION The inhibition of hOCT2 in vitro by sitagliptin is in agreement with the borderline inhibition of renal metformin elimination observed clinically, supporting a dose reduction of sitagliptin in the cocktail.
Collapse
Affiliation(s)
- Chih-Hsuan Hsin
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | | | - Yi Gu
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Gabriele Jedlitschky
- Department of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | | | - Dirk Gründemann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Uwe Fuhr
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany.
| |
Collapse
|
5
|
Hong S, Li S, Meng X, Li P, Wang X, Su M, Liu X, Liu L. Bile duct ligation differently regulates protein expressions of organic cation transporters in intestine, liver and kidney of rats through activation of farnesoid X receptor by cholate and bilirubin. Acta Pharm Sin B 2023; 13:227-245. [PMID: 36815051 PMCID: PMC9939304 DOI: 10.1016/j.apsb.2022.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Body is equipped with organic cation transporters (OCTs). These OCTs mediate drug transport and are also involved in some disease process. We aimed to investigate whether liver failure alters intestinal, hepatic and renal Oct expressions using bile duct ligation (BDL) rats. Pharmacokinetic analysis demonstrates that BDL decreases plasma metformin exposure, associated with decreased intestinal absorption and increased urinary excretion. Western blot shows that BDL significantly downregulates intestinal Oct2 and hepatic Oct1 but upregulates renal and hepatic Oct2. In vitro cell experiments show that chenodeoxycholic acid (CDCA), bilirubin and farnesoid X receptor (FXR) agonist GW4064 increase OCT2/Oct2 but decrease OCT1/Oct1, which are remarkably attenuated by glycine-β-muricholic acid and silencing FXR. Significantly lowered intestinal CDCA and increased plasma bilirubin levels contribute to different Octs regulation by BDL, which are confirmed using CDCA-treated and bilirubin-treated rats. A disease-based physiologically based pharmacokinetic model characterizing intestinal, hepatic and renal Octs was successfully developed to predict metformin pharmacokinetics in rats. In conclusion, BDL remarkably downregulates expressions of intestinal Oct2 and hepatic Oct1 protein while upregulates expressions of renal and hepatic Oct2 protein in rats, finally, decreasing plasma exposure and impairing hypoglycemic effects of metformin. BDL differently regulates Oct expressions via Fxr activation by CDCA and bilirubin.
Collapse
Affiliation(s)
- Shijin Hong
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Shuai Li
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xiaoyan Meng
- Tianjin Institutes of Pharmaceutical Research, Tianjin 300301, China
| | - Ping Li
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xun Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Mengxiang Su
- Departments of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China,Corresponding author. Tel./fax: +86 25 83271060.
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China,Corresponding author. Tel./fax: +86 25 83271060.
| |
Collapse
|
6
|
Hermann R, Krajcsi P, Fluck M, Seithel-Keuth A, Bytyqi A, Galazka A, Munafo A. Review of Transporter Substrate, Inhibitor, and Inducer Characteristics of Cladribine. Clin Pharmacokinet 2021; 60:1509-1535. [PMID: 34435310 PMCID: PMC8613159 DOI: 10.1007/s40262-021-01065-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
Cladribine is a nucleoside analog that is phosphorylated in its target cells (B- and T-lymphocytes) to its active adenosine triphosphate form (2-chlorodeoxyadenosine triphosphate). Cladribine tablets 10 mg (Mavenclad®) administered for up to 10 days per year in 2 consecutive years (3.5-mg/kg cumulative dose over 2 years) are used to treat patients with relapsing multiple sclerosis. The ATP-binding cassette, solute carrier, and nucleoside transporter substrate, inhibitor, and inducer characteristics of cladribine are reviewed in this article. Available evidence suggests that the distribution of cladribine across biological membranes is facilitated by a number of uptake and efflux transporters. Among the key ATP-binding cassette efflux transporters, only breast cancer resistance protein has been shown to be an efficient transporter of cladribine, while P-glycoprotein does not transport cladribine well. Intestinal absorption, distribution throughout the body, and intracellular uptake of cladribine appear to be exclusively mediated by equilibrative and concentrative nucleoside transporters, specifically by ENT1, ENT2, ENT4, CNT2 (low affinity), and CNT3. Renal excretion of cladribine appears to be most likely driven by breast cancer resistance protein, ENT1, and P-glycoprotein. The latter may play a role despite its poor cladribine transport efficiency in view of the renal abundance of P-glycoprotein. There is no evidence that solute carrier uptake transporters such as organic anion transporting polypeptides, organic anion transporters, and organic cation transporters are involved in the transport of cladribine. Available in vitro studies examining the inhibitor characteristics of cladribine for a total of 13 major ATP-binding cassette, solute carrier, and CNT transporters indicate that in vivo inhibition of any of these transporters by cladribine is unlikely.
Collapse
Affiliation(s)
- Robert Hermann
- Clinical Research Appliance (cr.appliance), Heinrich-Vingerhut-Weg 3, 63571, Gelnhausen, Germany.
| | | | | | | | | | | | - Alain Munafo
- Institute of Pharmacometrics, an Affiliate of Merck KGaA, Lausanne, Switzerland
| |
Collapse
|
7
|
Morse BL, Fallon JK, Kolur A, Hogan AT, Smith PC, Hillgren KM. Comparison of Hepatic Transporter Tissue Expression in Rodents and Interspecies Hepatic OCT1 Activity. AAPS J 2021; 23:58. [PMID: 33903987 DOI: 10.1208/s12248-021-00583-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatic clearance may be uptake rate limited by organic anion transporting polypeptides (OATPs) and organic cation transporter 1 (OCT1). While comparison of OATP activity has been investigated across species, little has been reported for OCT1. Additionally, while data on interspecies transporter expression in the liver exist, quantitative comparison of these transporters in multiple tissues is lacking. In the current research, the pharmacokinetics of OCT1 substrates (sumatriptan and metformin) were assessed in Oct knockout rats for comparison with previous Oct1/2-/- mice data and OCT1 pharmacogenetics in humans. Effect of OCT1 inhibitors verapamil and erlotinib on OCT1 substrate liver partitioning was also evaluated in rats. Expression of 18 transporters, including Oatps and Octs, in 9 tissues from mice and rats was quantitated using nanoLC/MS-MS, along with uptake transporters in hepatocytes from 5 species. Interspecies differences in OCT1 activity were further evaluated via uptake of OCT1 substrates in hepatocytes with corresponding in vivo liver partitioning in rodents and monkey. In Oct1-/- rats, sumatriptan hepatic clearance and liver partitioning decreased; however, metformin pharmacokinetics were unaffected. OCT1 inhibitor coadministration decreased sumatriptan liver partitioning. In rodents, Oatp expression was highest in the liver, although comparable expression of Oatps in other tissues was determined. Expression of Octs was highest in the kidney, with liver Oct1 expression comparably lower than Oatps. Liver partitioning of OCT1 substrates was lower in rodents than in monkey, in agreement with the highest OCT1 expression and uptake of OCT1 substrates in monkey hepatocytes. Species-dependent OCT1 activity requires consideration when translating preclinical data to the clinic.
Collapse
Affiliation(s)
- Bridget L Morse
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anil Kolur
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Andrew T Hogan
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathleen M Hillgren
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| |
Collapse
|
8
|
Meyer MJ, Tuerkova A, Römer S, Wenzel C, Seitz T, Gaedcke J, Oswald S, Brockmöller J, Zdrazil B, Tzvetkov MV. Differences in Metformin and Thiamine Uptake between Human and Mouse Organic Cation Transporter 1: Structural Determinants and Potential Consequences for Intrahepatic Concentrations. Drug Metab Dispos 2020; 48:1380-1392. [PMID: 33037045 DOI: 10.1124/dmd.120.000170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
The most commonly used oral antidiabetic drug, metformin, is a substrate of the hepatic uptake transporter OCT1 (gene name SLC22A1). However, OCT1 deficiency leads to more pronounced reductions of metformin concentrations in mouse than in human liver. Similarly, the effects of OCT1 deficiency on the pharmacokinetics of thiamine were reported to differ between human and mouse. Here, we compared the uptake characteristics of metformin and thiamine between human and mouse OCT1 using stably transfected human embryonic kidney 293 cells. The affinity for metformin was 4.9-fold lower in human than in mouse OCT1, resulting in a 6.5-fold lower intrinsic clearance. Therefore, the estimated liver-to-blood partition coefficient is only 3.34 in human compared with 14.4 in mouse and may contribute to higher intrahepatic concentrations in mice. Similarly, the affinity for thiamine was 9.5-fold lower in human than in mouse OCT1. Using human-mouse chimeric OCT1, we showed that simultaneous substitution of transmembrane helices TMH2 and TMH3 resulted in the reversal of affinity for metformin. Using homology modeling, we suggest several explanations, of which a different interaction of Leu155 (human TMH2) compared with Val156 (mouse TMH2) with residues in TMH3 had the strongest experimental support. In conclusion, the contribution of human OCT1 to the cellular uptake of thiamine and especially of metformin may be much lower than that of mouse OCT1. This may lead to an overestimation of the effects of OCT1 on hepatic concentrations in humans when using mouse as a model. In addition, comparative analyses of human and mouse orthologs may help reveal mechanisms of OCT1 transport. SIGNIFICANCE STATEMENT: OCT1 is a major hepatic uptake transporter of metformin and thiamine, but this study reports strong differences in the affinity for both compounds between human and mouse OCT1. Consequently, intrahepatic metformin concentrations could be much higher in mice than in humans, impacting metformin actions and representing a strong limitation of using rodent animal models for predictions of OCT1-related pharmacokinetics and efficacy in humans. Furthermore, OCT1 transmembrane helices TMH2 and TMH3 were identified to confer the observed species-specific differences in metformin affinity.
Collapse
Affiliation(s)
- Marleen J Meyer
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Alzbeta Tuerkova
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Römer
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Wenzel
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Tina Seitz
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Gaedcke
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Oswald
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Barbara Zdrazil
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Mladen V Tzvetkov
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Lack of Drug-Drug Interaction Between Cimetidine, a Renal Transporter Inhibitor, and Imeglimin, a Novel Oral Antidiabetic Drug, in Healthy Volunteers. Eur J Drug Metab Pharmacokinet 2020; 45:725-733. [PMID: 32860624 DOI: 10.1007/s13318-020-00642-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVE: Imeglimin is a novel oral antidiabetic drug to treat type 2 diabetes, targeting the mitochondrial bioenergetics. In vitro, imeglimin was shown to be a substrate of human multidrug and toxic extrusion transporters MATE1 and MATE2-K and organic cation transporters OCT1 and OCT2. The objective of the study was to assess the potential drug-drug interaction between imeglimin and cimetidine, a reference inhibitor of these transporters. METHODS A phase 1 study was carried out in 16 subjects who received a single dose of 1500 mg imeglimin alone on day 1 followed by a 6-day treatment (day 5 to day 10) with cimetidine 400 mg twice daily. On day 8, a single dose of imeglimin was co-administered with cimetidine. Blood and urine samples were collected up to 72 h after each imeglimin administration. Pharmacokinetic parameters were determined using non-compartmental methods. RESULTS Imeglimin maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) were 1.3-fold [90% CI (1.12-1.62) and (1.10-1.46) for Cmax and AUC0-last, respectively] higher when imeglimin was co-administered with cimetidine but this increase was not considered clinically relevant. This increase could be mainly explained by a reduction in renal elimination, mediated through the cimetidine inhibition of renal MATE1 transporter. Imeglimin taken alone or with cimetidine was safe and well tolerated in all subjects. CONCLUSIONS No clinically significant drug-drug interaction exists between imeglimin and cimetidine, a reference inhibitor of MATE1, MATE2-K, OCT1 and OCT2 transporters. CLINICAL TRIAL REGISTRATION EudraCT 2018-001103-36.
Collapse
|
11
|
Nozaki Y, Izumi S. Recent advances in preclinical in vitro approaches towards quantitative prediction of hepatic clearance and drug-drug interactions involving organic anion transporting polypeptide (OATP) 1B transporters. Drug Metab Pharmacokinet 2020; 35:56-70. [DOI: 10.1016/j.dmpk.2019.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/29/2019] [Accepted: 11/02/2019] [Indexed: 12/26/2022]
|
12
|
Rioux N, Smith S, Colombo F, Kim A, Lai WG, Nix D, Siu YA, Schindler J, Smith PG. Metabolic disposition of H3B-8800, an orally available small-molecule splicing modulator, in rats, monkeys, and humans. Xenobiotica 2020; 50:1101-1114. [PMID: 31902291 DOI: 10.1080/00498254.2019.1709134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
H3B-8800, a novel orally available modulator of the SF3b complex, which potently and preferentially kills spliceosome-mutant tumor cells, is in clinical development for the treatment of advanced myeloid malignancies. We characterized the pharmacokinetics, metabolism and disposition of H3B-8800 in rats, monkeys and humans.In vitro, H3B-8800 is a substrate of CYP3A4/5, flavin-containing monooxygenases (FMOs) and P-glycoprotein (P-gp), and showed a favorable drug-drug interaction profile as a perpetrator.Following oral dosing of 14C-H3B-8800 in bile-duct cannulated SD rats, 54.7% of the dosed radioactivity was excreted in the bile, with less found in feces (36.8%). The low amount in urine (3.7%), suggests that renal elimination is a minor pathway of clearance for H3B-8800.In Long-Evans rats, radioactivity derived from 14C-H3B-8800 was rapidly absorbed, with the highest distribution in the ocular, metabolic/excretory, and gastrointestinal tract tissues. No radioactivity was detected in the central nervous system.Seven metabolites were observed in human plasma following 4 daily doses of 40 mg H3B-8800. H3B-68736 (N-desmethyl), H3B-77176 (N-oxide), and unchanged H3B-8800 were the prominent components in human plasma, at 27.3%, 18.1%, and 33.2%, respectively, of the total drug-related material in a pooled AUC0-24h sample. The same 7 metabolites were observed in monkey plasma.
Collapse
Affiliation(s)
- Nathalie Rioux
- Integrated Drug Development, Certara Strategic Consulting, Princeton, NJ, USA
| | | | | | - Amy Kim
- H3 Biomedicine, Cambridge, MA, USA
| | | | - Darrell Nix
- Integrated Drug Development, Certara Strategic Consulting, Princeton, NJ, USA
| | | | | | | |
Collapse
|
13
|
Nishiyama K, Toshimoto K, Lee W, Ishiguro N, Bister B, Sugiyama Y. Physiologically-Based Pharmacokinetic Modeling Analysis for Quantitative Prediction of Renal Transporter-Mediated Interactions Between Metformin and Cimetidine. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:396-406. [PMID: 30821133 PMCID: PMC6617824 DOI: 10.1002/psp4.12398] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
Abstract
Metformin is an important antidiabetic drug and often used as a probe for drug–drug interactions (DDIs) mediated by renal transporters. Despite evidence supporting the inhibition of multidrug and toxin extrusion proteins as the likely DDI mechanism, the previously reported physiologically‐based pharmacokinetic (PBPK) model required the substantial lowering of the inhibition constant values of cimetidine for multidrug and toxin extrusion proteins from those obtained in vitro to capture the clinical DDI data between metformin and cimetidine.1 We constructed new PBPK models in which the transporter‐mediated uptake of metformin is driven by a constant membrane potential. Our models successfully captured the clinical DDI data using in vitro inhibition constant values and supported the inhibition of multidrug and toxin extrusion proteins by cimetidine as the DDI mechanism upon sensitivity analysis and data fitting. Our refined PBPK models may facilitate prediction approaches for DDI involving metformin using in vitro inhibition constant values.
Collapse
Affiliation(s)
- Kotaro Nishiyama
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Hyogo, Japan
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Hyogo, Japan
| | - Bojan Bister
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Hyogo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Genetic Heterogeneity of SLC22 Family of Transporters in Drug Disposition. J Pers Med 2018; 8:jpm8020014. [PMID: 29659532 PMCID: PMC6023491 DOI: 10.3390/jpm8020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
An important aspect of modern medicine is its orientation to achieve more personalized pharmacological treatments. In this context, transporters involved in drug disposition have gained well-justified attention. Owing to its broad spectrum of substrate specificity, including endogenous compounds and xenobiotics, and its strategical expression in organs accounting for drug disposition, such as intestine, liver and kidney, the SLC22 family of transporters plays an important role in physiology, pharmacology and toxicology. Among these carriers are plasma membrane transporters for organic cations (OCTs) and anions (OATs) with a marked overlap in substrate specificity. These two major clades of SLC22 proteins share a similar membrane topology but differ in their degree of genetic variability. Members of the OCT subfamily are highly polymorphic, whereas OATs have a lower number of genetic variants. Regarding drug disposition, changes in the activity of these variants affect intestinal absorption and target tissue uptake, but more frequently they modify plasma levels due to enhanced or reduced clearance by the liver and secretion by the kidney. The consequences of these changes in transport-associated function markedly affect the effectiveness and toxicity of the treatment in patients carrying the mutation. In solid tumors, changes in the expression of these transporters and the existence of genetic variants substantially determine the response to anticancer drugs. Moreover, chemoresistance usually evolves in response to pharmacological and radiological treatment. Future personalized medicine will require monitoring these changes in a dynamic way to adapt the treatment to the weaknesses shown by each tumor at each stage in each patient.
Collapse
|
15
|
Schaefer M, Morinaga G, Matsui A, Schänzle G, Bischoff D, Süssmuth RD. Quantitative Expression of Hepatobiliary Transporters and Functional Uptake of Substrates in Hepatic Two-Dimensional Sandwich Cultures: A Comparative Evaluation of Upcyte and Primary Human Hepatocytes. Drug Metab Dispos 2017; 46:166-177. [DOI: 10.1124/dmd.117.078238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
|
16
|
Morse BL, MacGuire JG, Marino AM, Zhao Y, Fox M, Zhang Y, Shen H, Griffith Humphreys W, Marathe P, Lai Y. Physiologically Based Pharmacokinetic Modeling of Transporter-Mediated Hepatic Clearance and Liver Partitioning of OATP and OCT Substrates in Cynomolgus Monkeys. AAPS JOURNAL 2017; 19:1878-1889. [PMID: 29019117 DOI: 10.1208/s12248-017-0151-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023]
Abstract
In the present investigations, we evaluate in vitro hepatocyte uptake and partitioning for the prediction of in vivo clearance and liver partitioning. Monkeys were intravenously co-dosed with rosuvastatin and bosentan, substrates of the organic anion transporting polypeptides (OATPs), and metformin, a substrate of organic cation transporter 1 (OCT1). Serial plasma and liver samples were collected over time. Liver and plasma unbound fraction was determined using equilibrium dialysis. In vivo unbound partitioning (Kpu,u) for rosuvastatin, bosentan, and metformin, calculated from total concentrations in the liver and plasma, were 243, 553, and 15, respectively. A physiologically based pharmacokinetic monkey model that incorporates active and passive hepatic uptake was developed to fit plasma and liver concentrations. In addition, a two-compartment model was used to fit in vitro hepatic uptake curves in suspended monkey hepatocyte to determine active uptake, passive diffusion, and intracellular unbound fraction parameters. At steady-state in the model, in vitro Kpu,u was determined. The results demonstrated that in vitro values under-predicted in vivo active uptake for rosuvastatin, bosentan, and metformin by 6.7-, 28-, and 1.5-fold, respectively, while passive diffusion was over-predicted. In vivo Kpu,u values were under-predicted from in vitro data by 30-, 79-, and 3-fold. In conclusion, active uptake and liver partitioning in monkeys for OATP substrates were greatly under-predicted from in vitro hepatocyte uptake, while OCT-mediated uptake and partitioning scaled reasonably well from in vitro, demonstrating substrate- and transporter-dependent scaling factors. The combination of in vitro experimental and modeling approaches proved useful for assessing prediction of in vivo intracellular partitioning.
Collapse
Affiliation(s)
- Bridget L Morse
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA.,Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jamus G MacGuire
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Anthony M Marino
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yue Zhao
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Maxine Fox
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | | | - Punit Marathe
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA. .,Drug Metabolism, Gilead Sciences Inc., Foster City, California, 94404, USA.
| |
Collapse
|
17
|
Fattah S, Shinde AB, Matic M, Baes M, van Schaik RHN, Allegaert K, Parmentier C, Richert L, Augustijns P, Annaert P. Inter-Subject Variability in OCT1 Activity in 27 Batches of Cryopreserved Human Hepatocytes and Association with OCT1 mRNA Expression and Genotype. Pharm Res 2017; 34:1309-1319. [PMID: 28364304 DOI: 10.1007/s11095-017-2148-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/17/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE OCT1/3 (Organic Cation Transporter-1 and -3; SLC22A1/3) are transmembrane proteins localized at the basolateral membrane of hepatocytes. They mediate the uptake of cationic endogenous compounds and/or xenobiotics. The present study was set up to verify whether the previously observed variability in OCT activity in hepatocytes may be explained by inter-individual differences in OCT1/3 mRNA levels or OCT1 genotype. METHODS Twenty-seven batches of cryopreserved human hepatocytes (male and female, age 24-88 y) were characterized for OCT activity, normalized OCT1/3 mRNA expression, and OCT1 genetic mutation. ASP+ (4-[4-(dimethylamino)styryl]-N-methylpyridinium iodide) was used as probe substrate. RESULTS ASP+ uptake ranged between 75 ± 61 and 2531 ± 202 pmol/(min × million cells). The relative OCT1 and OCT3 mRNA expression ranged between 0.007-0.46 and 0.0002-0.005, respectively. The presence of one or two nonfunctional SLC22A1 alleles was observed in 13 batches and these exhibited significant (p = 0.04) association with OCT1 and OCT3 mRNA expression. However, direct association between genotype and OCT activity could not be established. CONCLUSION mRNA levels and genotype of OCT only partially explain inter-individual variability in OCT-mediated transport. Our findings illustrate the necessity of in vitro transporter activity profiling for better understanding of inter-individual drug disposition behavior.
Collapse
Affiliation(s)
- Sarinj Fattah
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium
| | - Abhijit Babaji Shinde
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Maja Matic
- Department Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, Netherlands.,Intensive Care and Department of Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Ron H N van Schaik
- Department Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Karel Allegaert
- Intensive Care and Department of Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Lysiane Richert
- KaLy-Cell, Plobsheim, France.,Université de Franche-Comté, 4267, Besançon, EA, France
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Campus Gasthuisberg O&N II Herestraat 49 Box 921, 3000, Leuven, Belgium.
| |
Collapse
|
18
|
Hahn D, Emoto C, Vinks AA, Fukuda T. Developmental Changes in Hepatic Organic Cation Transporter OCT1 Protein Expression from Neonates to Children. Drug Metab Dispos 2016; 45:23-26. [PMID: 27780835 DOI: 10.1124/dmd.116.072256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/13/2016] [Indexed: 01/11/2023] Open
Abstract
Organic cation transporter 1 (OCT1) plays an important role in the disposition of clinically important drugs, and the capacity of OCT1 activity is presumed to be proportional to the protein expression level in organ tissues. Knowledge of OCT1 protein expression in children, especially neonates and small infants, is currently very limited. Here, we report on the characterization of OCT1 protein expression in neonatal, infant, and pediatric liver samples performed using immunoblot analysis. OCT1 protein expression was detected in liver samples from neonates as early as postnatal days 1 and 2. This youngest group showed significantly lower OCT1 expression normalized by glyceraldehyde-6-phosphate dehydrogenase (values given as means ± S.D. in arbitrary units; 0.03 ± 0.02, n = 7) compared with samples from patients aged 3 to 4 weeks (0.08 ± 0.03, n = 5, P < 0.01), 3 to 6 months (0.23 ± 0.15, n = 7, P < 0.01), 11 months to 1 year (0.42 ± 0.32, n = 6, P < 0.01), and 8 to 12 years (1.00 ± 0.44, n = 7, P < 0.01). These data demonstrate an age-dependent increase in OCT1 expression from birth up to 8 to 12 years of age, and the findings of this study contribute to the understanding of OCT1 functional capacity and its effect upon the disposition of OCT1 substrates in neonates and small infants.
Collapse
Affiliation(s)
- David Hahn
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio (D.H., C.E., A.A.V., T.F); and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio (C.E., A.A.V., T.F)
| | - Chie Emoto
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio (D.H., C.E., A.A.V., T.F); and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio (C.E., A.A.V., T.F)
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio (D.H., C.E., A.A.V., T.F); and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio (C.E., A.A.V., T.F)
| | - Tsuyoshi Fukuda
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio (D.H., C.E., A.A.V., T.F); and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio (C.E., A.A.V., T.F)
| |
Collapse
|
19
|
Hyrsova L, Smutny T, Trejtnar F, Pavek P. Expression of organic cation transporter 1 (OCT1): unique patterns of indirect regulation by nuclear receptors and hepatospecific gene regulation. Drug Metab Rev 2016; 48:139-58. [DOI: 10.1080/03602532.2016.1188936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lucie Hyrsova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Frantisek Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| |
Collapse
|
20
|
Yin CX, Chen WW, Zhong QX, Jiang XJ, Wang ZX, Li XD, Ye JY, Cao R, Liao LB, Wu FQ, Xu D, Zhong JS, Meng FY. Association between the concentration of imatinib in bone marrow mononuclear cells, mutation status of ABCB1 and therapeutic response in patients with chronic myelogenous leukemia. Exp Ther Med 2016; 11:2061-2065. [PMID: 27168851 DOI: 10.3892/etm.2016.3127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/11/2016] [Indexed: 12/17/2022] Open
Abstract
Low concentrations of imatinib (IM) in bone marrow cells have been linked with poor prognosis in patients with chronic myeloid leukemia (CML), which may be caused by the emergence of ATP-binding cassette transporter B1 (ABCB1) mutations. The aim of present study was to investigate how clinical outcomes vary among patients with different single nucleotide polymorphisms (SNPs) of ABCB1. A total of 48 adult patients with CML and higher than median ABCB1 mRNA levels were selected for testing of ABCB1 SNPs. In 28 of the 48 patients, the IM concentration and expression levels of human organic cation transporter 1 (hOCT1) and ABCB1 in bone marrow mononuclear cells (BMMCs) were also tested. Correlations between treatment outcomes and IM concentration or the SNP status of ABCB1 were analyzed. Patients were classified by therapeutic response as major molecular response (MMR) (n=11), complete cytogenetic response (CCyR) (n=19) and non-CCyR (n=18) groups. It was found that the concentration of IM in BMMCs of the CCyR group was significant higher than that of the resistant groups (P=0.013). In addition, the IM concentration was positively correlated with the expression of hOCT1 mRNA (R=0.456, P=0.033), but negatively correlated with the expression of ABCB1 mRNA (R=-0.491, P=0.015). Furthermore, the mRNA expression level of ABCB1 was not associated with therapeutic response, but SNPs of the ABCB1 gene were associated with the response to IM. In conclusion, the concentration of IM in BMMCs may be regulated by the ABCB1 gene, and SNPs of the ABCB1 gene predict the therapeutic response to IM in patients with CML.
Collapse
Affiliation(s)
- Chang-Xin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei-Wei Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qing-Xiu Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xue-Jie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhi-Xiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiao-Dong Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jie-Yu Ye
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Rui Cao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li-Bing Liao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fu-Qun Wu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jian-Sheng Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fan-Yi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
21
|
Araki T, Iwazaki N, Ishiguro N, Sakamoto A, Nagata K, Ohbuchi M, Moriguchi H, Motoi M, Shinkyo R, Homma T, Sakamoto S, Iwase Y, Ise R, Nakanishi Y, Uto M, Inoue T. Requirements for human iPS cell-derived hepatocytes as an alternative to primary human hepatocytes for assessing absorption, distribution, metabolism, excretion and toxicity of pharmaceuticals. ACTA ACUST UNITED AC 2016. [DOI: 10.2131/fts.3.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tetsuro Araki
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation
| | - Norihiko Iwazaki
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- DMPK Research Laboratories, Mitsubishi Tanabe Pharma Corporation
| | - Naoki Ishiguro
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Non-Clinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd
| | - Atsushi Sakamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Non-Clinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd
| | - Keisuke Nagata
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Drug Safety Research Laboratories, Astellas Pharma Inc
| | - Masato Ohbuchi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Analysis & Pharmacokinetics Research Laboratories, Astellas Pharma Inc
| | - Hiroyuki Moriguchi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Analysis & Pharmacokinetics Research Laboratories, Astellas Pharma Inc
| | - Makiko Motoi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co., Ltd
| | - Raku Shinkyo
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co., Ltd
| | - Toshiki Homma
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Kissei Pharmaceutical Co., Ltd
| | - Sakae Sakamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Kissei Pharmaceutical Co., Ltd
| | - Yumiko Iwase
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Mitsubishi Tanabe Pharma Corporation
| | - Ryota Ise
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Shin Nippon Biomedical Laboratories, Ltd
| | - Yasuharu Nakanishi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd
| | - Masahiro Uto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd
| | - Tomoaki Inoue
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Safety Assessment Department, Research Division, Chugai Pharmaceutical Co., Ltd
| |
Collapse
|
22
|
Shingaki T, Hume WE, Takashima T, Katayama Y, Okauchi T, Hayashinaka E, Wada Y, Cui Y, Kusuhara H, Sugiyama Y, Watanabe Y. Quantitative Evaluation of mMate1 Function Based on Minimally Invasive Measurement of Tissue Concentration Using PET with [(11)C]Metformin in Mouse. Pharm Res 2015; 32:2538-47. [PMID: 25715695 DOI: 10.1007/s11095-015-1642-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the function of multidrug and toxin extrusion proteins (MATEs) using (11)C-labeled metformin ([(11)C]metformin) by positron emission tomography (PET). METHODS PET was performed by intravenous bolus injection of [(11)C]metformin. Pyrimethamine at 0.5 and 5 mg/kg was intravenously administered to mice 30 min prior to the scan. Integration plot analysis was conducted for calculating liver (CLuptake,liver), kidney (CLuptake,kidney) tissue uptake, intrinsic biliary (CLint,bile) and urinary (CLint,urine) excretion clearances of [(11)C]metformin. RESULTS Visualization by PET showed that pyrimethamine increased concentrations of [(11)C]metformin in the liver and kidneys, and decreased the concentrations in the urinary bladder without changing the blood profiles. Pyrimethamine had no effect on the CLuptake,liver and CLuptake,kidney, which were similar to the blood-flow rate. CLint,bile with regard to the liver concentration was unable to be determined, but administration of 0.5 and 5 mg/kg of pyrimethamine increased the liver-to-blood ratio to 1.6 and 2.3-fold, respectively, indicating that pyrimethamine inhibited the efflux of [(11)C]metformin from the liver. CLint,urine with regard to the corticomedullary region concentrations was decreased 37 and 68% of the control by administration of 0.5 and 5 mg/kg of pyrimethamine, respectively (P < 0.05). CONCLUSIONS Tissue concentration based investigations using [(11)C]metformin by PET enables the functional analysis of MATEs in the liver and kidneys.
Collapse
Affiliation(s)
- Tomotaka Shingaki
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Oshima R, Yamada M, Kurogi E, Ogino Y, Serizawa Y, Tsuda S, Ma X, Egawa T, Hayashi T. Evidence for organic cation transporter-mediated metformin transport and 5'-adenosine monophosphate-activated protein kinase activation in rat skeletal muscles. Metabolism 2015; 64:296-304. [PMID: 25433920 DOI: 10.1016/j.metabol.2014.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/13/2014] [Accepted: 10/28/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE 5'-Adenosine monophosphate-activated protein kinase (AMPK) is a key molecule of metabolic enhancement in skeletal muscle. We investigated whether metformin (MET) acts directly on skeletal muscle, is transported into skeletal muscle via organic cation transporters (OCTs), and activates AMPK. MATERIALS/METHODS Isolated rat epitrochlearis and soleus muscles were incubated in vitro either in the absence or in the presence of MET. The activation status of AMPK, the intracellular energy status, and glucose and MET transport activity were then evaluated. The effect of cimetidine, which is an OCT inhibitor, on AMPK activation was also examined. RESULTS MET (10 mmol/L, ≥60 min) increased the phosphorylation of Thr¹⁷² at the catalytic α subunit of AMPK in both muscles. AMPK activity assays showed that both AMPKα1 and AMPKα2 activity increased significantly. The AMPK activation was associated with energy deprivation, which was estimated from the ATP, phosphocreatine (PCr), and glycogen content, and with increased rates of 3-O-methyl-D-glucose (3MG) transport. MET did not change the basal phosphorylation status of insulin receptor signaling molecules. MET was transported into the cytoplasm in a time-dependent manner, and cimetidine suppressed MET-induced AMPK phosphorylation and 3MG transport. CONCLUSION These results suggest that MET is acutely transported into skeletal muscle by OCTs, and stimulates AMPKα1 and α2 activity in both fast- and slow-twitch muscle types, at least in part by reducing the energy state.
Collapse
Affiliation(s)
- Rieko Oshima
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Mayumi Yamada
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Eriko Kurogi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yohei Ogino
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yasuhiro Serizawa
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Satoshi Tsuda
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan
| | - Xiao Ma
- Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, Yunnan Province, China
| | - Tatsuro Egawa
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, 440-0016, Japan
| | - Tatsuya Hayashi
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
24
|
Lalau JD, Arnouts P, Sharif A, De Broe ME. Metformin and other antidiabetic agents in renal failure patients. Kidney Int 2014; 87:308-22. [PMID: 24599253 DOI: 10.1038/ki.2014.19] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/21/2013] [Accepted: 12/12/2013] [Indexed: 12/11/2022]
Abstract
This review mainly focuses on metformin, and considers oral antidiabetic therapy in kidney transplant patients and the potential benefits and risks of antidiabetic agents other than metformin in patients with chronic kidney disease (CKD). In view of the debate concerning lactic acidosis associated with metformin, this review tries to solve a paradox: metformin should be prescribed more widely because of its beneficial effects, but also less widely because of the increasing prevalence of contraindications to metformin, such as reduced renal function. Lactic acidosis appears either as part of a number of clinical syndromes (i.e., unrelated to metformin), induced by metformin (involving an analysis of the drug's pharmacokinetics and mechanisms of action), or associated with metformin (a more complex situation, as lactic acidosis in a metformin-treated patient is not necessarily accompanied by metformin accumulation, nor does metformin accumulation necessarily lead to lactic acidosis). A critical analysis of guidelines and literature data on metformin therapy in patients with CKD is presented. Following the present focus on metformin, new paradoxical issues can be drawn up, in particular: (i) metformin is rarely the sole cause of lactic acidosis; (ii) lactic acidosis in patients receiving metformin therapy is erroneously still considered a single medical entity, as several different scenarios can be defined, with contrasting prognoses. The prognosis for severe lactic acidosis seems even better in metformin-treated patients than in non-metformin users.
Collapse
Affiliation(s)
- Jean-Daniel Lalau
- 1] Service d'Endocrinologie et de Nutrition, Centre Hospitalier Universitaire, Amiens, France [2] Unité INSERM U-1088, Université de Picardie Jules Verne, Amiens, France
| | - Paul Arnouts
- Department of Nephrology-Diabetology-Endocrinology, AZ Turnhout, Turnhout, Belgium
| | - Adnan Sharif
- Department of Nephrology and Transplantation, Renal Institute of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Marc E De Broe
- Laboratory of Pathophysiology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
25
|
Pulito C, Sanli T, Rana P, Muti P, Blandino G, Strano S. Metformin: On Ongoing Journey across Diabetes, Cancer Therapy and Prevention. Metabolites 2013; 3:1051-75. [PMID: 24958265 PMCID: PMC3937831 DOI: 10.3390/metabo3041051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/27/2013] [Accepted: 10/31/2013] [Indexed: 02/08/2023] Open
Abstract
Cancer metabolism is the focus of intense research, which witnesses its key role in human tumors. Diabetic patients treated with metformin exhibit a reduced incidence of cancer and cancer-related mortality. This highlights the possibility that the tackling of metabolic alterations might also hold promising value for treating cancer patients. Here, we review the emerging role of metformin as a paradigmatic example of an old drug used worldwide to treat patients with type II diabetes which to date is gaining strong in vitro and in vivo anticancer activities to be included in clinical trials. Metformin is also becoming the focus of intense basic and clinical research on chemoprevention, thus suggesting that metabolic alteration is an early lesion along cancer transformation. Metabolic reprogramming might be a very efficient prevention strategy with a profound impact on public health worldwide.
Collapse
Affiliation(s)
- Claudio Pulito
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| | - Toran Sanli
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Punam Rana
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada.
| | - Giovanni Blandino
- Translational Oncogenomics Unit-ROC, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| | - Sabrina Strano
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Institute, Rome 00144, Italy.
| |
Collapse
|
26
|
Hume WE, Shingaki T, Takashima T, Hashizume Y, Okauchi T, Katayama Y, Hayashinaka E, Wada Y, Kusuhara H, Sugiyama Y, Watanabe Y. The synthesis and biodistribution of [(11)C]metformin as a PET probe to study hepatobiliary transport mediated by the multi-drug and toxin extrusion transporter 1 (MATE1) in vivo. Bioorg Med Chem 2013; 21:7584-90. [PMID: 24238901 DOI: 10.1016/j.bmc.2013.10.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
In order to develop a new positron emission tomography (PET) probe to study hepatobiliary transport mediated by the multi-drug and toxin extrusion transporter 1 (MATE1), (11)C-labelled metformin was synthesized and then evaluated as a PET probe. [(11)C]Metformin ([(11)C]4) was synthesized in three steps, from [(11)C]methyl iodide. Evaluation by small animal PET of [(11)C]4 showed that there was increased concentrations of [(11)C]4 in the livers of mice pre-treated with pyrimethamine, a potential inhibitor of MATEs, inhibiting the hepatobiliary excretion of metformin. Radiometabolite analysis showed that [(11)C]4 was not degraded in vivo during the PET scan. Biodistribution studies were undertaken and the organ distributions were extrapolated into a standard human model. In conclusion, [(11)C]4 may be useful as a PET probe to non-invasively study the in vivo function of hepatobiliary transport and drug-drug interactions, mediated by MATE1 in future clinical investigations.
Collapse
Affiliation(s)
- W Ewan Hume
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hendrickx R, Johansson JG, Lohmann C, Jenvert RM, Blomgren A, Börjesson L, Gustavsson L. Identification of novel substrates and structure-activity relationship of cellular uptake mediated by human organic cation transporters 1 and 2. J Med Chem 2013; 56:7232-42. [PMID: 23984907 DOI: 10.1021/jm400966v] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently the clinical importance of human organic cation transporters 1 (hOCT1/SLC22A1) and 2 (hOCT2/SLC22A2) in drug disposition, for example, clearance, toxicity, and drug-drug interactions, have been highlighted [Annu. Rev. Pharmacol. Toxicol. 2012, 52, 249-273; Nat. Rev. Drug Discovery 2010, 9 (3), 215-236]. Consequently, there is an extensive need for experimental assessment of structure-transport relationships as well as tools to predict drug uptake by these transporters in ADMET (absorption, distribution, metabolism, excretion, toxicity) investigations. In the present study, we developed a robust assay for screening unlabeled compound uptake by hOCT1 and hOCT2 using transfected HEK293 cells. For the first time, an extensive data set comprising uptake of 354 compounds is presented. As expected, there was a large overlap in substrate specificity between the two organic cation transporters. However, several compounds selectively taken up by either hOCT1 or hOCT2 were identified. In particular, a chemical series of phenylthiophenecarboxamide ureas was identified as selective hOCT1 substrates. Moreover, the drivers for transport differed: molecular volume was the most important determinant of hOCT1 substrates, whereas H-bonding parameters like polar surface area (PSA) dominated for hOCT2.
Collapse
Affiliation(s)
- Ramon Hendrickx
- Respiratory, Inflammation and Autoimmunity Innovative Medicines Unit, AstraZeneca R&D Mölndal , SE-431 83 Mölndal, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Zou P, Liu X, Wong S, Feng MR, Liederer BM. Comparison of In Vitro-In Vivo Extrapolation of Biliary Clearance Using an Empirical Scaling Factor Versus Transport-Based Scaling Factors in Sandwich-Cultured Rat Hepatocytes. J Pharm Sci 2013; 102:2837-50. [DOI: 10.1002/jps.23620] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/05/2023]
|
29
|
Role of the plasma membrane transporter of organic cations OCT1 and its genetic variants in modern liver pharmacology. BIOMED RESEARCH INTERNATIONAL 2013; 2013:692071. [PMID: 23984399 PMCID: PMC3747481 DOI: 10.1155/2013/692071] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/04/2013] [Indexed: 01/11/2023]
Abstract
Changes in the uptake of many drugs by the target cells may dramatically affect the pharmacological response. Thus, downregulation of SLC22A1, which encodes the organic cation transporter type 1 (OCT1), may affect the response of healthy hepatocytes and liver cancer cells to cationic drugs, such as metformin and sorafenib, respectively. Moreover, the overall picture may be modified to a considerable extent by the preexistence or the appearance during the pathogenic process of genetic variants. Some rare OCT1 variants enhance transport activity, whereas other more frequent variants impair protein maturation, plasma membrane targeting or the function of this carrier, hence reducing intracellular active drug concentrations. Here, we review current knowledge of the role of OCT1 in modern liver pharmacology, which includes the use of cationic drugs to treat several diseases, some of them of great clinical relevance such as diabetes and primary liver cancer (cholangiocarcinoma and hepatocellular carcinoma). We conclude that modern pharmacology must consider the individual evaluation of OCT1 expression/function in the healthy liver and in the target tissue, particularly if this is a tumor, in order to predict the lack of response to cationic drugs and to be able to design individualized pharmacological treatments with the highest chances of success.
Collapse
|
30
|
Le Vee M, Noel G, Jouan E, Stieger B, Fardel O. Polarized expression of drug transporters in differentiated human hepatoma HepaRG cells. Toxicol In Vitro 2013; 27:1979-86. [PMID: 23850984 DOI: 10.1016/j.tiv.2013.07.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/28/2022]
Abstract
The HepaRG cell line is a well-differentiated human hepatoma cell line proposed as a surrogate for human hepatocytes, especially for hepatic detoxification studies. Polarized status of drug transporters, i.e., their coordinated location at sinusoidal or canalicular membranes, which represents a key hallmark of hepato-biliary drug transport, remains however incompletely documented in HepaRG cells. The present study was therefore designed to analyze transporter location in HepaRG cells, which exhibit mRNA expressions of most of hepatic transporters. HepaRG cells were demonstrated, through immunofluorescence staining, to express several drug transporters at their sinusoidal pole, especially the influx transporters organic anion transporting polypeptide (OATP) 1B1, OATP2B1 and organic cation transporter (OCT) 1 and the efflux transporter multidrug resistance-associated protein (MRP) 3. In addition, the efflux transporters P-glycoprotein and MRP2 were detected at the canalicular pole of HepaRG cells. Moreover, saturable uptake of reference substrates for the sinusoidal transporters sodium-taurocholate cotransporting polypeptide, OATPs and OCT1 and canalicular secretion of reference substrates for the efflux transporters bile salt export pump and MRP2 were observed. This polarized and functional expression of various sinusoidal and canalicular transporters in HepaRG cells highlights the interest of using these hepatoma cells in xenobiotic transport studies.
Collapse
Affiliation(s)
- Marc Le Vee
- Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | | | | | | | | |
Collapse
|
31
|
Transport of biguanides by human organic cation transporter OCT2. Biomed Pharmacother 2013; 67:425-30. [DOI: 10.1016/j.biopha.2013.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/04/2013] [Indexed: 01/02/2023] Open
|
32
|
Human organic cation transporters 1 (SLC22A1), 2 (SLC22A2), and 3 (SLC22A3) as disposition pathways for fluoroquinolone antimicrobials. Antimicrob Agents Chemother 2013; 57:2705-11. [PMID: 23545524 DOI: 10.1128/aac.02289-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fluoroquinolones (FQs) are important antimicrobials that exhibit activity against a wide range of bacterial pathogens and excellent tissue permeation. They exist as charged molecules in biological fluids, and thus, their disposition depends heavily on active transport and facilitative diffusion. A recent review of the clinical literature indicated that tubular secretion and reabsorption are major determinants of their half-life in plasma, efficacy, and drug-drug interactions. In particular, reported in vivo interactions between FQs and cationic drugs affecting renal clearance implicated organic cation transporters (OCTs). In this study, 13 FQs, ciprofloxacin, enoxacin, fleroxacin, gatifloxacin, levofloxacin, lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin, and sparfloxacin, were screened for their ability to inhibit transport activity of human OCT1 (hOCT1) (SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3). All, with the exception of enoxacin, significantly inhibited hOCT1-mediated uptake under initial test conditions. None of the FQs inhibited hOCT2, and only moxifloxacin inhibited hOCT3 (~30%), even at a 1,000-fold excess. Gatifloxacin, moxifloxacin, prulifloxacin, and sparfloxacin were determined to be competitive inhibitors of hOCT1. Inhibition constants (K(i)) were estimated to be 250 ± 18 μM, 161 ± 19 μM, 136 ± 33 μM, and 94 ± 8 μM, respectively. Moxifloxacin competitively inhibited hOCT3-mediated uptake, with a K(i) value of 1,598 ± 146 μM. Despite expression in enterocytes (luminal), hepatocytes (sinusoidal), and proximal tubule cells (basolateral), hOCT3 does not appear to contribute significantly to FQ disposition. However, hOCT1 in the sinusoidal membrane of hepatocytes, and potentially the basolateral membrane of proximal tubule cells, is likely to play a role in the disposition of these antimicrobial agents.
Collapse
|
33
|
Krajcsi P. Drug-transporter interaction testing in drug discovery and development. World J Pharmacol 2013; 2:35-46. [DOI: 10.5497/wjp.v2.i1.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/25/2012] [Accepted: 01/30/2013] [Indexed: 02/06/2023] Open
Abstract
The human body consists of several physiological barriers that express a number of membrane transporters. For an orally absorbed drug the intestinal, hepatic, renal and blood-brain barriers are of the greatest importance. The ATP-binding cassette (ABC) transporters that mediate cellular efflux and the solute carrier transporters that mostly mediate cellular uptake are the two superfamilies responsible for membrane transport of vast majority of drugs and drug metabolites. The total number of human transporters in the two superfamilies exceeds 400, and about 40-50 transporters have been characterized for drug transport. The latest Food and Drug Administration guidance focuses on P-glycoprotein, breast cancer resistance protein, organic anion transporting polypeptide 1B1 (OATP1B1), OATP1B3, organic cation transporter 2 (OCT2), and organic anion transporters 1 (OAT1) and OAT3. The European Medicines Agency’s shortlist additionally contains the bile salt export pump, OCT1, and the multidrug and toxin extrusion transporters, multidrug and toxin extrusion protein 1 (MATE1) and MATE2/MATE2K. A variety of transporter assays are available to test drug-transporter interactions, transporter-mediated drug-drug interactions, and transporter-mediated toxicity. The drug binding site of ABC transporters is accessible from the cytoplasm or the inner leaflet of the plasma membrane. Therefore, vesicular transport assays utilizing inside-out vesicles are commonly used assays, where the directionality of transport results in drugs being transported into the vesicle. Monolayer assays utilizing polarized cells expressing efflux transporters are the test systems suggested by regulatory agencies. However, in some monolayers, uptake transporters must be coexpressed with efflux transporters to assure detectable transport of low passive permeability drugs. For uptake transporters mediating cellular drug uptake, utilization of stable transfectants have been suggested. In vivo animal models complete the testing battery. Some issues, such as in vivo relevance, gender difference, age and ontogeny issues can only be addressed using in vivo models. Transporter specificity is provided by using knock-out or mutant models. Alternatively, chemical knock-outs can be employed. Compensatory changes are less likely when using chemical knock-outs. On the other hand, specific inhibitors for some uptake transporters are not available, limiting the options to genetic knock-outs.
Collapse
|
34
|
Sinclair J, Henderson C, Tettey J, Grant M. The influence of the choice of digestion enzyme used to prepare rat hepatocytes on xenobiotic uptake and efflux. Toxicol In Vitro 2013; 27:451-7. [DOI: 10.1016/j.tiv.2012.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 07/23/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
35
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures as prominent in vitro tools to study hepatic drug transporters. Drug Metab Rev 2013; 45:196-217. [PMID: 23368091 DOI: 10.3109/03602532.2012.756010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Before any drug can be placed on the market, drug efficacy and safety must be ensured through rigorous testing. Animal models are used for this purpose, though currently increasing attention goes to the use of alternative in vitro systems. In particular, liver-based testing platforms that allow the prediction of pharmacokinetic (PK) and pharmacotoxicological properties during the early phase of drug development are of interest. They also enable the screening of potential effects on hepatic drug transporters. The latter are known to affect drug metabolism and disposition, thereby possibly underlying drug-drug interactions, which, in turn, may result in liver toxicity. Clearly, stable in vivo-like functional expression of drug transporters in hepatic in vitro settings is a prerequisite to be applicable in routine PK and pharmacotoxicological testing. In the first part of the article, an updated overview of hepatic drug transporters is provided, followed by a state-of-the-art review of drug-transporter production and activity in primary hepatocyte cultures (PHCs), being the gold-standard in vitro system. Specific focus is hereby put on strategies to maintain long-term functional expression, in casu of drug transporters, in these systems. In the second part, the use of PHCs to assess hepatobiliary transport and transporter-mediated interactions is outlined.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
36
|
Song IS, Choi MK, Shim WS, Shim CK. Transport of organic cationic drugs: effect of ion-pair formation with bile salts on the biliary excretion and pharmacokinetics. Pharmacol Ther 2013; 138:142-54. [PMID: 23353097 DOI: 10.1016/j.pharmthera.2013.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 01/11/2023]
Abstract
More than 40% of clinically used drugs are organic cations (OCs), which are positively charged at a physiologic pH, and recent reports have established that these drugs are substrates of membrane transporters. The transport of OCs via membrane transporters may play important roles in gastrointestinal absorption, distribution to target sites, and biliary and/or renal elimination of various OC drugs. Almost 40 years ago, a molecular weight (Mw) threshold of 200 was reported to exist in rats for monoquaternary ammonium (mono QA) compounds to be substantially (e.g., >10% of iv dose) excreted to bile. It is well known that some OCs interact with appropriate endogenous organic anions in the body (e.g., bile salts) to form lipophilic ion-pair complexes. The ion-pair formation may influence the affinity or binding of OCs to membrane transporters that are relevant to biliary excretion. In that sense, the association of the ion-pair formation with the existence of the Mw threshold appears to be worthy of examination. It assumes the ion-pair formation of high Mw mono QA compounds (i.e., >200) in the presence of bile salts in the liver, followed by accelerated transport of the ion-pair complexes via relevant bile canalicular transporter(s). In this article, therefore, the transport of OC drugs will be reviewed with a special focus on the ion-pair formation hypothesis. Such information will deepen the understanding of the pharmacokinetics of OC drugs as well as the physiological roles of endogenous bile salts in the detoxification or phase II metabolism of high Mw QA drugs.
Collapse
Affiliation(s)
- I S Song
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | |
Collapse
|
37
|
Abstract
Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin, a potent antihyperglycaemic agent now recommended as the first-line oral therapy for T2D (Type 2 diabetes). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory chain complex I. In addition, the resulting decrease in hepatic energy status activates AMPK (AMP-activated protein kinase), a cellular metabolic sensor, providing a generally accepted mechanism for the action of metformin on hepatic gluconeogenesis. The demonstration that respiratory chain complex I, but not AMPK, is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism, metformin has been reported to restore ovarian function in PCOS (polycystic ovary syndrome), reduce fatty liver, and to lower microvascular and macrovascular complications associated with T2D. Its use has also recently been suggested as an adjuvant treatment for cancer or gestational diabetes and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent findings from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D.
Collapse
|
38
|
Time-course activities of Oct1, Mrp3, and cytochrome P450s in cultures of cryopreserved rat hepatocytes. Eur J Pharm Sci 2011; 44:427-36. [DOI: 10.1016/j.ejps.2011.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/13/2011] [Accepted: 09/05/2011] [Indexed: 11/23/2022]
|
39
|
Sogame Y, Kitamura A, Yabuki M, Komuro S. Liver uptake of Biguanides in rats. Biomed Pharmacother 2011; 65:451-5. [DOI: 10.1016/j.biopha.2011.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/23/2011] [Indexed: 12/16/2022] Open
|
40
|
Determination of OATP-, NTCP- and OCT-mediated substrate uptake activities in individual and pooled batches of cryopreserved human hepatocytes. Eur J Pharm Sci 2011; 43:297-307. [DOI: 10.1016/j.ejps.2011.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 04/01/2011] [Accepted: 05/07/2011] [Indexed: 01/11/2023]
|
41
|
Effect of cryopreservation on the activity of OATP1B1/3 and OCT1 in isolated human hepatocytes. Chem Biol Interact 2011; 190:165-70. [DOI: 10.1016/j.cbi.2011.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 02/01/2023]
|
42
|
Meng Q, Liu Q, Wang C, Sun H, Kaku T, Kato Y, Liu K. Molecular mechanisms of biliary excretion of cefditoren and the effects of cefditoren on the expression levels of hepatic transporters. Drug Metab Pharmacokinet 2010; 25:320-7. [PMID: 20814152 DOI: 10.2133/dmpk.dmpk-09-rg-092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cefditoren, a third generation cephalosporin antibiotics, has been used in clinics extensively. Previous results have indicated that cefditoren is excreted into bile as unchanged form. To investigate whether canalicular membrane transporters of hepatocytes were involved in the biliary excretion of cefditoren, we examined the hepatobiliary disposition of cefditoren using probenecid, novobiocin and verapamil as inhibitors of Mrp2, Bcrp and P-gp respectively in perfused rat livers. The values for the hepatic extraction ratio had no statistical significance, whereas cumulative biliary excretion rates of cefditoren were significantly reduced to 43.8% and 79.5% over 25 min in the perfused probenecid and novobiocin rats, respectively. We further investigated the effects of cefditoren on the expression of hepatic transporters by RT-PCR and Western blot after oral administration of cefditoren one week. The expression levels of Mrp2, Bcrp, Oat2 mRNA were markedly increased, while P-gp and Oct1 mRNA were decreased. In concordance with RT-PCR results, Mrp2 expression level increased by Western blotting. These results indicate that Mrp2 and Bcrp may be involved in the biliary excretion of cefditoren. Cefditoren can up-regulate the expression levels of Mrp2, Bcrp and Oat2, and down-regulate P-gp and Oct1 mRNA expression. These results provide important data for drug-drug interactions.
Collapse
Affiliation(s)
- Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Sogame Y, Kitamura A, Yabuki M, Komuro S. A comparison of uptake of metformin and phenformin mediated by hOCT1 in human hepatocytes. Biopharm Drug Dispos 2010; 30:476-84. [PMID: 19768675 DOI: 10.1002/bdd.684] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metformin, a biguanide that has been used to treat type 2 diabetes mellitus, is reportedly transported into human hepatocytes by human organic cation transporter 1 (hOCT1). The objective of this study was to investigate differences in the hepatic uptake of metformin and phenformin, a biguanide derivative similar to metformin. Special focus was on the role of active transport into cells. Experiments were therefore performed using human cryopreserved hepatocytes and hOCT1 expressing oocytes. Both biguanides proved to be good substrates for hOCT1. However, phenformin exhibited a much higher affinity and transport activity, with a marked difference in uptake kinetics compared with metformin. Both biguanides were transported actively by hOCT1, with the active transport components much greater than passive transport components in both cases, suggesting that functional changes in hOCT1 might affect the transport of both compounds to the same degree. This study for the first time produced detailed comparative findings for uptake profiles of metformin and phenformin in human hepatocytes and hOCT1 expressing oocytes. It is considered that hOCT1 may not be the only key factor that determines the frequency of metformin and phenformin toxicity, considering the major contribution of this transporter to the total hepatic uptake and comparable width of their therapeutic concentrations.
Collapse
Affiliation(s)
- Yoshihisa Sogame
- Pharmacokinetics Research Laboratories, Dainippon Sumitomo Pharma Co. Ltd, 1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-0022, Japan.
| | | | | | | |
Collapse
|
44
|
The role of organic cation transporters (OCTs) in the transfer of metformin in the dually perfused human placenta. Eur J Pharm Sci 2010; 39:76-81. [DOI: 10.1016/j.ejps.2009.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 10/27/2009] [Accepted: 10/29/2009] [Indexed: 11/24/2022]
|
45
|
Ma L, Wu X, Ling-Ling E, Wang DS, Liu HC. The transmembrane transport of metformin by osteoblasts from rat mandible. Arch Oral Biol 2009; 54:951-62. [PMID: 19700143 DOI: 10.1016/j.archoralbio.2009.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 07/22/2009] [Accepted: 07/31/2009] [Indexed: 11/26/2022]
Abstract
Previous studies have demonstrated that metformin, one of systemic antihyperglycemic drugs, can slow bone loss caused by diabetes mellitus and has an osteogenic action on osteoblasts in vitro. It is tempting to speculate that metformin would be transported into bone tissues around dental implant by topical administration to improve the bone-implant contact in diabetic patients. In this study, the osteoblasts from rat mandible were cultured with 5.5 mM (control) or 16.5 mM d-glucose, then the uptake of metformin by osteoblasts was detected with high performance liquid chromatography (HPLC). Rat organic cation transporter (rOct) expression was characterized by immunocytochemistry, RT-PCR and Western blotting. It was found that, the uptake of metformin was saturable, Na(+)-dependent, affected by extracellular pH and inhibited by both phenformin and cimetidine (an inhibitor of Octs). rOct1 but no rOct2 was expressed extensively in osteoblasts and the protein level of rOct1 could be up-regulated by metformin. The uptake of metformin and phosphorylated-rOct1 at hyperglycaemic cell culture (16.5 mM d-glucose) significantly increased versus 5.5 mM control (p < 0.05). In conclusion, rat osteoblasts have the ability to transport the metformin intra-cellularly, the uptake of metformin by osteoblasts is a secondary active transportation mediated by rOct1 and high-glucose can improve the uptake of metformin by osteoblasts through phosphorylation of rOct1. The current results suggest that metformin could be used for dental implant topically in type 2 diabetic patients to increase the bone formation, therefore, to enhance the success rate of dental implants clinically.
Collapse
Affiliation(s)
- Long Ma
- Department of Stomatology, China PLA General Hospital, Beijing 100853, China
| | | | | | | | | |
Collapse
|
46
|
Iwai M, Minematsu T, Narikawa S, Usui T, Kamimura H. Involvement of Human Organic Cation Transporter 1 in the Hepatic Uptake of 1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium Bromide (YM155 Monobromide), a Novel, Small Molecule Survivin Suppressant. Drug Metab Dispos 2009; 37:1856-63. [DOI: 10.1124/dmd.109.027359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
47
|
Soars MG, Webborn PJH, Riley RJ. Impact of Hepatic Uptake Transporters on Pharmacokinetics and Drug−Drug Interactions: Use of Assays and Models for Decision Making in the Pharmaceutical Industry. Mol Pharm 2009; 6:1662-77. [DOI: 10.1021/mp800246x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mathew G. Soars
- Department of Discovery DMPK, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, U.K
| | - Peter J. H. Webborn
- Department of Discovery DMPK, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, U.K
| | - Robert J. Riley
- Department of Discovery DMPK, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, U.K
| |
Collapse
|
48
|
Umehara KI, Shirai N, Iwatsubo T, Noguchi K, Usui T, Kamimura H. Identification of Human Metabolites of (–)-N-{2-[(R)-3-(6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline-2-carbonyl)piperidino]ethyl}-4-fluorobenzamide (YM758), a Novel If Channel Inhibitor, and Investigation of the Transporter-Mediated Renal and Hepatic Excretion of These Metabolites. Drug Metab Dispos 2009; 37:1646-57. [DOI: 10.1124/dmd.108.026294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
49
|
Ayrton A, Morgan P. Role of transport proteins in drug discovery and development: a pharmaceutical perspective. Xenobiotica 2008; 38:676-708. [DOI: 10.1080/00498250801923855] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
50
|
Umehara KI, Iwatsubo T, Noguchi K, Usui T, Kamimura H. Effect of cationic drugs on the transporting activity of human and rat OCT/Oct 1–3in vitroand implications for drug–drug interactions. Xenobiotica 2008; 38:1203-18. [DOI: 10.1080/00498250802334409] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|