1
|
Fang JB, Nikolić D, Lankin DC, Simmler C, Chen SN, Ramos Alvarenga RF, Liu Y, Pauli GF, van Breemen RB. Formation of (2 R)- and (2 S)-8-Prenylnaringenin Glucuronides by Human UDP-Glucuronosyltransferases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11650-11656. [PMID: 31554401 PMCID: PMC6942495 DOI: 10.1021/acs.jafc.9b04657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Occurring in hops (Humulus lupulus) and beer as a racemic mixture, (2R,2S)-8-prenylnaringenin (8-PN) is a potent phytoestrogen in hop dietary supplements used by women as alternatives to conventional hormone therapy. With a half-life exceeding 20 h, 8-PN is excreted primarily as 8-PN-7-O-glucuronide or 8-PN-4'-O-glucuronide. Human liver microsomes and 11 recombinant human UDP-glucuronosyltransferases (UGTs) were used to catalyze the formation of the two oxygen-linked glucuronides of purified (2R)-8-PN and (2S)-8-PN, which were subsequently identified using mass spectrometry and nuclear magnetic resonance spectroscopy. Formation of (2R)- and (2S)-8-PN-7-O-glucuronides predominated over the 8-PN-4'-O-glucuronides except for intestinal UGT1A10, which formed more (2S)-8-PN-4'-O-glucuronide. (2R)-8-PN was a better substrate for all 11 UGTs except for UGT1A1, which formed more of both (2S)-8-PN glucuronides than (2R)-8-PN glucuronides. Although several UGTs conjugated both enantiomers of 8-PN, some conjugated just one enantiomer, suggesting that human phenotypic variation might affect the routes of metabolism of this chiral estrogenic constituent of hops.
Collapse
Affiliation(s)
- Jin-Bo Fang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Dejan Nikolić
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - David C Lankin
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Charlotte Simmler
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Rene F. Ramos Alvarenga
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Yang Liu
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Guido F. Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Richard B. van Breemen
- UIC/NIH Center for Botanical Dietary Supplements Research, PCRPS and Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
- Linus Pauling Institute, Oregon State University, 305 Linus Pauling Science Center, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Li S, Li X, Yang R, Wang B, Li J, Cao L, Xiao S, Huang W. Effects of anemoside B4 on pharmacokinetics of florfenicol and mRNA expression of CXR, MDR1, CYP3A37 and UGT1E in broilers. J Vet Med Sci 2019; 81:1804-1809. [PMID: 31611492 PMCID: PMC6943327 DOI: 10.1292/jvms.19-0293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pulsatillae radix, a traditional Chinese medicine (TCM), is often used
in combination with florfenicol for treatment of intestinal infection in Chinese
veterinary clinics. Anemoside B4 (AB4) is the major effective saponin in
Pulsatillae radix. This study aimed to investigate whether the
pharmacokinetics of florfenicol in broilers was affected by the combination of AB4. In
this study, broilers were given AB4 (50 mg/kg BW), or 0.9% sodium chloride solution by
oral administration for 7 days. They were then fed florfenicol orally (30 mg/kg BW) on the
eighth day. The results showed that the AUC(0-∞), MRT(0-∞),
t1/2z and Cmax of florfenicol were significantly decreased, and
the Vz/F and CLz/F were significantly increased by AB4; the mRNA expression levels of CXR,
CYP3A37 and MDR1 (except CXR and CYP3A37 in the liver) were up-regulated by AB4. In
conclusion, AB4 altered the pharmacokinetics of florfenicol, resulting in lower plasma
concentrations of florfenicol, this was probably related to the mRNA expression of CXR,
CYP3A37 and MDR1 in the jejunum and liver (except CXR and CYP3A37) increased by AB4. The
implications of these findings on the effect of traditional Chinese medicine containing
AB4 on the effectiveness of florfenicol in veterinary practice deserve study.
Collapse
Affiliation(s)
- Sicong Li
- Institute of Veterinary Pharmacology, Sichuan Animal Science Academy, 7 Niusha Road, Jinjiang district, Chengdu 610066, PR China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang district, Chengdu 610066, PR China
| | - Xuting Li
- Institute of Veterinary Pharmacology, Sichuan Animal Science Academy, 7 Niusha Road, Jinjiang district, Chengdu 610066, PR China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang district, Chengdu 610066, PR China
| | - Rui Yang
- Institute of Veterinary Pharmacology, Sichuan Animal Science Academy, 7 Niusha Road, Jinjiang district, Chengdu 610066, PR China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang district, Chengdu 610066, PR China
| | - Bin Wang
- Institute of Veterinary Pharmacology, Sichuan Animal Science Academy, 7 Niusha Road, Jinjiang district, Chengdu 610066, PR China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang district, Chengdu 610066, PR China
| | - Jinliang Li
- Institute of Veterinary Pharmacology, Sichuan Animal Science Academy, 7 Niusha Road, Jinjiang district, Chengdu 610066, PR China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang district, Chengdu 610066, PR China
| | - Liang Cao
- Sichuan Dingjian Animal Pharmaceutical Co., Ltd., 19 7th East Road, Checheng, Longquanyi district, Chengdu 610100, PR China
| | - Songyang Xiao
- Sichuan Dingjian Animal Pharmaceutical Co., Ltd., 19 7th East Road, Checheng, Longquanyi district, Chengdu 610100, PR China
| | - Wei Huang
- Sichuan Dingjian Animal Pharmaceutical Co., Ltd., 19 7th East Road, Checheng, Longquanyi district, Chengdu 610100, PR China
| |
Collapse
|
3
|
Giusti A, Nguyen XB, Kislyuk S, Mignot M, Ranieri C, Nicolaï J, Oorts M, Wu X, Annaert P, De Croze N, Léonard M, Ny A, Cabooter D, de Witte P. Safety Assessment of Compounds after In Vitro Metabolic Conversion Using Zebrafish Eleuthero Embryos. Int J Mol Sci 2019; 20:ijms20071712. [PMID: 30959884 PMCID: PMC6479637 DOI: 10.3390/ijms20071712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
Zebrafish-based platforms have recently emerged as a useful tool for toxicity testing as they combine the advantages of in vitro and in vivo methodologies. Nevertheless, the capacity to metabolically convert xenobiotics by zebrafish eleuthero embryos is supposedly low. To circumvent this concern, a comprehensive methodology was developed wherein test compounds (i.e., parathion, malathion and chloramphenicol) were first exposed in vitro to rat liver microsomes (RLM) for 1 h at 37 °C. After adding methanol, the mixture was ultrasonicated, placed for 2 h at −20 °C, centrifuged and the supernatant evaporated. The pellet was resuspended in water for the quantification of the metabolic conversion and the detection of the presence of metabolites using ultra high performance liquid chromatography-Ultraviolet-Mass (UHPLC-UV-MS). Next, three days post fertilization (dpf) zebrafish eleuthero embryos were exposed to the metabolic mix diluted in Danieau’s medium for 48 h at 28 °C, followed by a stereomicroscopic examination of the adverse effects induced, if any. The novelty of our method relies in the possibility to quantify the rate of the in vitro metabolism of the parent compound and to co-incubate three dpf larvae and the diluted metabolic mix for 48 h without inducing major toxic effects. The results for parathion show an improved predictivity of the toxic potential of the compound.
Collapse
Affiliation(s)
- Arianna Giusti
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Xuan-Bac Nguyen
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Stanislav Kislyuk
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 923, 3000 Leuven, Belgium.
| | - Mélanie Mignot
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 923, 3000 Leuven, Belgium.
| | - Cecilia Ranieri
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Johan Nicolaï
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 921, 3000 Leuven, Belgium.
| | - Marlies Oorts
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 921, 3000 Leuven, Belgium.
| | - Xiao Wu
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 921, 3000 Leuven, Belgium.
| | - Noémie De Croze
- L'Oréal Research & Innovation, 93600 Aulnay-sous-Bois, France.
| | - Marc Léonard
- L'Oréal Research & Innovation, 93600 Aulnay-sous-Bois, France.
| | - Annelii Ny
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Deirdre Cabooter
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 923, 3000 Leuven, Belgium.
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Govendir M. Review of some pharmacokinetic and pharmacodynamic properties of anti-infective medicines administered to the koala (Phascolarctos cinereus). J Vet Pharmacol Ther 2017; 41:1-10. [PMID: 28703410 DOI: 10.1111/jvp.12435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/04/2017] [Indexed: 01/12/2023]
Abstract
Although koalas are iconic Australian animals, no pharmacokinetic studies of any first-line medicines used to treat diseased or injured koalas had been published prior to 2010. Traditionally, medicine dosages suggested for this species underwent linear extrapolation from those recommended for domesticated species. The koala, a specialist folivore whose natural diet consists of almost exclusively Eucalyptus spp. foliage has anatomical and physiological adaptations for detoxifying their diet which also affect medicine pharmacokinetic profiles. This review addresses aspects of medicine absorption, clearance, and other indices (such as medicine binding to plasma proteins) of enrofloxacin/marbofloxacin and chloramphenicol used for the systemic treatment of chlamydiosis, and fluconazole ± amphotericin, and posaconazole for the treatment of cryptococcosis. Based on observations from published studies, this review includes suggestions to improve therapeutic outcomes when administering medicines to diseased koalas.
Collapse
Affiliation(s)
- M Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Van Vleet TR, Liu H, Lee A, Blomme EAG. Acyl glucuronide metabolites: Implications for drug safety assessment. Toxicol Lett 2017; 272:1-7. [PMID: 28286018 DOI: 10.1016/j.toxlet.2017.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/17/2017] [Accepted: 03/05/2017] [Indexed: 12/23/2022]
Abstract
Acyl glucuronides are important metabolites of compounds with carboxylic acid moieties and have unique properties that distinguish them from other phase 2 metabolites. In particular, in addition to being often unstable, acyl glucuronide metabolites can be chemically reactive leading to covalent binding with macromolecules and toxicity. While there is circumstantial evidence that drugs forming acyl glucuronide metabolites can be associated with rare, but severe idiosyncratic toxic reactions, many widely prescribed drugs with good safety records are also metabolized through acyl glucuronidation. Therefore, there is a need to understand the various factors that can affect the safety of acyl glucuronide-producing drugs including the rate of acyl glucuronide formation, the relative reactivity of the acyl glucuronide metabolite formed, the rate of elimination, potential proteins being targeted, and the rate of aglucuronidation. In this review, these factors are discussed and various approaches to de-risk the safety liabilities of acyl glucuronide metabolites are evaluated.
Collapse
Affiliation(s)
- Terry R Van Vleet
- Abbvie, Development Sciences, Department of Preclinical Safety, United States.
| | - Hong Liu
- Abbvie, Development Sciences, Biomeasure and Metabolism, United States
| | - Anthony Lee
- Abbvie, Development Sciences, Biomeasure and Metabolism, United States
| | - Eric A G Blomme
- Abbvie, Development Sciences, Department of Preclinical Safety, United States
| |
Collapse
|
6
|
Development of LC–MS/MS methodology for the detection/determination and confirmation of chloramphenicol, chloramphenicol 3-O-β-d-glucuronide, florfenicol, florfenicol amine and thiamphenicol residues in bovine, equine and porcine liver. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 991:68-78. [DOI: 10.1016/j.jchromb.2015.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 12/21/2022]
|
7
|
|
8
|
Ma P, Kanizaj N, Chan SA, Ollis DL, McLeod MD. The Escherichia coli glucuronylsynthase promoted synthesis of steroid glucuronides: improved practicality and broader scope. Org Biomol Chem 2014; 12:6208-14. [DOI: 10.1039/c4ob00984c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Steroid glucuronides can be quickly and conveniently prepared on the milligram scale using theE. coliglucuronylsynthase enzyme followed by purification with solid-phase extraction.
Collapse
Affiliation(s)
- Paul Ma
- Research School of Chemistry
- Australian National University
- Canberra, Australia
| | - Nicholas Kanizaj
- Research School of Chemistry
- Australian National University
- Canberra, Australia
| | - Shu-Ann Chan
- Research School of Chemistry
- Australian National University
- Canberra, Australia
| | - David L. Ollis
- Research School of Chemistry
- Australian National University
- Canberra, Australia
| | - Malcolm D. McLeod
- Research School of Chemistry
- Australian National University
- Canberra, Australia
| |
Collapse
|
9
|
Kredics L, Szekeres A, Czifra D, Vágvölgyi C, Leitgeb B. Recent results in alamethicin research. Chem Biodivers 2013; 10:744-71. [PMID: 23681724 DOI: 10.1002/cbdv.201200390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 12/20/2022]
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged.
| | | | | | | | | |
Collapse
|
10
|
Stepan AF, Walker DP, Bauman J, Price DA, Baillie TA, Kalgutkar AS, Aleo MD. Structural alert/reactive metabolite concept as applied in medicinal chemistry to mitigate the risk of idiosyncratic drug toxicity: a perspective based on the critical examination of trends in the top 200 drugs marketed in the United States. Chem Res Toxicol 2011; 24:1345-410. [PMID: 21702456 DOI: 10.1021/tx200168d] [Citation(s) in RCA: 492] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Because of a preconceived notion that eliminating reactive metabolite (RM) formation with new drug candidates could mitigate the risk of idiosyncratic drug toxicity, the potential for RM formation is routinely examined as part of lead optimization efforts in drug discovery. Likewise, avoidance of "structural alerts" is almost a norm in drug design. However, there is a growing concern that the perceived safety hazards associated with structural alerts and/or RM screening tools as standalone predictors of toxicity risks may be over exaggerated. In addition, the multifactorial nature of idiosyncratic toxicity is now well recognized based upon observations that mechanisms other than RM formation (e.g., mitochondrial toxicity and inhibition of bile salt export pump (BSEP)) also can account for certain target organ toxicities. Hence, fundamental questions arise such as: When is a molecule that contains a structural alert (RM positive or negative) a cause for concern? Could the molecule in its parent form exert toxicity? Can a low dose drug candidate truly mitigate metabolism-dependent and -independent idiosyncratic toxicity risks? In an effort to address these questions, we have retrospectively examined 68 drugs (recalled or associated with a black box warning due to idiosyncratic toxicity) and the top 200 drugs (prescription and sales) in the United States in 2009 for trends in physiochemical characteristics, daily doses, presence of structural alerts, evidence for RM formation as well as toxicity mechanism(s) potentially mediated by parent drugs. Collectively, our analysis revealed that a significant proportion (∼78-86%) of drugs associated with toxicity contained structural alerts and evidence indicating that RM formation as a causative factor for toxicity has been presented in 62-69% of these molecules. In several cases, mitochondrial toxicity and BSEP inhibition mediated by parent drugs were also noted as potential causative factors. Most drugs were administered at daily doses exceeding several hundred milligrams. There was no obvious link between idiosyncratic toxicity and physicochemical properties such as molecular weight, lipophilicity, etc. Approximately half of the top 200 drugs for 2009 (prescription and sales) also contained one or more alerts in their chemical architecture, and many were found to be RM-positive. Several instances of BSEP and mitochondrial liabilities were also noted with agents in the top 200 category. However, with relatively few exceptions, the vast majority of these drugs are rarely associated with idiosyncratic toxicity, despite years of patient use. The major differentiating factor appeared to be the daily dose; most of the drugs in the top 200 list are administered at low daily doses. In addition, competing detoxication pathways and/or alternate nonmetabolic clearance routes provided suitable justifications for the safety records of RM-positive drugs in the top 200 category. Thus, while RM elimination may be a useful and pragmatic starting point in mitigating idiosyncratic toxicity risks, our analysis suggests a need for a more integrated screening paradigm for chemical hazard identification in drug discovery. Thus, in addition to a detailed assessment of RM formation potential (in relationship to the overall elimination mechanisms of the compound(s)) for lead compounds, effects on cellular health (e.g., cytotoxicity assays), BSEP inhibition, and mitochondrial toxicity are the recommended suite of assays to characterize compound liabilities. However, the prospective use of such data in compound selection will require further validation of the cellular assays using marketed agents. Until we gain a better understanding of the pathophysiological mechanisms associated with idiosyncratic toxicities, improving pharmacokinetics and intrinsic potency as means of decreasing the dose size and the associated "body burden" of the parent drug and its metabolites will remain an overarching goal in drug discovery.
Collapse
Affiliation(s)
- Antonia F Stepan
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Sui J, Cotard S, Andersen J, Zhu P, Staunton J, Lee M, Lin S. Optimization of a Yellow fluorescent protein-based iodide influx high-throughput screening assay for cystic fibrosis transmembrane conductance regulator (CFTR) modulators. Assay Drug Dev Technol 2010; 8:656-68. [PMID: 21050066 DOI: 10.1089/adt.2010.0312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis is an inherited, life-threatening disease associated with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation, F508del CFTR, is found in 90% of CF patients. The loss of a single amino acid (phenylalanine at position 508) results in malformed CFTR with defective trafficking to the plasma membrane and impaired channel function. A functional assay with cells expressing F508del CFTR has been previously described by others using genetically engineered halide-sensitive yellow fluorescent protein to screen for CFTR modulators. We adapted this yellow fluorescent protein assay to 384-well plate format with a high-throughput screening plate reader, and optimized the assay in terms of data quality, resolution, and throughput, with target-specific protocols. The optimized assay was validated with reference compounds from cystic fibrosis foundation therapeutics. On the basis of the Z-factor range (≥0.5) and the potential productivity, this assay is well suited for high-throughput screening. It was successfully used to screen for active single agent and synergistic combinations of single agent modulators of F508del CFTR from a library collection of current active pharmaceutical ingredients (supported by Cystic Fibrosis Foundation Therapeutics).
Collapse
|
12
|
Chen M, LeDuc B, Kerr S, Howe D, Williams DA. Identification of Human UGT2B7 as the Major Isoform Involved in the O-Glucuronidation of Chloramphenicol. Drug Metab Dispos 2009; 38:368-75. [DOI: 10.1124/dmd.109.029900] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|