1
|
Torso NDG, Rodrigues-Soares F, Altamirano C, Ramírez-Roa R, Sosa-Macías M, Galavíz-Hernández C, Terán E, Peñas-LLedó E, Dorado P, LLerena A. CYP2C19 genotype-phenotype correlation: current insights and unanswered questions. Drug Metab Pers Ther 2024:dmdi-2024-0093. [PMID: 39663234 DOI: 10.1515/dmpt-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
The CYP2C19 enzyme is implicated in the metabolism of several clinically used drugs. Its phenotype is usually predicted by genotyping and indicates the expected enzymatic activity for each patient. However, with a few exceptions, CYP2C19 genotyping has not resulted in a reliable prediction of the metabolizer status, since most of the evidence currently available for this prediction comes from research into populations of predominantly European ancestry. Therefore, this review discusses the main factors that may alter the expected phenotype, as well as the urgent need to include ethnically diverse populations in further studies, so that, in the long term, it is possible to establish guidelines appropriate to these groups.
Collapse
Affiliation(s)
- Nadine de Godoy Torso
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| | - Fernanda Rodrigues-Soares
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
- Department of Pathology, Genetic and Evolution, 74348 Biological and Natural Sciences Institute, Universidade Federal Do Triângulo Mineiro , Uberaba, Brazil
| | - Catalina Altamirano
- Universidad Nacional Autónoma de Nicaragua - León, Facultad de Ciencias Médicas, León, Nicaragua
| | | | - Martha Sosa-Macías
- Instituto Politécnico Nacional-CIIDIR, Academia de Genómica, Durango, México
| | | | | | - Eva Peñas-LLedó
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| | - Pedro Dorado
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| | - Adrián LLerena
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| |
Collapse
|
2
|
Giantini A, Timan IS, Dharma R, Sukmawan R, Setiabudy R, Alwi I, Harahap AR, Listiyaningsih E, Partakusuma LG, Tansir AR, Sahar W, Hidayat R. The role of clopidogrel resistance-related genetic and epigenetic factors in major adverse cardiovascular events among patients with acute coronary syndrome after percutaneous coronary intervention. Front Cardiovasc Med 2023; 9:1027892. [PMID: 36843628 PMCID: PMC9944402 DOI: 10.3389/fcvm.2022.1027892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/30/2022] [Indexed: 02/11/2023] Open
Abstract
Despite patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) and receiving clopidogrel therapy, some patients still experience major adverse cardiovascular events (MACEs). Clopidogrel resistance, which may be regulated by genetic and epigenetic factors, may play a role in MACEs. This study aimed to determine the association between genetic (CYP2C19 and P2Y12 polymorphisms) and epigenetic (DNA methylation of CYP2C19 and P2Y12 and miRNA-26a expression) factors and their effects on MACEs among post-PCI patients. Post-PCI patients who received a standard dosage of clopidogrel at Harapan Kita Hospital between September 2018 and June 2020 were included in this study. MACEs were observed in patients within 1 year after PCI. Platelet aggregation was assessed using light transmission aggregometry (LTA). DNA methylation of CYP2C19 and P2Y12 was assessed using the bisulfite conversion method. CYP2C19 and P2Y12 polymorphisms and miRNA-26a expression were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR). Among a total of 201 subjects, 49.8% were clopidogrel-resistant, and 14.9% experienced MACEs within 1 year after PCI (death was 7.5%). Hypomethylation of CYP2C19 (p = 0.037) and miRNA-26a upregulation (p = 0.020) were associated with clopidogrel resistance. CYP2C19*2/*3 polymorphisms (p = 0.047) were associated with MACEs in 1 year. This study demonstrated that hypomethylation of CYP2C19 and miRNA-26a upregulation increased the risk of clopidogrel resistance in post-PCI patients, but there was no correlation between clopidogrel resistance and MACEs. However, CYP2C19*2/*3 polymorphisms were the factors that predicted MACEs within 1 year.
Collapse
Affiliation(s)
- Astuti Giantini
- Clinical Pathology Department, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Public Hospital, Central Jakarta, Indonesia,Universitas Indonesia Hospital, Universitas Indonesia, Depok, Indonesia,*Correspondence: Astuti Giantini ✉
| | - Ina S. Timan
- Clinical Pathology Department, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Public Hospital, Central Jakarta, Indonesia
| | - Rahajuningsih Dharma
- Clinical Pathology Department, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Public Hospital, Central Jakarta, Indonesia
| | - Renan Sukmawan
- Cardiology and Vascular Medicine Department, Faculty of Medicine, Universitas Indonesia, National Cardiovascular Center Harapan Kita, West Jakarta, Indonesia
| | - Rianto Setiabudy
- Pharmacology and Therapeutics Department, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Public Hospital, Central Jakarta, Indonesia
| | - Idrus Alwi
- Internal Medicine Department, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Public Hospital, Central Jakarta, Indonesia
| | - Alida R. Harahap
- Clinical Pathology Department, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Public Hospital, Central Jakarta, Indonesia
| | | | | | - Arif R. Tansir
- Faculty of Medicine, Universitas Indonesia, Central Jakarta, Indonesia
| | - Windy Sahar
- Universitas Indonesia Hospital, Universitas Indonesia, Depok, Indonesia
| | - Rakhmad Hidayat
- Universitas Indonesia Hospital, Universitas Indonesia, Depok, Indonesia,Neurology Department, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Public Hospital, Central Jakarta, Indonesia
| |
Collapse
|
3
|
Abstract
The cytochromes P450 comprise a family of enzymes that are responsible for around three-quarters of all drug metabolism reactions that occur in human populations. Many isoforms of cytochrome P450 exist but most reactions are undertaken by CYP2C9, CYP2C19, CYP2D6 and CYP3A4. This brief review focusses on the first three isozymes which exhibit polymorphism of phenotype.If there is a wide variation in drug metabolising capacity within the population, this may precipitate clinical consequences and influence the drug treatment of patients. Such problems range from a lack of efficacy to unanticipated toxicity. In order to minimise untoward events and "personalise" a patient's treatment, efforts have been made to discover an individual's drug metabolism status. This requires knowledge of the subject's phenotype at the time of clinical treatment. Since such testing is difficult, time-consuming and costly, the simpler approach of genotyping has been advocated.However, the correlation between genotype and phenotype is not good, with values of up to 50% misprediction being reported. Genotype-assisted forecasts cannot therefore be used with confidence to replace actual phenotype measurements. Obfuscating factors discussed include gene splicing, single nucleotide polymorphisms, epigenetics and microRNA, transcription regulation and multiple gene copies.
Collapse
|
4
|
Ashida R, Okamura Y, Ohshima K, Kakuda Y, Uesaka K, Sugiura T, Ito T, Yamamoto Y, Sugino T, Urakami K, Kusuhara M, Yamaguchi K. The down-regulation of the CYP2C19 gene is associated with aggressive tumor potential and the poorer recurrence-free survival of hepatocellular carcinoma. Oncotarget 2018; 9:22058-22068. [PMID: 29774122 PMCID: PMC5955155 DOI: 10.18632/oncotarget.25178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023] Open
Abstract
Project HOPE (High-tech Omics-based Patient Evaluation) began in 2014 using integrated gene expression profiling (GEP) of cancer tissues as well as diathesis of each patient who underwent an operation at our institution. The aim of this study was to clarify the association between the expression of cytochrome P450s (CYP) genes and recurrence of hepatocellular carcinoma (HCC). The present study included 92 patients. Genes with aberrant expression were selected based on a ≥10-fold difference in the expression between tumor and non-tumor tissues. The GEP analysis showed that the down-regulated genes in tumor tissue were CYP3A4 in 56 patients (61%), CYP2C8 in 44 patients (48%), CYP2C19 in 30 patients (33%), CYP2D6 in 11 patients (12%), CYP3A5 in 7 patients (8%) and CYP1B1 in 2 patients (2%). There was no patients with down-regulation of the CYP17A1 gene. A multivariate analysis revealed that the presence of microscopic portal invasion (hazard ratio [HR] 2.57, 95% confidence interval [CI] 1.30–5.05 P = 0.006), the presence of intrahepatic-metastasis (HR 3.09 95% CI 1.52–6.29 P = 0.002) and down-regulation of the CYP2C19 gene (HR 3.69 95% CI 1.83–7.46 P < 0.001) were independent predictors for the recurrence-free survival (RFS). The down-regulation of the CYP2C19 gene were correlated with the RFS in HCC.
Collapse
Affiliation(s)
- Ryo Ashida
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yukiyasu Okamura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuko Kakuda
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takaaki Ito
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yusuke Yamamoto
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masatoshi Kusuhara
- Regional Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|