1
|
Ye L, Fan S, Zhao P, Wu C, Liu M, Hu S, Wang P, Wang H, Bi H. Potential herb‒drug interactions between anti-COVID-19 drugs and traditional Chinese medicine. Acta Pharm Sin B 2023; 13:S2211-3835(23)00203-4. [PMID: 37360014 PMCID: PMC10239737 DOI: 10.1016/j.apsb.2023.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Effective treatments against COVID-19 remain urgently in need although vaccination significantly reduces the incidence, hospitalization, and mortality. At present, antiviral drugs including Nirmatrelvir/Ritonavir (PaxlovidTM), Remdesivir, and Molnupiravir have been authorized to treat COVID-19 and become more globally available. On the other hand, traditional Chinese medicine (TCM) has been used for the treatment of epidemic diseases for a long history. Currently, various TCM formulae against COVID-19 such as Qingfei Paidu decoction, Xuanfei Baidu granule, Huashi Baidu granule, Jinhua Qinggan granule, Lianhua Qingwen capsule, and Xuebijing injection have been widely used in clinical practice in China, which may cause potential herb-drug interactions (HDIs) in patients under treatment with antiviral drugs and affect the efficacy and safety of medicines. However, information on potential HDIs between the above anti-COVID-19 drugs and TCM formulae is lacking, and thus this work seeks to summarize and highlight potential HDIs between antiviral drugs and TCM formulae against COVID-19, and especially pharmacokinetic HDIs mediated by metabolizing enzymes and/or transporters. These well-characterized HDIs could provide useful information on clinical concomitant medicine use to maximize clinical outcomes and minimize adverse and toxic effects.
Collapse
Affiliation(s)
- Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Menghua Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongyu Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Zhou J, Mao Y, Shi X, Zhang Y, Yu X, Liu X, Diao L, Yang X, Liu C, Liu D, Tan X, Liu M. Peimine suppresses collagen-induced arthritis, activated fibroblast-like synoviocytes and TNFα-induced MAPK pathways. Int Immunopharmacol 2022; 111:109181. [PMID: 36027853 DOI: 10.1016/j.intimp.2022.109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND PURPOSE Peimine (PM), a main isosterol alkaloid component isolated from the bulbs of traditional Chinese herb Fritillaria cirrhosa D. Don, has been demonstrated to exhibit multiple pharmacological properties, including anti-inflammation, anti-cancer and pain suppression. However, its effect on rheumatoid arthritis (RA) remains unknown. In the present study, we investigated the effect of PM on collagen-induced arthritis (CIA) rats in vivo and its inhibition on destructive behaviors of arthritic fibroblast-like synoviocytes (FLSs) in vitro. METHODS Arthritis was induced in rats by chicken type II collagen. Arthritis score, radiological evaluation, and histopathological assessment were used to evaluate the therapeutic effects of PM on CIA rats. EdU assay, wound healing assay and real-time PCR were used to examine the inhibitory effect of PM on proliferation, migration, and over-expression of pro-inflammatory cytokines in TNFα-induced arthritic FLSs. TRAP staining and scanning electron microscopy were used to analyze the effect of PM on osteoclastogensis and bone resorption. Western blot was used to reveal PM's molecular mechanism of action on RA. RESULTS PM significantly suppressed synovitis and bone destruction in CIA rats. In vitro experiments showed that PM treatment significantly inhibited TNFα-induced destructive behaviors of arthritic FLSs, including over-proliferation, migration and over-expression of pro-inflammatory cytokines. Additionally, RANKL-induced osteoclast formation and bone-resorpting function were also inhibited by PM. Further molecular mechanism studies revealed that PM treatment significantly suppressed TNFα-induced activations of MAPKs (ERK, JNK and p38) in arthritic FLSs. CONCLUSION Our findings provide strong evidence that PM has the potential to be developed as a therapeutic agent for patients with RA.
Collapse
Affiliation(s)
- Junnan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yuhang Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaotian Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yudie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaolu Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xuan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China
| | - Li Diao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xue Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China
| | - Changze Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China
| | - Dan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xin Tan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Chen Q, Yin C, Li Y, Yang Z, Tian Z. Pharmacokinetic interaction between peimine and paeoniflorin in rats and its potential mechanism. PHARMACEUTICAL BIOLOGY 2021; 59:129-133. [PMID: 33721550 PMCID: PMC7971317 DOI: 10.1080/13880209.2021.1875013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 05/27/2023]
Abstract
CONTEXT Peimine and paeoniflorin can be combined for the treatment of cough in paediatrics. The interaction during the co-administration could dramatically affect the bioavailability of drugs. OBJECTIVE The interaction between peimine and paeoniflorin was investigated in this study. MATERIALS AND METHODS The pharmacokinetics of paeoniflorin (20 mg/kg) with or without the coadministration of peimine (5 mg/kg for 10 days before paeoniflorin) was orally investigated in Sprague-Dawley rats (n = 6). The group without the peimine was set as the control group. The metabolic stability of paeoniflorin was studied in rat liver with microsomes. The effect of peimine on the absorption of paeoniflorin was investigated with Caco-2 cell monolayers. RESULTS The Cmax (244.98 ± 10.95 vs. 139.18 ± 15.14 μg/L) and AUC(0-t) (3295.92 ± 263.02 vs. 139.18 ± 15.14 h·μg/L) of paeoniflorin was increased by peimine. The t1/2 was prolonged from 5.33 ± 1.65 to 14.21 ± 4.97 h and the clearance was decreased from 15.43 ± 1.75 to 4.12 ± 0.57 L/h/kg. Consistently, peimine increased the metabolic stability of paeoniflorin with rat liver microsomes with the increased t1/2 (56.78 ± 2.62 vs. 26.33 ± 3.15 min) and the decreased intrinsic clearance (24.42 ± 3.78 vs. 52.64 ± 4.47 μL/min/mg protein). Moreover, the transportation of paeoniflorin was also inhibited by peimine as the efflux ratio decreased from 3.06 to 1.63. DISCUSSION AND CONCLUSIONS Peimine increased the systemic exposure of paeoniflorin through inhibiting the activity of CYP3A4 and P-gp. These results provide a reference for further in vivo studies in a broader population.
Collapse
Affiliation(s)
- Qiangjun Chen
- Department of Thyroid and Breast Surgery, Weifang Yidu Central Hospital, Weifang, Shandong, 262500, China
| | - Changlong Yin
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, China
| | - Yongwei Li
- Department of Pediatrics, Weifang Yidu Central Hospital, Weifang, China
| | - Zhe Yang
- Qingzhou Medical Security Bureau, Weifang, China
| | - Zongying Tian
- Department of Human Anatomy, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
4
|
Xie Q, Li H, Lu D, Yuan J, Ma R, Li J, Ren M, Li Y, Chen H, Wang J, Gong D. Neuroprotective Effect for Cerebral Ischemia by Natural Products: A Review. Front Pharmacol 2021; 12:607412. [PMID: 33967750 PMCID: PMC8102015 DOI: 10.3389/fphar.2021.607412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. Stroke is a disease with high prevalence and incidence, the pathogenesis is a complex cascade reaction. In recent years, it’s reported that a vast number of natural products have demonstrated beneficial effects on stroke worldwide. Natural products have been discovered to modulate activities with multiple targets and signaling pathways to exert neuroprotection via direct or indirect effects on enzymes, such as kinases, regulatory receptors, and proteins. This review provides a comprehensive summary of the established pharmacological effects and multiple target mechanisms of natural products for cerebral ischemic injury in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications. In addition, the biological activity of natural products is closely related to their structure, and the structure-activity relationship of most natural products in neuroprotection is lacking, which should be further explored in future. Overall, we stress on natural products for their role in neuroprotection, and this wide band of pharmacological or biological activities has made them suitable candidates for the treatment of stroke.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|