1
|
Heyns I, Faunce AF, Mumba MN, Kumar MNVR, Arora M. Nanotechnology-Enhanced Naloxone and Alternative Treatments for Opioid Addiction. ACS Pharmacol Transl Sci 2024; 7:2237-2250. [PMID: 39144549 PMCID: PMC11320732 DOI: 10.1021/acsptsci.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 08/16/2024]
Abstract
Opioids are commonly prescribed to address intense, ongoing pain associated with cancer, as well as long-lasting noncancer-related pain when alternative methods have proven ineffective. Individuals who exhibit both chronic pain and misuse of opioids face a significant danger of experiencing adverse health outcomes and the potential loss of life related to opioid use. Thus, there is a current movement to prescribe naloxone to those considered high-risk for opioid overdose. Naloxone has been explored as an antidote to reverse acute respiratory depression. Conversely, naloxone can give rise to other problems, including hypertension and cardiac arrhythmias. Thus, the importance of nanotechnology-enabled drug delivery strategies and their role in mitigating naloxone side-effects are significant. In this review, we explore the latest advancements in nanotechnology-enabled naloxone and alternative methods for addressing the opioid crisis through the utilization of non-opioid natural alternatives for chronic pain management.
Collapse
Affiliation(s)
- Ingrid
Marie Heyns
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Alina Farah Faunce
- Research
Department, Alabama College of Osteopathic
Medicine, Dothan, Alabama 36303, United States
| | - Mercy Ngosa Mumba
- Center
for Substance Use Research and Related Conditions, Capstone College
of Nursing, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - M. N. V. Ravi Kumar
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Biological Sciences, The University of
Alabama, Tuscaloosa, Alabama 35487, United States
- Chemical
and Biological Engineering, University of
Alabama, Tuscaloosa, Alabama 35487, United States
- Center for
Free Radical Biology, University of Alabama
at Birmingham, Birmingham, Alabama 35294, United States
- Nephrology
Research and Training Center, Division of Nephrology, Department of
Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Meenakshi Arora
- The
Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Translational Science and Medicine, College of Community Health
Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
- Alabama
Life Research Institute, The University
of Alabama, Tuscaloosa, Alabama 35401, United States
- Department
of Biological Sciences, The University of
Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
2
|
Badshah I, Qazi NG, Anwar M, Shaukat B, Khan MI, Murtaza B. Carveol mitigates the development of the morphine anti-nociceptive tolerance, physical dependence, and conditioned place preference in mice. Heliyon 2024; 10:e27809. [PMID: 38496833 PMCID: PMC10944274 DOI: 10.1016/j.heliyon.2024.e27809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Emergence of analgesic tolerance and dependence to morphine is frequently the limiting factor in the use of this agent in the management of pain. Hence, this study aimed to investigate the beneficial effects of the natural compound carveol (CV) against morphine antinociceptive tolerance, dependence and conditioned place preference (CPP) in mice. Behavioural paradigms included hot plate and tail-flick (for tolerance), observation of withdrawal signs (for dependence) while biochemical tests involved the assays for mRNA expression, nitrite levels, antioxidants, and immunohistochemistry studies. Behavioural tests indicated that treatment with CV significantly attenuated the morphine analgesic tolerance, physical dependence and CPP in mice. It was observed during biochemical analysis that CV-treated animals exhibited reduced mRNA expression of inducible nitric oxide synthase (iNOS) and NR2B (an NMDA subtype). In addition, decreased levels of nitrite were observed in mouse hippocampus following CV treatment than morphine administration only. Further, CV enhanced the neuronal innate antioxidants including Glutathione-S-Transferase (GST), glutathione (GSH) and catalase (CAT), while curtailed lipid peroxidase (LPO) levels in mice brain tissues. Moreover, CV exerted significant anti-inflammatory effects as evidenced by reduced expression of TNF-α and p-NF-κB in these animals than with morphine treatment only. Together, anti-inflammatory and antioxidant effects might confer needed neuro-protection following morphine administration. These observations warrant further investigations of the beneficial role of CV as a novel agent in overcoming the development of tolerance and physical dependence following morphine use.
Collapse
Affiliation(s)
- Ismail Badshah
- Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| | - Neelum Gul Qazi
- Department of Pharmacy, Iqra University, Islamabad, Pakistan
| | - Maira Anwar
- Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| | - Bushra Shaukat
- Department of Pharmacy, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan
| | - Babar Murtaza
- Riphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
| |
Collapse
|
3
|
Yalniz Y, Yunusoğlu O, Berköz M, Demirel ME. Effects of fisetin on ethanol-induced rewarding properties in mice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:75-83. [PMID: 38235981 DOI: 10.1080/00952990.2023.2292976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Background: Alcohol use disorder (AUD) is a chronic relapsing disorder associated with compulsive drinking of alcohol. Natural flavonoid fisetin affects a variety of transmitter systems relevant to AUD, such as aminobutyric acid, N-methyl-D-aspartate, and dopamine, as well as peroxisome proliferator-activated receptors.Objectives: This study investigated fisetin's impact on the motivational properties of ethanol using conditioned place preference (CPP) in mice (n = 50).Methods: Mice were conditioned with ethanol (2 g/kg, i.p.) or saline on alternating days for 8 consecutive days and were given intragastric (i.g.) fisetin (10, 20, or 30 mg/kg, i.g.), 45 min before ethanol conditioning. During extinction, physiological saline was injected to the control and ethanol groups, and fisetin was administered to the fisetin groups. To evaluate the effect of fisetin on the reinstatement of ethanol-induced CPP, fisetin was given 45 min before a priming dose of ethanol (0.4 g/kg, i.p.; reinstatement test day).Results: Fisetin decreased the acquisition of ethanol-induced CPP (30 mg/kg, p < .05) and accelerated extinction (20 and 30 mg/kg, p < .05). Furthermore, fisetin attenuated reinstatement of ethanol-induced CPP (30 mg/kg, p < .05).Conclusions: Fisetin appears to diminish the rewarding properties of ethanol, as indicated by its inhibitory effect and facilitation of extinction in ethanol-induced CPP. These findings imply a potential therapeutic application of fisetin in preventing ethanol-seeking behavior, promoting extinction, and reducing the risk of relapse.
Collapse
Affiliation(s)
- Yasin Yalniz
- Department of Pharmacology, Faculty of Medicine, Bolu Izzet Baysal University, Bolu, Turkey
| | - Oruç Yunusoğlu
- Department of Pharmacology, Faculty of Medicine, Bolu Izzet Baysal University, Bolu, Turkey
| | - Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yıl University, Van, Turkey
| | - Mustafa Enes Demirel
- Emergency Department, School of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
4
|
Han P, Jing X, Han S, Wang X, Li Q, Zhang Y, Yu P, Liu XA, Wu P, Chen H, Hou H, Hu Q. Pharmacokinetic differences in nicotine and nicotine salts mediate reinforcement-related behavior: an animal model study. Front Neurosci 2023; 17:1288102. [PMID: 38033549 PMCID: PMC10687399 DOI: 10.3389/fnins.2023.1288102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Since their introduction in the United States and Europe in 2007, electronic cigarettes (E-Cigs) have become increasingly popular among smokers. Nicotine, a key component in both tobacco and e-cigarettes, can exist in two forms: nicotine-freebase (FBN) and nicotine salts (NS). While nicotine salt is becoming more popular in e-cigarettes, the effect of nicotine salts on reinforcement-related behaviors remains poorly understood. This study aimed to compare the reinforcing effects of nicotine and nicotine salts in animal models of drug self-administration and explore potential mechanisms that may contribute to these differences. The results demonstrated that three nicotine salts (nicotine benzoate, nicotine lactate, and nicotine tartrate) resulted in greater reinforcement-related behaviors in rats compared to nicotine-freebase. Moreover, withdrawal-induced anxiety symptoms were lower in the three nicotine salt groups than in the nicotine-freebase group. The study suggested that differences in the pharmacokinetics of nicotine-freebase and nicotine salts in vivo may explain the observed behavioral differences. Overall, this study provides valuable insights into the reinforcing effects of nicotine as well as potential differences between nicotine-freebase and nicotine salts.
Collapse
Affiliation(s)
- Pengfei Han
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Xiaoyuan Jing
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shulei Han
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Xinsheng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Qiannan Li
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Yuan Zhang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Pengpeng Yu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Xin-an Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ping Wu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Beijing, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
- Beijing Life Science Academy, Beijing, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| |
Collapse
|
5
|
Akünal Türel C, Yunusoğlu O. Oleanolic acid suppresses pentylenetetrazole-induced seizure in vivo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:529-540. [PMID: 36812380 DOI: 10.1080/09603123.2023.2167947] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to investigate the protective effects of triterpene oleanolic acid on the brain tissue of mice with pentylenetetrazole (PTZ)-induced epileptic seizures. Male Swiss albino mice were randomly separated into five groups as the PTZ, control, and oleanolic acid (10, 30, and 100 mg/kg) groups. PTZ injection was seen to cause significant seizures compared with the control group. Oleanolic acid significantly prolonged the latency to onset of myoclonic jerks and the duration of clonic convulsions, and decreased mean seizure scores following PTZ administration. Pretreatment with oleanolic acid also led to an increase in antioxidant enzyme activity (CAT and AChE) and levels (GSH and SOD) in the brain. The data obtained from this study support oleanolic acid may have anticonvulsant potential in PTZ-induced seizures, prevent oxidative stress and protect against cognitive disturbances. These results may provide useful information for the inclusion of oleanolic acid in epilepsy treatment.
Collapse
Affiliation(s)
- Canan Akünal Türel
- Department of Neurology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Oruç Yunusoğlu
- Department of Pharmacology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
6
|
Yunusoğlu O. Rewarding effect of ethanol-induced conditioned place preference in mice: Effect of the monoterpenoid linalool. Alcohol 2022; 98:55-63. [PMID: 34800613 DOI: 10.1016/j.alcohol.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/01/2022]
Abstract
Alcohol addiction is a chronic relapsing disease that is progressive and has severe detrimental health outcomes. The use of natural products has become popular for the treatment of side effects of drugs and substance abuse. Linalool is a monoterpenoid that exhibits several effects on the central nervous system. Linalool was identified to have beneficial effects on different mechanisms that are relevant in drug addiction or substance use disorder. The primary aim of the present study was to evaluate the therapeutic effect of linalool on the rewarding properties of alcohol in mice. Conditioned place preference (CPP) was established by intraperitoneal (i.p.) injection of ethanol (2 g/kg) during an 8-day conditioning trial. The effects of acamprosate and linalool on the rewarding properties of ethanol were tested in mice who received linalool (12.5, 25, and 50 mg/kg, i.p.) and acamprosate (300 mg/kg, i.p.) 30 min before each ethanol injection. CPP was extinguished by repeated testing, throughout which conditioned mice were administered daily linalool. Mice were lastly examined for reinstatement provoked by i.p. administration of single low-dose ethanol (0.4 g/kg, i.p.). Treatment with linalool reduced the acquisition and reinstatement, and precipitated the extinction of ethanol-induced CPP in mice. Acquisition and reinstatement of alcohol-induced CPP were significantly reduced by acamprosate, which also precipitated extinction. Ethanol alone and the combination with linalool or acamprosate did not alter locomotor activity. The results of this study suggest that linalool may have pharmacological effects for the treatment of alcohol addiction. In addition, further investigation is required to fully explore the benefits and possible adverse effects of linalool on alcohol addiction.
Collapse
|
7
|
An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, Li Y, Pan SY. Recent updates on bioactive properties of linalool. Food Funct 2021; 12:10370-10389. [PMID: 34611674 DOI: 10.1039/d1fo02120f] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural products, including essential oils and their components, have been used for their bioactivities. Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic monoterpene alcohol that is widely found in essential oils and is broadly used in perfumes, cosmetics, household cleaners and food additives. This review covers the sources, physicochemical properties, application, synthesis and bioactivities of linalool. The present study focuses on the bioactive properties of linalool, including anticancer, antimicrobial, neuroprotective, anxiolytic, antidepressant, anti-stress, hepatoprotective, renal protective, and lung protective activity and the underlying mechanisms. Besides this, the therapeutic potential of linalool and the prospect of encapsulating linalool are also discussed. Linalool can induce apoptosis of cancer cells via oxidative stress, and at the same time protects normal cells. Linalool exerts antimicrobial effects through disruption of cell membranes. The protective effects of linalool to the liver, kidney and lung are owing to its anti-inflammatory activity. On account of its protective effects and low toxicity, linalool can be used as an adjuvant of anticancer drugs or antibiotics. Therefore, linalool has a great potential to be applied as a natural and safe alternative therapeutic.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Sha-Sha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yue Song
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yang Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|