1
|
Choi S, Rahman RT, Kim BM, Kang J, Kim J, Shim J, Nam YS. Photochemically Inert Broad-Spectrum Sunscreen by Metal-Phenolic Network Coatings of Titanium Oxide Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16767-16777. [PMID: 38512769 DOI: 10.1021/acsami.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Titanium dioxide (TiO2) nanoparticles are extensively used as a sunscreen filter due to their long-active ultraviolet (UV)-blocking performance. However, their practical use is being challenged by high photochemical activities and limited absorption spectrum. Current solutions include the coating of TiO2 with synthetic polymers and formulating a sunscreen product with additional organic UV filters. Unfortunately, these approaches are no longer considered effective because of recent environmental and public health issues. Herein, TiO2-metal-phenolic network hybrid nanoparticles (TiO2-MPN NPs) are developed as the sole active ingredient for sunscreen products through photochemical suppression and absorption spectrum widening. The MPNs are generated by the complexation of tannic acid with multivalent metal ions, forming a robust coating shell. The TiO2-MPN hybridization extends the absorption region to the high-energy-visible (HEV) light range via a new ligand-to-metal charge transfer photoexcitation pathway, boosting both the sun protection factor and ultraviolet-A protection factor about 4-fold. The TiO2-MPN NPs suppressed the photoinduced reactive oxygen species by 99.9% for 6 h under simulated solar irradiation. Accordingly, they substantially alleviated UV- and HEV-induced cytotoxicity of fibroblasts. This work outlines a new tactic for the eco-friendly and biocompatible design of sunscreen agents by selectively inhibiting the photocatalytic activities of semiconductor nanoparticles while broadening their optical spectrum.
Collapse
Affiliation(s)
- Saehan Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bo-Min Kim
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Juyeon Kang
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Jeonga Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jongwon Shim
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Winiecki M, Stepczyńska M, Moraczewski K, Skowronski L, Trzcinski M, Rerek T, Malinowski R. Effect of Low-Temperature Oxygen Plasma Treatment of Titanium Alloy Surface on Tannic Acid Coating Deposition. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1065. [PMID: 38473537 DOI: 10.3390/ma17051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
In this study, the effect of low-temperature oxygen plasma treatment with various powers of a titanium alloy surface on the structural and morphological properties of a substrate and the deposition of a tannic acid coating was investigated. The surface characteristics of the titanium alloy were evaluated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle measurements. Following this, the tannic acid coatings were deposited on the titanium alloy substrates and the structural and morphological properties of the tannic acid coatings deposited were subject to characterization by XPS, SEM, and spectroscopic ellipsometry (SE) measurements. The results show that the low-temperature oxygen plasma treatment of titanium alloys leads to the formation of titanium dioxides that contain -OH groups on the surface being accompanied by a reduction in carbon, which imparts hydrophilicity to the titanium substrate, and the effect increases with the applied plasma power. The performed titanium alloy substrate modification translates into the quality of the deposited tannic acid coating standing out by higher uniformity of the coating, lower number of defects indicating delamination or incomplete bonding of the coating with the substrate, lower number of cracks, thinner cracks, and higher thickness of the tannic acid coatings compared to the non-treated titanium alloy substrate. A similar effect is observed as the applied plasma power increases.
Collapse
Affiliation(s)
- Mariusz Winiecki
- Department of Constructional Materials and Biomaterials, Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Magdalena Stepczyńska
- Department of Polymer Materials Engineering, Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Krzysztof Moraczewski
- Department of Polymer Materials Engineering, Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Lukasz Skowronski
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Marek Trzcinski
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Tomasz Rerek
- Division of Surface Science, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - Rafał Malinowski
- Łukasiewicz Research Network-Institute for Engineering of Polymer Materials and Dyes, Marii Skłodowskiej-Curie 55, 87-100 Torun, Poland
| |
Collapse
|
3
|
Şimşek S, Derin Y, Kaya S, Şenol ZM, Katin KP, Özer A, Tutar A. High-Performance Material for the Effective Removal of Uranyl Ion from Solution: Computationally Supported Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10098-10113. [PMID: 35946525 PMCID: PMC9404547 DOI: 10.1021/acs.langmuir.2c00978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/29/2022] [Indexed: 05/19/2023]
Abstract
Adsorption is a widely used method for pollution removal and for the recovery of valuable species. In recent years, the use of metal-organic compounds among the adsorbents used in adsorption studies has increased. In this study, the performance of the water-insoluble Fe complex as a metal organic framework (MOF-Fe-Ta) of water-soluble tannic acid, which is not used as an adsorbent in uranium recovery and removal, was investigated. For the characterization of the new synthesized material, Fourier transform infrared, scanning electron microscopy, and X-ray diffraction analyses were performed. The changes in the adsorption process based on various parameters were investigated and discussed. The point of zero charges value of the adsorbent was found as 5.52. It was noticed that the adsorption increases as the pH increases. Analyzing the effect of concentration on adsorption, we determined which model explained the adsorption better. The monolayer capacity of the adsorbent determined in light of the Langmuir model was reported as 0.347 mol kg-1. The Freundlich constant, namely the β value obtained in the Freundlich model, which is a measure of surface heterogeneity, was found to be 0.434, and the EDR value, which was found from the Dubinin-Raduskevich model and accepted as a measure of adsorption energy, was 10.3 kJ mol-1. The adsorption was kinetically explained by the pseudo-second-order model and the adsorption rate constant was reported as 0.15 mol-1 kg min-1. The effect of temperature on adsorption was studied; it was emphasized that adsorption was energy consuming, that is, endothermic and ΔH was found as 7.56 kJ mol-1. The entropy of adsorption was positive as 69.3 J mol-1 K-1. As expected, the Gibbs energy of adsorption was negative (-13.1 kJ mol-1 at 25 °C), so adsorption was considered as a spontaneous process. Additionally, the power and mechanism of the interaction between studied adsorbent and adsorbate are explained through density functional theory computations. Computationally obtained data supported the experimental studies.
Collapse
Affiliation(s)
- Selçuk Şimşek
- Faculty
of Science, Department of Chemistry, Sivas
Cumhuriyet University, 58140 Sivas, Turkey
- Selçuk
Şimşek.
| | - Yavuz Derin
- Department
of Chemistry, Sakarya University, 54050 Sakarya, Turkey
| | - Savaş Kaya
- Health
Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Savaş Kaya.
| | - Zeynep Mine Şenol
- Zara
Vocational School, Department of Food Technology, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Konstantin P. Katin
- Institute
of Nanoengineering in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Shosse 31, Moscow 115409, Russia
| | - Ali Özer
- Engineering
Faculty, Metallurgical and Materials Engineering Department, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Ahmet Tutar
- Department
of Chemistry, Sakarya University, 54050 Sakarya, Turkey
| |
Collapse
|
4
|
Cui Y, Tan Z, Wang Y, Shi S, Chen X. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Guo LL, Cheng YF, Ren X, Gopinath K, Lu ZS, Li CM, Xu LQ. Simultaneous deposition of tannic acid and poly(ethylene glycol) to construct the antifouling polymeric coating on Titanium surface. Colloids Surf B Biointerfaces 2021; 200:111592. [DOI: 10.1016/j.colsurfb.2021.111592] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022]
|
6
|
Liu Y, Li X, Hua Y, Zhang W, Zhou X, He J, Chen D. Tannic Acid as a Natural Ferroptosis Inhibitor: Mechanisms and Beneficial Role of 3’‐
O
‐Galloylation. ChemistrySelect 2021. [DOI: 10.1002/slct.202004392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yangping Liu
- The Fourth Clinical Medical College Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Xican Li
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Yujie Hua
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Wenhui Zhang
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Xianxi Zhou
- School of Basic Medical Science Guangzhou University of Chinese Medicine Guangzhou China 510006
| | - Jianfeng He
- School of Chinese Herbal Medicine Guangzhou University of Chinese Medicine Waihuan East Road No. 232, Guangzhou Higher Education Mega Center Guangzhou China 510006
| | - Dongfeng Chen
- School of Basic Medical Science Guangzhou University of Chinese Medicine Guangzhou China 510006
| |
Collapse
|
7
|
Chu Q, Zhu H, Liu B, Cao G, Fang C, Wu Y, Li X, Han G. Delivery of amino acid oxidase via catalytic nanocapsules to enable effective tumor inhibition. J Mater Chem B 2020; 8:8546-8557. [PMID: 32840278 DOI: 10.1039/d0tb01425g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amino acids are the fundamental building blocks of proteins in tumor cells. The consumption of amino acid can be an effective approach for destroying the tumor cytoskeleton and malfunctioning of the intracellular metabolic balance. Following this concept, herein, amino acid oxidase (AAO) is delivered by hollow Fe3+/tannic acid nanocapsules (HFe-TA) and incorporated within the cancer cell membrane (M) for the first time for synergistic tumor therapy. In this system (M@AAO@HFe-TA), the intracellularly delivered AAO molecules catalyze the oxidative deamination effectively and consume amino acids significantly. The upregulation of intracellular acid and H2O2 concentration facilitates the HFe-TA mediated Fenton reaction and enhances the induction of cytotoxic ˙OH. With the combined effects, considerable in vitro and in vivo tumor inhibition was achieved by M@AAO@Fe-TA due to the activated Bcl-2/Bax/Cyt C/caspase 3 mitochondrial apoptotic pathway. This study offers an alternative therapeutic platform, functioning as a biomimetic cascade nanozyme, to enable synergistic starvation and chemodynamic tumor therapy with high efficacy.
Collapse
Affiliation(s)
- Qiang Chu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Huimin Zhu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Bin Liu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Guodong Cao
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Chao Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yulian Wu
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310000, P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
8
|
Heidarian P, Kouzani AZ, Kaynak A, Zolfagharian A, Yousefi H. Dynamic Mussel-Inspired Chitin Nanocomposite Hydrogels for Wearable Strain Sensors. Polymers (Basel) 2020; 12:E1416. [PMID: 32599923 PMCID: PMC7362235 DOI: 10.3390/polym12061416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
It is an ongoing challenge to fabricate an electroconductive and tough hydrogel with autonomous self-healing and self-recovery (SELF) for wearable strain sensors. Current electroconductive hydrogels often show a trade-off between static crosslinks for mechanical strength and dynamic crosslinks for SELF properties. In this work, a facile procedure was developed to synthesize a dynamic electroconductive hydrogel with excellent SELF and mechanical properties from starch/polyacrylic acid (St/PAA) by simply loading ferric ions (Fe3+) and tannic acid-coated chitin nanofibers (TA-ChNFs) into the hydrogel network. Based on our findings, the highest toughness was observed for the 1 wt.% TA-ChNF-reinforced hydrogel (1.43 MJ/m3), which is 10.5-fold higher than the unreinforced counterpart. Moreover, the 1 wt.% TA-ChNF-reinforced hydrogel showed the highest resistance against crack propagation and a 96.5% healing efficiency after 40 min. Therefore, it was chosen as the optimized hydrogel to pursue the remaining experiments. Due to its unique SELF performance, network stability, superior mechanical, and self-adhesiveness properties, this hydrogel demonstrates potential for applications in self-wearable strain sensors.
Collapse
Affiliation(s)
- Pejman Heidarian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia; (P.H.); (A.K.); (A.Z.)
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia; (P.H.); (A.K.); (A.Z.)
| | - Akif Kaynak
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia; (P.H.); (A.K.); (A.Z.)
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia; (P.H.); (A.K.); (A.Z.)
| | - Hossein Yousefi
- Department of Wood Engineering and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran;
| |
Collapse
|
9
|
Göb CR, Ehnbom A, Sturm L, Tobe Y, Oppel IM. Supramolecular Metallacycles and Their Binding of Fullerenes. Chemistry 2020; 26:3609-3613. [PMID: 31833098 PMCID: PMC7155124 DOI: 10.1002/chem.201905390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/22/2022]
Abstract
The synthesis of a new triaminoguanidinium-based ligand with three tris-chelating [NNO]-binding pockets and C3 symmetry is described. The reaction of tris-(2-pyridinylene-N-oxide)triaminoguanidinium salts with zinc(II) formate leads to the formation of cyclic supramolecular coordination compounds which in solution bind fullerenes in their spherical cavities. The rapid encapsulation of C60 can be observed by NMR spectroscopy and single-crystal X-ray diffraction and is verified using computation.
Collapse
Affiliation(s)
- Christian R. Göb
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Andreas Ehnbom
- Department of ChemistryTexas A&M UniversityP.O. Box 30012College StationTX77843-3012USA
| | - Lisa Sturm
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Yoshito Tobe
- Division of Frontier Materials ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560-8531Japan
| | - Iris M. Oppel
- Institute of Inorganic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| |
Collapse
|
10
|
Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (Fe3O4@TA/Ag) for highly active catalytic reduction of 4-nitrophenol, Rhodamine B and Methylene blue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:445-452. [DOI: 10.1016/j.msec.2019.03.036] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/16/2022]
|
11
|
Amini SM. Preparation of antimicrobial metallic nanoparticles with bioactive compounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109809. [PMID: 31349497 DOI: 10.1016/j.msec.2019.109809] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 01/25/2023]
Abstract
Despite the all recent advancements in medicine, infectious diseases continue to be major causes of death worldwide. Developing nanomaterials as preventive and therapeutic agents against infectious diseases has been one of the research priorities in medicine. However, the application of metal nanoparticles as antimicrobial agents is hampered due to environmental and safety concerns. Using green chemistry, researchers can produce biocompatible nanoparticles that have fewer detrimental effects on human health and the environment. Although chemical compounds have been considered as traditional sources for producing nanomaterials, a wide variety of biocompatible plant-derived secondary metabolites have recently been introduced that can be used to synthesize and stabilize metal nanoparticles. These metabolites have shown potent antibacterial effects making them suitable substitutes for the chemical agents in nanoparticle synthesis. This review has focused on the antimicrobial properties of metal nanoparticles synthesized using plant-derived secondary metabolites instead of crude extract. The mechanisms of metal nanoparticles synthesis and antimicrobial activity are also discussed for different phytochemicals and metal nanoparticles. Finally, the evaluation of the toxicity and safety of phytochemicals coated metal nanoparticles has been conducted. I believe that this is the first review on the antimicrobial and other biological properties of metal nanoparticles synthesized or coated utilizing specific plant-derived secondary metabolites.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Wang B, Liu L, Liao L. Light and ferric ion responsive fluorochromic hydrogels with high strength and self-healing ability. Polym Chem 2019. [DOI: 10.1039/c9py01459d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, light and ferric ion (Fe3+) responsive fluorochromic hydrogels with high strength and self-healing ability were designed and synthesized.
Collapse
Affiliation(s)
- Beibei Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Lijian Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Liqiong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Biomaterials Research Center
- School of Biomedical Engineering
- Southern Medical University
- China
| |
Collapse
|