1
|
Akgul I, Isik B, Ugraskan V. Preparation and characterization of oat hulls-filled-sodium alginate biocomposite microbeads for the effective adsorption of toxic methylene blue dye. Int J Biol Macromol 2024; 280:135800. [PMID: 39307506 DOI: 10.1016/j.ijbiomac.2024.135800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
In this work, the performance of oat hull-filled sodium alginate (SA-O) biocomposite microbeads in the adsorptive removal of methylene blue (MB) dye was examined. First, oat hulls were pulverized and biocomposite gels containing different weight ratios of oat hulls (10 %, 20 %, and 30 %, concerning the SA amount) were prepared by dispersing them in SA solution by ultrasonic homogenization method. Finally, gels were cross-linked by dropping into a 2 % CaCl2 solution. The study revealed that the optimal adsorbent dosage was 0.025 g/50 mL, pH was roughly 6-8, and the contact time was 120 min. According to isotherm models, the non-linear Sips and Langmuir model was more appropriate compare to other isotherms from error analysis, with a maximum adsorption capacity of 687.65 mg/g and 757.57 mg/g at 298 K, respectively. Furthermore, the non-linear kinetic data and error analyzes demonstrated that the process followed the pseudo-second-order kinetic. The adsorption process was exothermic (∆H°=-17.71 kJ/mol) and spontaneous (∆G°=-26.23 kJ/mol) at 298 K, based on thermodynamic characteristics. Furthermore, reusability investigations demonstrated that the adsorbent retained its performance with no major changes in characteristics. This work reveals that highly efficient, low-cost, sustainable, and eco-friendly SA-O composites with properties might be useful adsorbents for cationic dye adsorption.
Collapse
Affiliation(s)
- Irem Akgul
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Birol Isik
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey.
| |
Collapse
|
2
|
Gadore V, Mishra SR, Singh AK, Ahmaruzzaman M. Advances in boron nitride-based nanomaterials for environmental remediation and water splitting: a review. RSC Adv 2024; 14:3447-3472. [PMID: 38259991 PMCID: PMC10801356 DOI: 10.1039/d3ra08323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Boron nitride has gained wide-spread attention globally owing to its outstanding characteristics, such as a large surface area, high thermal resistivity, great mechanical strength, low density, and corrosion resistance. This review compiles state-of-the-art synthesis techniques, including mechanical exfoliation, chemical exfoliation, chemical vapour deposition (CVD), and green synthesis for the fabrication of hexagonal boron nitride and its composites, their structural and chemical properties, and their applications in hydrogen production and environmental remediation. Additionally, the adsorptive and photocatalytic properties of boron nitride-based nanocomposites for the removal of heavy metals, dyes, and pharmaceuticals from contaminated waters are discussed. Lastly, the scope of future research, including the facile synthesis and large-scale applicability of boron nitride-based nanomaterials for wastewater treatment, is presented. This review is expected to deliver preliminary knowledge of the present state and properties of boron nitride-based nanomaterials, encouraging the future study and development of these materials for their applications in various fields.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Ashish Kumar Singh
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
3
|
Karadeniz SC, Isik B, Ugraskan V, Cakar F. Adsorptive removal of Safranine T dye from aqueous solutions using sodium alginate-Festuca arundinacea seeds bio-composite microbeads. Int J Biol Macromol 2023; 248:125880. [PMID: 37473894 DOI: 10.1016/j.ijbiomac.2023.125880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
In this study, composite microbeads were prepared using Festuca arundinacea seeds and sodium alginate biopolymer at different ratios and utilized as sorbents for the sorption of Safranine T from wastewater. The sorbents were characterized by FTIR, SEM, XRD, and BET analysis. According to BET analysis, the specific surface area of the adsorbents was calculated to be 10.99 m2/g and the surface was found to be mesoporous. The optimum conditions for adsorption studies including initial pH (2-12), concentration (10-50 mg/L), contact time (0-150 min), and adsorbent mass (0.05 g/50 mL-0.25 g/50 mL) were determined at 25 °C. The raw data obtained from sorption tests were applied to Freundlich, Langmuir-1, Langmuir-2, Langmuir-3, Langmuir-4, Temkin, Toth, and Koble-Corrigan isotherm models. The best results were obtained from the Langmuir-2 and accordingly the qm values were calculated as 454.54, 833.33, and 625.00 mg/g for FA, FA-SA-20, and FA-SA-30 at 25 °C, respectively. Adsorption kinetic data illustrated that the process followed the PSO model. Reusability and desorption studies were performed for composite microbeads. Additionally, the thermodynamic studies were performed at 25, 35 and 45 °C. Considering all these results, it was seen that the FA-SA-20 composite had the highest adsorption capacity and the best desorption efficiency.
Collapse
Affiliation(s)
- Sabri Can Karadeniz
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Birol Isik
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Fatih Cakar
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey.
| |
Collapse
|
4
|
El-Aassar MR, Ibrahim OM, Omar BM, El-Hamid HTA, Alsohaim IH, Hassan HMA, Althobaiti IO, El-Sayed MY, Goher ME, Fakhry H. Hybrid Beads of Poly(Acrylonitrile-co-Styrene/Pyrrole)@Poly Vinyl Pyrrolidone for Removing Carcinogenic Methylene Blue Dye Water Pollutant. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2023; 31:2912-2929. [DOI: 10.1007/s10924-023-02776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 09/02/2023]
|
5
|
Heidari Y, Noroozian E, Maghsoudi S. Electrospun nanofibers of cellulose acetate/metal organic framework-third generation PAMAM dendrimer for the removal of methylene blue from aqueous media. Sci Rep 2023; 13:4924. [PMID: 36966177 PMCID: PMC10039946 DOI: 10.1038/s41598-023-32097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
In this research, magnetic metal-organic framework nanofibers were produced by the electrospinning method. The nanocomposite was functionalized by third generation hyperbranched poly(amidoamine) dendrimer (PAMAM) to improve its dye adsorption efficiency from aqueous media. The characteristics of the synthesized magnetic nanocomposite was determined by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) along with elemental mapping analysis and scanning electron microscopy (SEM). Central composite design (CCD) based on response surface methodology (RSM) was performed to optimize the adsorption variables and the values of coefficient of determination (R2) and adjusted R2 were 0.9837 and 0.9490, respectively. The results obtained demonstrated remarkable properties of the synthesized nanofiber as adsorbent for methylene blue from aqueous solutions with the removal efficiency of 95.37% and maximum methylene blue (MB) adsorption capacity of 940.76 mg g-1 under optimized conditions. In addition, it was shown that kinetics and adsorption isotherm of the dye removal process followed Langmuir and pseudo-second-order models, respectively. Thermodynamic study of the dye removal indicated that the process was spontaneous and favorable at higher temperatures. Also, the reusability study shows favorable dye removal efficiency of 80.67% even after 4 cycles. To investigate the performance of the adsorbent for the removal of MB in real samples, a sewage sample from a local hospital was used. The result showed good efficiency of the adsorbent.
Collapse
Affiliation(s)
- Yasaman Heidari
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ebrahim Noroozian
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Shahab Maghsoudi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
6
|
Ghoniem AA, Moussa Z, Alenzi AM, Alotaibi AS, Fakhry H, El-Khateeb AY, Saber WIA, Elsayed A. Pseudomonas alcaliphila NEWG-2 as biosorbent agent for methylene blue dye: optimization, equilibrium isotherms, and kinetic processes. Sci Rep 2023; 13:3678. [PMID: 36872381 PMCID: PMC9986242 DOI: 10.1038/s41598-023-30462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023] Open
Abstract
In comparison to physicochemical and chemical methods, microbial dye biosorption is regarded as an eco-effective and economically viable alternative and is a widely applied method due to its high efficiency and compatibility with the environment. Therefore, the idea of this study is to clarify to what extent the viable cells and the dry biomass of Pseudomonas alcaliphila NEWG-2 can improve the biosorption of methylene blue (MB) from a synthetic wastewater sample. The array of Taguchi paradigm has been conducted to ascertain five variables affecting the biosorption of MB by broth forms of P. alcaliphila NEWG. The data of MB biosorption were familiar to the predicted ones, indicating the precision of the Taguchi model's prediction. The maximum biosorption of MB (87.14%) was achieved at pH 8, after 60 h, in a medium containing 15 mg/ml MB, 2.5% glucose, and 2% peptone, with sorting the highest signal-to-noise ratio (38.80). FTIR spectra detected various functional groups (primary alcohol, α, β-unsaturated ester, symmetric NH2 bending, and strong C-O stretching) on the bacterial cell wall that participated in the biosorption of MB. Furthermore, the spectacular MB biosorption ability was validated by equilibrium isotherms and kinetic studies (the dry biomass form), which were derived from the Langmuir model (qmax = 68.827 mg/g). The equilibrium time was achieved in about 60 min, with 70.5% of MB removal. The biosorption kinetic profile might be adequately represented by pseudo-second order and Elovich models. The changes in the bacterial cells before and after the biosorption of MB were characterized using a scanning electron microscope. As realized from the aforementioned data, the bacterium is a talented, effective, eco-friendly, and low-cost bio-sorbent for the decolorization and remedy of an industrial effluent containing MB from an aqueous environment. The current outcomes in the biosorption of MB molecules promote the use of the bacterial strain as viable cells and/or dry biomass in ecosystem restoration, environmental cleanup, and bioremediation studies.
Collapse
Affiliation(s)
- Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Zeiad Moussa
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
| | - Asma Massad Alenzi
- Genomic and Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Amenah S Alotaibi
- Genomic and Biotechnology Unit, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hala Fakhry
- Polymer Materials Research Department, Advanced Technology and New Material Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Ayman Y El-Khateeb
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
7
|
Chu KH, Hashim MA, Bashiri H, Debord J, Harel M, Bollinger JC. The Flory–Huggins Isotherm and Water Contaminant Adsorption: Debunking Some Modeling Fallacies. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Khim Hoong Chu
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Mohd Ali Hashim
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur50603, Malaysia
| | - Hadis Bashiri
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan8731753153, Iran
| | - Jean Debord
- Service de Pharmacologie-Toxicologie, Hôpital Dupuytren, 87042Limoges, France
| | - Michel Harel
- Laboratoire Vie-Santé UR 24 134, Faculté de Médecine, Université de Limoges, 87025Limoges, France
- Institut de Mathématiques de Toulouse, UMR CNRS 5219, 31062Toulouse, France
| | - Jean-Claude Bollinger
- Laboratoire E2Lim, Faculté des Sciences & Techniques, Université de Limoges, 87060Limoges, France
| |
Collapse
|
8
|
El-Nemr MA, Aigbe UO, Ukhurebor KE, Onyancha RB, El Nemr A, Ragab S, Osibote OA, Hassaan MA. Adsorption of Cr 6+ ion using activated Pisum sativum peels-triethylenetetramine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91036-91060. [PMID: 35881295 PMCID: PMC9722890 DOI: 10.1007/s11356-022-21957-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/06/2022] [Indexed: 05/21/2023]
Abstract
The adsorption of Cr6+ ions from water-soluble solution onto activated pea peels (PPs) embellished with triethylenetetramine (TETA) was studied. The synthesized activated TETA-PP biosorbent was further characterized by SEM together with EDX, FTIR and BET to determine the morphology and elementary composition, functional groups (FGs) present and the biosorbent surface area. The confiscation of Cr6+ ions to activated TETA-PP biosorbent was observed to be pH-reliant, with optimum removal noticed at pH 1.6 (99%). Cr6+ ion adsorption to activated TETA-PP biosorbent was well defined using the Langmuir (LNR) and the pseudo-second-order (PSO) models, with a determined biosorption capacity of 312.50 mg/g. Also, it was found that the activated TETA-PP biosorbent can be restored up to six regeneration cycles for the sequestration of Cr6+ ions in this study. In comparison with other biosorbents, it was found that this biosorbent was a cost-effective and resourceful agro-waste for the Cr6+ ion confiscation. The possible mechanism of Cr6+ to the biosorbent was by electrostatic attraction following the surface protonation of the activated TETA-PP biosorbent sites.
Collapse
Affiliation(s)
- Mohamed A. El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, Egypt
| | - Uyiosa O. Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Kingsley E. Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, Iyamho, Edo State Nigeria
| | - Robert B. Onyancha
- Department of Technical and Applied Physics, School of Physics and Earth Sciences Technology, Technical University of Kenya, Nairobi, Kenya
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| | - Otolorin A. Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Mohamed A. Hassaan
- Environment Division, National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt
| |
Collapse
|
9
|
Synthesis of boron carbon nitride layers for the adsorption of hazardous basic dye from aqueous solutions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Bilgi M, Ugraskan V, Isik B. Biosorption studies of methylene blue dye using NaOH-treated Aspergillus niger-filled sodium alginate microbeads. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2103685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mesut Bilgi
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Volkan Ugraskan
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Birol Isik
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|