1
|
Szkaradek K, Góra RW. Theoretical insight into photodeactivation mechanisms of adenine-uracil and adenine-thymine nucleobase pairs. Phys Chem Chem Phys 2024; 26:27807-27816. [PMID: 39470622 DOI: 10.1039/d4cp02817a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this work, several plausible intra- and intermolecular photoinduced processes of the Watson-Crick base pairs of adenine with uracil (A-U) or thymine (A-T) according to the results of spin component scaling variant of algebraic diagrammatic construction up to the second order [SCS-ADC(2)] calculations are discussed. Although widely explored, these systems lack complete characterization of possible intramolecular relaxation channels perturbed by intermolecular interactions. In particular, we address the still open debate on photodeactivation via purine-ring puckering at the C2 or C6-atom position of adenine. We also show that the presence of low-lying, long-lived 1nπ* states can be a significant factor in hindering relaxation via an electron-driven proton transfer process, as the population of these states can lead to an efficient intersystem crossing to a triplet manifold, the estimated rate of which is 1.6 × 1010 s-1 which exceeds the corresponding internal conversion to the ground state by an order of magnitude. Additionally, the SCS variant of the ADC(2) method is shown to provide a more balanced description of valence and charge-transfer excited states.
Collapse
Affiliation(s)
- Kinga Szkaradek
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Robert W Góra
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
2
|
Xu P, Wang D, Li D, Long J, Zhang S, Zhang B. UV wavelength-dependent photoionization quantum yields for the dark 1nπ* state of aqueous thymidine. Phys Chem Chem Phys 2024; 26:26251-26257. [PMID: 39229763 DOI: 10.1039/d4cp02594f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Despite the important role of the dark 1nπ* state in the photostability of thymidine in aqueous solution, no detailed ultraviolet (UV) wavelength-dependent investigation of the 1nπ* quantum yield (QY) in aqueous thymidine has been experimentally performed. Here, we investigate the wavelength-dependent photoemission spectra of aqueous thymidine from 266.7 to 240 nm using liquid-microjet photoelectron spectroscopy. Two observed ionization channels are assigned to resonant ionizations from 1ππ* to the cationic ground state D0 (π-1) and 1nπ* to the cationic excited state D1 (n-1). The weak 1nπ* → D1 ionization channel appears due to ultrafast 1ππ* → 1nπ* internal conversion within the pulse duration of ∼180 fs. The obtained 1nπ* quantum yields exhibit a strong wavelength dependence, ranging from 0 to 0.27 ± 0.01, suggesting a hitherto uncharacterized 1nπ* feature. The corresponding vertical ionization energies (VIEs) of D0 and D1 of aqueous thymidine are experimentally determined to be 8.47 ± 0.12 eV and 9.22 ± 0.29 eV, respectively. Our UV wavelength-dependent QYs might indicate that different structural critical points to connect the multidimensional 1ππ*/1nπ* conical intersection seam onto the multidimensional potential energy surface of the 1ππ* state might exist and determine the relaxation processes of aqueous thymidine upon UV excitation.
Collapse
Affiliation(s)
- Piao Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duoduo Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyou Long
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
3
|
Michaelian K. The Pigment World: Life's Origins as Photon-Dissipating Pigments. Life (Basel) 2024; 14:912. [PMID: 39063667 PMCID: PMC11277707 DOI: 10.3390/life14070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Many of the fundamental molecules of life share extraordinary pigment-like optical properties in the long-wavelength UV-C spectral region. These include strong photon absorption and rapid (sub-pico-second) dissipation of the induced electronic excitation energy into heat through peaked conical intersections. These properties have been attributed to a "natural selection" of molecules resistant to the dangerous UV-C light incident on Earth's surface during the Archean. In contrast, the "thermodynamic dissipation theory for the origin of life" argues that, far from being detrimental, UV-C light was, in fact, the thermodynamic potential driving the dissipative structuring of life at its origin. The optical properties were thus the thermodynamic "design goals" of microscopic dissipative structuring of organic UV-C pigments, today known as the "fundamental molecules of life", from common precursors under this light. This "UV-C Pigment World" evolved towards greater solar photon dissipation through more complex dissipative structuring pathways, eventually producing visible pigments to dissipate less energetic, but higher intensity, visible photons up to wavelengths of the "red edge". The propagation and dispersal of organic pigments, catalyzed by animals, and their coupling with abiotic dissipative processes, such as the water cycle, culminated in the apex photon dissipative structure, today's biosphere.
Collapse
Affiliation(s)
- Karo Michaelian
- Department of Nuclear Physics and Application of Radiation, Instituto de Física, Universidad Nacional Autónoma de México, Circuito Interior de la Investigación Científica, Cuidad Universitaria, Cuidad de México CP 04510, Mexico
| |
Collapse
|
4
|
Herb D, Rossini M, Ankerhold J. Ultrafast excitonic dynamics in DNA: Bridging correlated quantum dynamics and sequence dependence. Phys Rev E 2024; 109:064413. [PMID: 39020927 DOI: 10.1103/physreve.109.064413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024]
Abstract
After photoexcitation of DNA, the excited electron (in the LUMO) and the remaining hole (in the HOMO) localized on the same DNA base form a bound pair, called the Frenkel exciton, due to their mutual Coulomb interaction. In this study, we demonstrate that a tight-binding (TB) approach, using TB parameters for electrons and holes available in the literature, allows us to correlate relaxation properties, average charge separation, and dipole moments to a large ensemble of double-stranded DNA sequences (all 16384 possible sequences with 14 nucleobases). This way, we are able to identify a relatively small subensemble of sequences responsible for long-lived excited states, high average charge separation, and high dipole moment. Further analysis shows that these sequences are particularly T rich. By systematically screening the impact of electron-hole interaction (Coulomb forces), we verify that these correlations are relatively robust against finite-size variations of the interaction parameter, not directly accessible experimentally. This methodology combines simulation methods from quantum physics and physical chemistry with statistical analysis known from genetics and epigenetics, thus representing a powerful bridge to combine information from both fields.
Collapse
|
5
|
Ortiz-Rodríguez LA, Caldero-Rodríguez NE, Seth SK, Díaz-González K, Crespo-Hernández CE. Electronic relaxation mechanism of 9-methyl-2,6-diaminopurine and 2,6-diaminopurine-2'-deoxyribose in solution. Photochem Photobiol 2024; 100:393-403. [PMID: 38018292 DOI: 10.1111/php.13887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023]
Abstract
Prolonged ultraviolet exposure results in the formation of cyclobutane pyrimidine dimers (CPDs) in RNA. Consequently, prebiotic photolesion repair mechanisms should have played an important role in the maintenance of the structural integrity of primitive nucleic acids. 2,6-Diaminopurine is a prebiotic nucleobase that repairs CPDs with high efficiency when incorporated into polymers. We investigate the electronic deactivation pathways of 2,6-diaminopurine-2'-deoxyribose and 9-methyl-2,6-diaminopurine in acetonitrile and aqueous solution to shed light on the photophysical and excited state properties of the 2,6-diaminopurine chromophore. Evidence is presented that both are photostable compounds exhibiting similar deactivation mechanisms upon the population of the S1 (ππ* La ) state at 290 nm. The mechanism involves deactivation through the C2- and C6-reaction coordinates and >99% of the excited state population decays through nonradiative pathways involving two conical intersections with the ground state. The radiative and nonradiative lifetimes are longer in aqueous solution compared to acetonitrile. While τ1 is similar in both derivatives, τ2 is ca. 1.5-fold longer in 2,6-diaminopurine-2'-deoxyribose due to a more efficient trapping in the S1 (ππ* La ) minimum. Therefore, 2,6-diaminopurine could have accumulated in significant quantities during prebiotic times to be incorporated into non-canonical RNA and play a significant role in its photoprotection.
Collapse
Affiliation(s)
| | | | - Sourav Kanti Seth
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
6
|
Cuéllar-Zuquin J, Pepino AJ, Fdez. Galván I, Rivalta I, Aquilante F, Garavelli M, Lindh R, Segarra-Martí J. Characterizing Conical Intersections in DNA/RNA Nucleobases with Multiconfigurational Wave Functions of Varying Active Space Size. J Chem Theory Comput 2023; 19:8258-8272. [PMID: 37882796 PMCID: PMC10851440 DOI: 10.1021/acs.jctc.3c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
We characterize the photochemically relevant conical intersections between the lowest-lying accessible electronic excited states of the different DNA/RNA nucleobases using Cholesky decomposition-based complete active space self-consistent field (CASSCF) algorithms. We benchmark two different basis set contractions and several active spaces for each nucleobase and conical intersection type, measuring for the first time how active space size affects conical intersection topographies in these systems and the potential implications these may have toward their description of photoinduced phenomena. Our results show that conical intersection topographies are highly sensitive to the electron correlation included in the model: by changing the amount (and type) of correlated orbitals, conical intersection topographies vastly change, and the changes observed do not follow any converging pattern toward the topographies obtained with the largest and most correlated active spaces. Comparison across systems shows analogous topographies for almost all intersections mediating population transfer to the dark 1nO/Nπ* states, while no similarities are observed for the "ethylene-like" conical intersection ascribed to mediate the ultrafast decay component to the ground state in all DNA/RNA nucleobases. Basis set size seems to have a minor effect, appearing to be relevant only for purine-based derivatives. We rule out structural changes as a key factor in classifying the different conical intersections, which display almost identical geometries across active space and basis set change, and we highlight instead the importance of correctly describing the electronic states involved at these crossing points. Our work shows that careful active space selection is essential to accurately describe conical intersection topographies and therefore to adequately account for their active role in molecular photochemistry.
Collapse
Affiliation(s)
- Juliana Cuéllar-Zuquin
- Instituto
de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, ES-46071 Valencia, Spain
| | - Ana Julieta Pepino
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Ignacio Fdez. Galván
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Ivan Rivalta
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
- ENSL,
CNRS, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, 69364 Lyon, France
| | - Francesco Aquilante
- Theory
and Simulation of Materials (THEOS), and National Centre for Computational
Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Roland Lindh
- Department
of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-75123 Uppsala, Sweden
| | - Javier Segarra-Martí
- Instituto
de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, ES-46071 Valencia, Spain
| |
Collapse
|
7
|
Reza MM, Durán-Hernández J, González-Cano B, Jara-Cortés J, López-Arteaga R, Cadena-Caicedo A, Muñoz-Rugeles L, Hernández-Trujillo J, Peon J. Primary Photophysics of Nicotinamide Chromophores in Their Oxidized and Reduced Forms. J Phys Chem B 2023; 127:8432-8445. [PMID: 37733881 DOI: 10.1021/acs.jpcb.3c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Nicotinamide adenine dinucleotide (NADH) is an important enzyme cofactor with emissive properties that allow it to be used in fluorescence microscopies to study cell metabolism. Its oxidized form NAD+, on the other hand, is considered to produce negligible fluorescence. In this contribution, we describe the photophysics of the isolated nicotinamidic system in both its reduced and oxidized states. This was achieved through the study of model molecules that do not carry the adenine nucleotide since its absorbance would overlap with the absorption spectrum of the nicotinamidic chromophores. We studied three model molecules: nicotinamide (niacinamide, an oxidized form without nitrogen substitution), the oxidized chromophore 1-benzyl-3-carbamoyl-pyridinium bromide (NBzOx), and its reduced form 1-benzyl-1,4-dihydronicotinamide (NBz). For a full understanding of the dynamics, we performed both femtosecond-resolved emission and transient absorption experiments. The oxidized systems, nicotinamide and NBzOx, have similar photophysics, where the originally excited bright state decays on an ultrafast timescale of less than 400 fs. The depopulation of this state is followed by excited-state positive absorption signals, which evolve in two timescales: the first one is from 1 to a few picoseconds and is followed by a second decaying component of 480 ps for nicotinamide in water and of 80-90 ps for nicotinamide in methanol and NBzOx in aqueous solution. The long decay times are assigned as the S1 lifetimes populated from the original higher-lying bright singlet, where this state is nonemissive but can be detected by transient absorption. While for NBzOx in aqueous solution and for nicotinamide in methanol, the S1 signal decays to the solvent-only level, for the aqueous solutions of nicotinamide, a small transient absorption signal remains after the 480 ps decay. This residual signal was assigned to a small population of triplet states formed during the slower S1 decay for nicotinamide in water. The experimental results were complemented by XMS-CASPT2 calculations, which reveal that in the oxidized forms, the rapid evolution of the initial π-π* state is due to a direct crossing with lower-energy dark n-π* singlet states. This coincides with the experimental observation of long-lived nonemissive states (80 to 480 ps depending on the system). On the other hand, the reduced model compound NBz has a long-lived emissive π-π* S1 state, which decays with a 510 ps time constant, similarly to the parent compound NADH. This is consistent with the XMS-CASPT2 calculations, which show that for the reduced chromophore, the dark states lie at higher energies than the bright π-π* S1 state.
Collapse
Affiliation(s)
- Mariana M Reza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Durán-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Beatriz González-Cano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Jara-Cortés
- Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63155, México
| | - Rafael López-Arteaga
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Andrea Cadena-Caicedo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Leonardo Muñoz-Rugeles
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| | - Jesús Hernández-Trujillo
- Departamento de Física y Química Teórica, Facultad de Química, UNAM, Ciudad de México 04510, México
| | - Jorge Peon
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
8
|
Michaelian K. The Non-Equilibrium Thermodynamics of Natural Selection: From Molecules to the Biosphere. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1059. [PMID: 37510006 PMCID: PMC10378079 DOI: 10.3390/e25071059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Evolutionary theory suggests that the origin, persistence, and evolution of biology is driven by the "natural selection" of characteristics improving the differential reproductive success of the organism in the given environment. The theory, however, lacks physical foundation, and, therefore, at best, can only be considered a heuristic narrative, of some utility for assimilating the biological and paleontological data at the level of the organism. On deeper analysis, it becomes apparent that this narrative is plagued with problems and paradoxes. Alternatively, non-equilibrium thermodynamic theory, derived from physical law, provides a physical foundation for describing material interaction with its environment at all scales. Here we describe a "natural thermodynamic selection" of characteristics of structures (or processes), based stochastically on increases in the global rate of dissipation of the prevailing solar spectrum. Different mechanisms of thermodynamic selection are delineated for the different biotic-abiotic levels, from the molecular level at the origin of life, up to the level of the present biosphere with non-linear coupling of biotic and abiotic processes. At the levels of the organism and the biosphere, the non-equilibrium thermodynamic description of evolution resembles, respectively, the Darwinian and Gaia descriptions, although the underlying mechanisms and the objective function of selection are fundamentally very different.
Collapse
Affiliation(s)
- Karo Michaelian
- Department of Nuclear Physics and Application of Radiation, Instituto de Física, Universidad Nacional Autónoma de México, Circuito Interior de la Investigación Científica, Ciudad Universitaria, Mexico City C.P. 04510, Mexico
| |
Collapse
|
9
|
Hartweg S, Hochlaf M, Garcia GA, Nahon L. Photoionization Dynamics and Proton Transfer within the Adenine-Thymine Nucleobase Pair. J Phys Chem Lett 2023; 14:3698-3705. [PMID: 37040591 DOI: 10.1021/acs.jpclett.3c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Studying the stability of hydrogen-bonded nucleobase pairs, at the heart of the genetic code, is of utmost importance for an in-depth understanding of basic mechanisms of life and biomolecular evolution. We present here a VUV single photon ionization dynamic study of the nucleobase pair adenine-thymine (AT), revealing its ionization and dissociative ionization thresholds via double imaging electron/ion coincidence spectroscopy. The experimental data, consisting of cluster mass-resolved threshold photoelectron spectra and photon energy-dependent ion kinetic energy release distributions, allow the unambiguous distinction of the dissociation of AT into protonated adenine AH+ and a dehydrogenated thymine radical T(-H) from dissociative ionization processes of other nucleobase clusters. Comparison to high-level ab initio calculations indicates that our experimental observations can be explained by a single hydrogen-bonded conformer present in our molecular beam and allows the estimation of an upper limit of the barrier of the proton transfer in the ionized AT pair.
Collapse
Affiliation(s)
- Sebastian Hartweg
- Synchrotron Soleil, L'Orme des Merisiers, Départementale 128, 91190 St Aubin, France
- University of Freiburg, Institute of Physics, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/IMSE, 5 Bd Descartes, 77454 Champs sur Marne, France
| | - Gustavo A Garcia
- Synchrotron Soleil, L'Orme des Merisiers, Départementale 128, 91190 St Aubin, France
| | - Laurent Nahon
- Synchrotron Soleil, L'Orme des Merisiers, Départementale 128, 91190 St Aubin, France
| |
Collapse
|
10
|
Chang XP, Zhao G, Zhang TS, Xie BB. Quantum mechanics/molecular mechanics studies on mechanistic photophysics of cytosine aza-analogues: 2,4-diamino-1,3,5-triazine and 2-amino-1,3,5-triazine in aqueous solution. Phys Chem Chem Phys 2023; 25:7669-7680. [PMID: 36857660 DOI: 10.1039/d2cp05639a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The excited-state properties and photophysics of cytosine aza-analogues, i.e., 2,4-diamino-1,3,5-triazine (2,4-DT) and 2-amino-1,3,5-triazine (2-AT) in solution have been systematically explored using the QM(MS-CASPT2//CASSCF)/MM approach. The excited-state nonradiative relaxation mechanisms for the initially photoexcited S1(ππ*) state decay back to the S0 state are proposed in terms of the present computed minima, surface crossings (conical intersections and singlet-triplet crossings), and excited-state decay paths in the S1, S2, T1, T2, and S0 states. Upon photoexcitation to the bright S1(ππ*) state, 2,4-DT quickly relaxes to its S1 minimum and then overcomes a small energy barrier of 5.1 kcal mol-1 to approach a S1/S0 conical intersection, where the S1 system hops to the S0 state through S1 → S0 internal conversion (IC). In addition, at the S1 minimum, the system could partially undergo intersystem crossing (ISC) to the T1 state, followed by further ISC to the S0 state via the T1/S0 crossing point. In the T1 state, an energy barrier of 7.9 kcal mol-1 will trap 2,4-DT for a while. In parallel, for 2-AT, the system first relaxes to the S1 minimum and then S1 → S0 IC or S1 → T1 → S0 ISCs take place to the S0 state by surmounting a large barrier of 15.3 kcal mol-1 or 11.9 kcal mol-1, respectively, which heavily suppress electronic transition to the S0 state. Different from 2,4-DT, upon photoexcitation in the Franck-Condon region, 2-AT can quickly evolve in an essentially barrierless manner to nearby S2/S1 conical intersection, where the S2 and T1 states can be populated. Once it hops to the S2 state, the system will overcome a relatively small barrier (6.6 kcal mol-1vs. 15.3 kcal mol-1) through IC to the S0 state. Similarly, an energy barrier of 11.9 kcal mol-1 heavily suppresses the T1 state transformation to the S0 state. The present work manifests that the amination/deamination of the triazine rings can affect some degree of different vertical and adiabatic excitation energies and nonradiative decay pathways in solution. It not only rationalizes excited-state decay dynamics of 2,4-DT and 2-AT in aqueous solution but could also provide insights into the understanding of the photophysics of aza-nucleobases.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Geng Zhao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin-Bin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| |
Collapse
|
11
|
Camiruaga A, Usabiaga I, Pinillos P, Basterretxea FJ, Fernández JA, Martínez R. Aggregation of nucleobases and metabolites: Adenine-theobromine trimers. J Chem Phys 2023; 158:064304. [PMID: 36792500 DOI: 10.1063/5.0137717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The selection of cytosine, guanine, thymine, and adenine as components of the information biopolymers was a complex process influenced by several factors. Among them, the intermolecular interactions may have played a determinant role. Thus, a deep understanding of the intermolecular interactions between nucleobases and other prebiotic molecules may help understand the first instants of chemical evolution. Following this hypothesis, we present here a combined spectroscopic and computational study of theobromine2-adenine and thebromine-adenine2 trimers. While adenine is a nucleobase, theobromine was probably part of the prebiotic chemistry. The trimers were formed in jets and probed by a combination of UV and IR spectroscopic techniques. The spectra were interpreted in light of the predictions obtained using density-functional methods. The results suggest the existence of a subtle balance between formation of hydrogen bonds and π-π interactions. Thus, while theobromine2-adenine tends to form complex in stacked structures, theobromine-adenine2 prefers formation of planar structures, maximizing the interaction by hydrogen bonds. The small energy difference between planar and stacked structures highlights the importance of accurately modeling the dispersion forces in the functionals to produce reliable predictions.
Collapse
Affiliation(s)
- Ander Camiruaga
- Faculty of Science and Technology, Department of Physical Chemistry, University of the Basque Country (UPV/EHU), B Sarriena S/N, Leioa 48940, Spain
| | - Imanol Usabiaga
- Faculty of Science and Technology, Department of Physical Chemistry, University of the Basque Country (UPV/EHU), B Sarriena S/N, Leioa 48940, Spain
| | - Paul Pinillos
- Faculty of Science and Technology, Department of Physical Chemistry, University of the Basque Country (UPV/EHU), B Sarriena S/N, Leioa 48940, Spain
| | - Francisco J Basterretxea
- Faculty of Science and Technology, Department of Physical Chemistry, University of the Basque Country (UPV/EHU), B Sarriena S/N, Leioa 48940, Spain
| | - José A Fernández
- Faculty of Science and Technology, Department of Physical Chemistry, University of the Basque Country (UPV/EHU), B Sarriena S/N, Leioa 48940, Spain
| | - Rodrigo Martínez
- Faculty of Science and Technology, Department of Chemistry, Univ. of La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| |
Collapse
|
12
|
Bertram L, Roberts SJ, Powner MW, Szabla R. Photochemistry of 2-thiooxazole: a plausible prebiotic precursor to RNA nucleotides. Phys Chem Chem Phys 2022; 24:21406-21416. [PMID: 36047336 PMCID: PMC7613695 DOI: 10.1039/d2cp03167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potentially prebiotic chemical reactions leading to RNA nucleotides involve periods of UV irradiation, which are necessary to promote selectivity and destroy biologially irrelevant side products. Nevertheless, UV light has only been applied to promote specific stages of prebiotic reactions and its effect on complete prebiotic reaction sequences has not been extensively studied. Here, we report on an experimental and computational investigation of the photostability of 2-thiooxazole (2-TO), a potential precursor of pyrimidine and 8-oxopurine nucleotides on early Earth. Our UV-irradiation experiments resulted in rapid decomposition of 2-TO into unidentified small molecule photoproducts. We further clarify the underlying photochemistry by means of accurate ab initio calculations and surface hopping molecular dynamics simulations. Overall, the computational results show efficient rupture of the aromatic ring upon the photoexcitation of 2-TO via breaking of the C-O bond. Consequently, the initial stage of the divergent prebiotic synthesis of pyrimidine and 8-oxopurine nucleotides would require periodic shielding from UV light either with sun screening chromophores or through a planetary scenario that would protect 2-TO until it is transformed into a more stable intermediate compound, e.g. oxazolidinone thione.
Collapse
Affiliation(s)
- Lauren Bertram
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Samuel J Roberts
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Matthew W Powner
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Rafał Szabla
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
13
|
Dziuba D. Environmentally sensitive fluorescent nucleoside analogues as probes for nucleic acid - protein interactions: molecular design and biosensing applications. Methods Appl Fluoresc 2022; 10. [PMID: 35738250 DOI: 10.1088/2050-6120/ac7bd8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are indispensable in studying the interactions of nucleic acids with nucleic acid-binding proteins. By replacing one of the poorly emissive natural nucleosides, FNAs enable real-time optical monitoring of the binding interactions in solutions, under physiologically relevant conditions, with high sensitivity. Besides that, FNAs are widely used to probe conformational dynamics of biomolecular complexes using time-resolved fluorescence methods. Because of that, FNAs are tools of high utility for fundamental biological research, with potential applications in molecular diagnostics and drug discovery. Here I review the structural and physical factors that can be used for the conversion of the molecular binding events into a detectable fluorescence output. Typical environmentally sensitive FNAs, their properties and applications, and future challenges in the field are discussed.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden, Grand Est, 67401, FRANCE
| |
Collapse
|
14
|
Fedotov DA, Paul AC, Koch H, Santoro F, Coriani S, Improta R. Excited state absorption of DNA bases in the gas phase and in chloroform solution: a comparative quantum mechanical study. Phys Chem Chem Phys 2022; 24:4987-5000. [PMID: 35142309 DOI: 10.1039/d1cp04340d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We study the excited state absorption (ESA) properties of the four DNA bases (thymine, cytosine, adenine, and guanine) by different single reference quantum mechanical methods, namely, equation of motion coupled cluster singles and doubles (EOM-CCSD), singles, doubles and perturbative triples (EOM-CC3), and time-dependent density functional theory (TD-DFT), with the long-range corrected CAM-B3LYP functional. Preliminary results at the Tamm-Dancoff (TDA) CAM-B3LYP level using the maximum overlap method (MOM) are reported for thymine. In the gas phase, the three methods predict similar One Photon Absorption (OPA) spectra, which are consistent with the experimental results and with the most accurate computational studies available in the literature. The ESA spectra are then computed for the ππ* states (one for pyrimidine, two for purines) associated with the lowest-energy absorption band, and for the close-lying nπ* state. The EOM-CC3, EOM-CCSD and CAM-B3LYP methods provide similar ESA spectral patterns, which are also in qualitative agreement with literature RASPT2 results. Once validated in the gas phase, TD-CAM-B3LYP has been used to compute the ESA in chloroform, including solvent effects by the polarizable continuum model (PCM). The predicted OPA and ESA spectra in chloroform are very similar to those in the gas phase, most of the bands shifting by less than 0.1 eV, with a small increase of the intensities and a moderate destabilization of the nπ* state. Finally, ESA spectra have been computed from the minima of the lowest energy ππ* state, and found in line with the available experimental transient absorption spectra of the nucleosides in solution, providing further validation of our computational approach.
Collapse
Affiliation(s)
- Daniil A Fedotov
- DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Alexander C Paul
- Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway.,Scuola Normale Superiore, Piazza dei Cavalieri, 7, I-56126, Pisa, Italy.
| | - Fabrizio Santoro
- Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Area della Ricerca del CNR, I-56124 Pisa, Italy.
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. .,Department of Chemistry, NTNU - Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini-CNR, I-80134 Napoli, Italy.
| |
Collapse
|
15
|
Ortín-Fernández J, González-Vázquez J, Martínez-Fernández L, Corral I. Molecular Identification of the Transient Species Mediating the Deactivation Dynamics of Solvated Guanosine and Deazaguanosine. Molecules 2022; 27:989. [PMID: 35164254 PMCID: PMC8839017 DOI: 10.3390/molecules27030989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Small structural alterations of the purine/pyrimidine core have been related to important photophysical changes, such as the loss of photostability. Similarly to canonical nucleobases, solute-solvent interactions can lead to a change in the excited state lifetimes and/or to the interplay of different states in the photophysics of these modified nucleobases. To shed light on both effects, we here report a complete picture of the absorption spectra and excited state deactivation of deoxyguanosine and its closely related derivative, deoxydeazaguanosine, in water and methanol through the mapping of the excited state potential energy surfaces and molecular dynamics simulations at the TD-DFT level of theory. We show that the N by CH exchange in the imidazole ring of deoxyguanosine translates into a small red-shift of the bright states and slightly faster dynamics. In contrast, changing solvent from water to methanol implies the opposite, i.e., that the deactivation of both systems to the ground state is significantly hindered.
Collapse
Affiliation(s)
- Javier Ortín-Fernández
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (J.O.-F.); (J.G.-V.)
| | - Jesús González-Vázquez
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (J.O.-F.); (J.G.-V.)
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lara Martínez-Fernández
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (J.O.-F.); (J.G.-V.)
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Inés Corral
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (J.O.-F.); (J.G.-V.)
- Institute for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
16
|
Brand C, Schmitt M. Vibronic coupling in serotonin studied by rotationally resolved electronic spectroscopy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Bende A, Farcaş AA, Toşa V. Theoretical Study of Light-Induced Crosslinking Reaction Between Pyrimidine DNA Bases and Aromatic Amino Acids. Front Bioeng Biotechnol 2022; 9:806415. [PMID: 35111737 PMCID: PMC8801568 DOI: 10.3389/fbioe.2021.806415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Low-lying electronic excited states and their relaxation pathways as well as energetics of the crosslinking reaction between uracil as a model system for pyrimidine-type building blocks of DNA and RNA and benzene as a model system for aromatic groups of tyrosine (Tyr) and phenylalanine (Phe) amino acids have been studied in the framework of density functional theory. The equilibrium geometries of the ground and electronic excited states as well as the crossing points between the potential energy surfaces of the uracil–benzene complex were computed. Based on these results, different relaxation pathways of the electronic excited states that lead to either back to the initial geometry configuration or the dimerization between the six-membered rings of the uracil–benzene complex have been identified, and the energetic conditions for their occurrence are discussed. It can be concluded that the DNA–protein crosslinking reaction can be induced by the external electromagnetic field via the dimerization reaction between the six-membered rings of the uracil–benzene pair at the electronic excited-state level of the complex. In the case of the uracil–phenol complex, the configuration of the cyclic adduct (dimerized) conformation is less likely to be formed.
Collapse
Affiliation(s)
- Attila Bende
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- *Correspondence: Attila Bende,
| | - Alex-Adrian Farcaş
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Valer Toşa
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Shachar A, Kallos I, de Vries MS, Bar I. Revealing the Structure and Noncovalent Interactions of Isolated Molecules by Laser-Desorption/Ionization-Loss Stimulated Raman Spectroscopy and Quantum Calculations. J Phys Chem Lett 2021; 12:11273-11279. [PMID: 34767362 DOI: 10.1021/acs.jpclett.1c03336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The structural and dynamical characteristics of isolated molecules are essential, yet obtaining this information is difficult. We demonstrate laser-desorption jet-cooling/ionization-loss stimulated Raman spectroscopy to obtain Raman spectral signatures of nonvolatile molecules in the gas phase. The vibrational features of a test substance, the most abundant conformer of tryptamine, are compared and found to match those resulting from the scaled harmonic Raman spectrum obtained by density functional theory calculations. The vibrational signatures serve to identify the most prominent gauche conformer and evaluate its predicted electronic structure. These findings, together with noncovalent interaction (NCI) analysis, provide new insights into electron densities and reduced density gradients, assessing the hydrogen bonds (N-H···π and C-H···H-C) and interplay between attractive and repulsive NCIs affecting the structure. This approach accesses vibrational signatures of isolated nonvolatile molecules by tabletop lasers at uniform resolution and in a broad frequency range, promising great benefit to future studies.
Collapse
Affiliation(s)
- Afik Shachar
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Itai Kallos
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Mattanjah S de Vries
- Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Ilana Bar
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
19
|
Dong G, Hu Z, Sun X, Dong H. Structural Reconstruction of Optically Invisible State in a Single Molecule via Scanning Tunneling Microscope. J Phys Chem Lett 2021; 12:10034-10039. [PMID: 34623159 DOI: 10.1021/acs.jpclett.1c02808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular dark states, participating in various energy- and electron-transfer processes, are typically beyond direct optical-spectroscopic measurements because of the forbidden transition dictated by the selection rule. In this work, we demonstrate a direct profile of the dark-state transition density of a single molecule on the subnanometer scale by using a scanning tunneling microscope. Our method allows one to resolve the four-lobe configuration in a 1 nm region for the example molecule. The current proposal will bring about a new methodology to study the single-molecule properties in electro-optical devices and light-assisted biological processes.
Collapse
Affiliation(s)
- Guohui Dong
- Graduate School of China Academy of Engineering Physics, Beijing 100084, China
- School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China
| | - Zhubin Hu
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Division of Arts and Sciences, NYU Shanghai, Shanghai 200122, China
| | - Xiang Sun
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, United States
- Division of Arts and Sciences, NYU Shanghai, Shanghai 200122, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, Beijing 100084, China
| |
Collapse
|
20
|
Yu XF, Fu TH, Xiao B, Yu HY, Li Q. A theoretical study on the excited-state deactivation paths for the A-5FU dimer. Phys Chem Chem Phys 2021; 23:16089-16106. [PMID: 34291779 DOI: 10.1039/d1cp00030f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The photostability of DNA plays a key role in the normal function of organisms. A-5FU is a base pair derivative of the A-T dimer where the methyl group is replaced by a F atom. Here, accurate static TDDFT calculations and non-adiabatic dynamic simulations are used to systematically investigate the excited-state decay paths of the A-5FU dimer related to the proton transfer and the out-of-plane twisting deformation motion of A and 5FU in the 1ππ* and 1nπ* states. CC2 is used to check the accuracy of the current TDDFT calculations. Our results show that the deformation of the C[double bond, length as m-dash]C or C[double bond, length as m-dash]N double bond in A and 5FU provides an efficient pathway for the depopulation of the lowest excited states, which can compete with the excited-state proton transfer paths in the dimer. This finding indicates that monomer-like decay paths could be important for the photostability of weakly hydrogen-bonded DNA base pairs and provide a new insight into the excited-state decay paths in base pairs and their analogues.
Collapse
Affiliation(s)
- Xue-Fang Yu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | | | | | | | | |
Collapse
|
21
|
Asmussen JD, Michiels R, Dulitz K, Ngai A, Bangert U, Barranco M, Binz M, Bruder L, Danailov M, Di Fraia M, Eloranta J, Feifel R, Giannessi L, Pi M, Plekan O, Prince KC, Squibb RJ, Uhl D, Wituschek A, Zangrando M, Callegari C, Stienkemeier F, Mudrich M. Unravelling the full relaxation dynamics of superexcited helium nanodroplets. Phys Chem Chem Phys 2021; 23:15138-15149. [PMID: 34259254 DOI: 10.1039/d1cp01041g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relaxation dynamics of superexcited superfluid He nanodroplets is thoroughly investigated by means of extreme-ultraviolet (XUV) femtosecond electron and ion spectroscopy complemented by time-dependent density functional theory (TDDFT). Three main paths leading to the emission of electrons and ions are identified: droplet autoionization, pump-probe photoionization, and autoionization induced by re-excitation of droplets relaxing into levels below the droplet ionization threshold. The most abundant product ions are He2+, generated by droplet autoionization and by photoionization of droplet-bound excited He atoms. He+ appear with some pump-probe delay as a result of the ejection He atoms in their lowest excited states from the droplets. The state-resolved time-dependent photoelectron spectra reveal that intermediate excited states of the droplets are populated in the course of the relaxation, terminating in the lowest-lying metastable singlet and triplet He atomic states. The slightly faster relaxation of the triplet state compared to the singlet state is in agreement with the simulation showing faster formation of a bubble around a He atom in the triplet state.
Collapse
Affiliation(s)
- Jakob D Asmussen
- Department of Physics and Astronomy, Aarhus University, Denmark.
| | | | - Katrin Dulitz
- Institute of Physics, University of Freiburg, Germany
| | - Aaron Ngai
- Institute of Physics, University of Freiburg, Germany
| | | | - Manuel Barranco
- Departament FQA, Facultat de Física, Universitat de Barcelona, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Marcel Binz
- Institute of Physics, University of Freiburg, Germany
| | - Lukas Bruder
- Institute of Physics, University of Freiburg, Germany
| | | | | | - Jussi Eloranta
- Department of Chemistry and Biochemistry, California State University at Northridge, Northridge, CA 91330, USA
| | | | - Luca Giannessi
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Marti Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Spain and Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Oksana Plekan
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | - Kevin C Prince
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | | | - Daniel Uhl
- Institute of Physics, University of Freiburg, Germany
| | | | - Marco Zangrando
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain and CNR-IOM, Elettra-Sincrotrone Trieste S.C.p.A., Italy
| | - Carlo Callegari
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain
| | | | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, Denmark.
| |
Collapse
|
22
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
23
|
Castellani ME, Avagliano D, Verlet JRR. Ultrafast Dynamics of the Isolated Adenosine-5'-triphosphate Dianion Probed by Time-Resolved Photoelectron Imaging. J Phys Chem A 2021; 125:3646-3652. [PMID: 33882670 DOI: 10.1021/acs.jpca.1c01646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The excited state dynamics of the doubly deprotonated dianion of adenosine-5'-triphosphate, [ATP-H2]2-, has been spectroscopically explored by time-resolved photoelectron spectroscopy following excitation at 4.66 eV. Time-resolved photoelectron spectra show that two competing processes occur for the initially populated 1ππ* state. The first is rapid electron emission by tunneling through a repulsive Coulomb barrier as the 1ππ* state is a resonance. The second is nuclear motion on the 1ππ* state surface leading to an intermediate that no longer tunnels and subsequently decays by internal conversion to the ground electronic state. The spectral signatures of the features are similar to those observed for other adenine-derivatives, suggesting that this nucleobase is quite insensitive to the nearby negative charges localized on the phosphates, except of course for the appearance of the additional electron tunneling channel, which is open in the dianion.
Collapse
Affiliation(s)
| | - Davide Avagliano
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17 1090 Vienna, Austria
| | - Jan R R Verlet
- Department of Chemistry, Durham University, DH1 3LE Durham, U.K
| |
Collapse
|
24
|
Milovanović B, Novak J, Etinski M, Domcke W, Došlić N. Simulation of UV absorption spectra and relaxation dynamics of uracil and uracil-water clusters. Phys Chem Chem Phys 2021; 23:2594-2604. [PMID: 33475644 DOI: 10.1039/d0cp05618a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite many studies, the mechanisms of nonradiative relaxation of uracil in the gas phase and in aqueous solution are still not fully resolved. Here we combine theoretical UV absorption spectroscopy with nonadiabatic dynamics simulations to identify the photophysical mechanisms that can give rise to experimentally observed decay time constants. We first compute and theoretically assign the electronic spectra of uracil using the second-order algebraic-diagrammatic-construction (ADC(2)) method. The obtained electronic states, their energy differences and state-specific solvation effects are the prerequisites for understanding the photodynamics. We then use nonadiabatic trajectory-surface-hopping dynamics simulations to investigate the photoinduced dynamics of uracil and uracil-water clusters. In contrast to previous studies, we found that a single mechanism - the ethylenic twist around the C[double bond, length as m-dash]C bond - is responsible for the ultrafast component of the nonradiative decay, both in the gas phase and in solution. Very good agreement with the experimentally determined ultrashort decay time constants is obtained.
Collapse
Affiliation(s)
| | - Jurica Novak
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia. and Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia
| | - Mihajlo Etinski
- University of Belgrade, Faculty of Physical Chemistry, Belgrade, Serbia
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Nađa Došlić
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
25
|
Shahrokh L, Omidyan R, Azimi G. Theoretical insights on the excited-state-deactivation mechanisms of protonated thymine and cytosine. Phys Chem Chem Phys 2021; 23:8916-8925. [PMID: 33876051 DOI: 10.1039/d0cp06673g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ab initio and surface-hopping nonadiabatic dynamics simulation methods were employed to investigate relaxation mechanisms in protonated thymine (TH+) and cytosine (CH+). A few conical intersections were located between 1ππ* and S0 states for each system with the CASSCF (8,8) theoretical model and relevant contributions to the deactivation mechanism of titled systems were addressed by the determination of potential energy profiles at the CASPT2 (12,10) theoretical level. It was revealed that the relaxation of the 1ππ* state of the most stable conformer of both systems to the ground state is mostly governed by the accessible S1/S0 conical intersection resulting from the barrier-free out-of-plane deformation. Interestingly, it was exhibited that the ring puckering coordinate driven from the C6 position of the heterocycle ring in TH+ and CH+ plays the most prominent role in the deactivation mechanism of considered systems. Our ab initio results are also supported by excited-state nonadiabatic dynamics simulations based on ADC(2), describing the ultrashort S1 lifetime of TH+/CH+ by analyzing trajectories leading excited systems to the ground. It was confirmed that the excited-state population mostly relaxes to the ground via the ring puckering coordinate from the C6 moiety. Overall, the theoretical results of this study shed light on the deactivation mechanism of protonated DNA bases.
Collapse
Affiliation(s)
- Leila Shahrokh
- Department of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran.
| | | | | |
Collapse
|
26
|
Green JA, Jouybari MY, Aranda D, Improta R, Santoro F. Nonadiabatic Absorption Spectra and Ultrafast Dynamics of DNA and RNA Photoexcited Nucleobases. Molecules 2021; 26:1743. [PMID: 33804640 PMCID: PMC8003674 DOI: 10.3390/molecules26061743] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 11/16/2022] Open
Abstract
We have recently proposed a protocol for Quantum Dynamics (QD) calculations, which is based on a parameterisation of Linear Vibronic Coupling (LVC) Hamiltonians with Time Dependent (TD) Density Functional Theory (TD-DFT), and exploits the latest developments in multiconfigurational TD-Hartree methods for an effective wave packet propagation. In this contribution we explore the potentialities of this approach to compute nonadiabatic vibronic spectra and ultrafast dynamics, by applying it to the five nucleobases present in DNA and RNA. For all of them we computed the absorption spectra and the dynamics of ultrafast internal conversion (100 fs timescale), fully coupling the first 2-3 bright states and all the close by dark states, for a total of 6-9 states, and including all the normal coordinates. We adopted two different functionals, CAM-B3LYP and PBE0, and tested the effect of the basis set. Computed spectra are in good agreement with the available experimental data, remarkably improving over pure electronic computations, but also with respect to vibronic spectra obtained neglecting inter-state couplings. Our QD simulations indicate an effective population transfer from the lowest energy bright excited states to the close-lying dark excited states for uracil, thymine and adenine. Dynamics from higher-energy states show an ultrafast depopulation toward the more stable ones. The proposed protocol is sufficiently general and automatic to promise to become useful for widespread applications.
Collapse
Affiliation(s)
- James A. Green
- CNR—Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via Mezzocannone 16, I-80136 Napoli, Italy;
| | - Martha Yaghoubi Jouybari
- CNR—Consiglio Nazionale Delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area Della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy; (M.Y.J.); (D.A.)
| | - Daniel Aranda
- CNR—Consiglio Nazionale Delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area Della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy; (M.Y.J.); (D.A.)
| | - Roberto Improta
- CNR—Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via Mezzocannone 16, I-80136 Napoli, Italy;
| | - Fabrizio Santoro
- CNR—Consiglio Nazionale Delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area Della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy; (M.Y.J.); (D.A.)
| |
Collapse
|
27
|
Chan RCT, Chan CTL, Ma C, Gu KY, Xie HX, Wong AKW, Xiong QW, Wang ML, Kwok WM. Long living excited state of protonated adenosine unveiled by ultrafast fluorescence spectroscopy and density functional theoretical study. Phys Chem Chem Phys 2021; 23:6472-6480. [PMID: 33729247 DOI: 10.1039/d0cp06439d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenosine (Ado) possesses ultrafast nonradiative dynamics accounting for its remarkably high photostability. The deactivation dynamics of Ado after protonation in an aqueous solution remains an elusive issue. Herein we report an investigation of the excited state dynamics of protonated Ado (AdoH+) performed using ultrafast time-resolved fluorescence spectroscopy combined with density functional theoretical calculation. The result obtained from comparison of conformers with protonation at different sites revealed that the syn-conformer with protonation occurring at the N3 position (syn-N3) is the predominant form of AdoH+ in the ground state, similar to that of Ado. In contrast, the fluorescence of AdoH+ with maximum intensity at 385 nm, significantly red-shifted from that of Ado, displaying decay dynamics composed of an ultrafast component with the lifetime of ∼0.5 ps and a slower one of ∼2.9 ns. The former is because of the decay of the syn-N3 conformer, similar to that reported for AdoH+ under the gas phase condition. The latter is due to the syn-N1 conformer formed via ultrafast proton transfer of the syn-N3. The excited state of syn-N1 has a peculiar nonplanar conformation over the purine molecule, which is responsible for the substantial Stokes shift showed in the fluorescence spectrum and correlates with a large energy barrier for nonradiative decay likely involving a reversed proton transfer. This study demonstrates the importance of protonation and solvent environment in altering dramatically the excited states of Ado, providing insight for better understanding nonradiative dynamics of both the monomeric bases and the oligomeric or polymeric DNAs.
Collapse
Affiliation(s)
- Ruth Chau-Ting Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fresch E, Peruffo N, Trapani M, Cordaro M, Bella G, Castriciano MA, Collini E. The effect of hydrogen bonds on the ultrafast relaxation dynamics of a BODIPY dimer. J Chem Phys 2021; 154:084201. [PMID: 33639732 DOI: 10.1063/5.0038242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The influence of hydrogen bonds (H-bonds) in the structure, dynamics, and functionality of biological and artificial complex systems is the subject of intense investigation. In this broad context, particular attention has recently been focused on the ultrafast H-bond dependent dynamical properties in the electronic excited state because of their potentially dramatic consequences on the mechanism, dynamics, and efficiency of photochemical reactions and photophysical processes of crucial importance for life and technology. Excited-state H-bond dynamics generally occur on ultrafast time scales of hundreds of femtoseconds or less, making the characterization of associated mechanisms particularly challenging with conventional time-resolved techniques. Here, 2D electronic spectroscopy is exploited to shed light on this still largely unexplored dynamic mechanism. An H-bonded molecular dimer prepared by self-assembly of two boron-dipyrromethene dyes has been specifically designed and synthesized for this aim. The obtained results confirm that upon formation of H-bonds and the dimer, a new ultrafast relaxation channel is activated in the ultrafast dynamics, mediated by the vibrational motions of the hydrogen donor and acceptor groups. This relaxation channel also involves, beyond intra-molecular relaxations, an inter-molecular transfer process. This is particularly significant considering the long distance between the centers of mass of the two molecules. These findings suggest that the design of H-bonded structures is a particularly powerful tool to drive the ultrafast dynamics in complex materials.
Collapse
Affiliation(s)
- Elisa Fresch
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Nicola Peruffo
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Massimiliano Cordaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Bella
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Maria Angela Castriciano
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, V.le F. Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Elisabetta Collini
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
29
|
Rankine CD. Ultrafast excited-state dynamics of promising nucleobase ancestor 2,4,6-triaminopyrimidine. Phys Chem Chem Phys 2021; 23:4007-4017. [PMID: 33554987 DOI: 10.1039/d0cp05609j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultrafast excited-state dynamics of 2,4,6-triaminopyrimidine - thought to be a promising candidate for a proto-RNA nucleobase - have been investigated via static multireference quantum-chemical calculations and mixed-quantum-classical/trajectory surface-hopping dynamics with a focus on the lowest-lying electronic states of the singlet manifold and with a view towards understanding the UV(C)/UV(B) photostability of the molecule. Ultrafast internal conversion channels have been identified that connect the lowest-lying ππ* electronically-excited state of 2,4,6-triaminopyrimidine with the ground electronic state, and non-radiative decay has been observed to take place on the picosecond timescale via a ππ* out-of-plane NH2 ("oop-NH2") minimum-energy crossing point. The short excited-state lifetime is competitive with the excited-state lifetimes of the canonical pyrimidine nucleobases, affirming the promise of 2,4,6-triaminopyrimidine as an ancestor. Evidence for energy-dependent excited-state dynamics is presented, and the open question of intersystem crossing is discussed speculatively.
Collapse
Affiliation(s)
- Conor D Rankine
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
30
|
The Dissipative Photochemical Origin of Life: UVC Abiogenesis of Adenine. ENTROPY 2021; 23:e23020217. [PMID: 33579010 PMCID: PMC7916814 DOI: 10.3390/e23020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 11/21/2022]
Abstract
The non-equilibrium thermodynamics and the photochemical reaction mechanisms are described which may have been involved in the dissipative structuring, proliferation and complexation of the fundamental molecules of life from simpler and more common precursors under the UVC photon flux prevalent at the Earth’s surface at the origin of life. Dissipative structuring of the fundamental molecules is evidenced by their strong and broad wavelength absorption bands in the UVC and rapid radiationless deexcitation. Proliferation arises from the auto- and cross-catalytic nature of the intermediate products. Inherent non-linearity gives rise to numerous stationary states permitting the system to evolve, on amplification of a fluctuation, towards concentration profiles providing generally greater photon dissipation through a thermodynamic selection of dissipative efficacy. An example is given of photochemical dissipative abiogenesis of adenine from the precursor HCN in water solvent within a fatty acid vesicle floating on a hot ocean surface and driven far from equilibrium by the incident UVC light. The kinetic equations for the photochemical reactions with diffusion are resolved under different environmental conditions and the results analyzed within the framework of non-linear Classical Irreversible Thermodynamic theory.
Collapse
|
31
|
Chatterjee K, Dopfer O. Spectroscopic identification of fragment ions of DNA/RNA building blocks: the case of pyrimidine. Phys Chem Chem Phys 2020; 22:17275-17290. [PMID: 32685941 DOI: 10.1039/d0cp02919j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pyrimidine (Pym, 1,3-diazine, 1,3-diazabenzene) is an important N-heterocyclic building block of nucleobases. Understanding the structures of its fragment and precursor ions provides insight into its prebiotic and abiotic synthetic route. The long-standing controversial debate about the structures of the primary fragment ions of the Pym+ cation (C4H4N2+, m/z 80) resulting from loss of HCN, C3H3N+ (m/z 53), is closed herein with the aid of a combined approach utilizing infrared photodissociation (IRPD) spectroscopy in the CH and NH stretch ranges (νCH/NH) and density functional theory (DFT) calculations. IRPD spectra of cold Ar/N2-tagged fragment ions reveal that the C3H3N+ population is dominated by cis-/trans-HCCHNCH+ ions (∼90%) along with a minor contribution of the most stable H2CCCNH+ and cis-/trans-HCCHCNH+ isomers (∼10%). We also spectroscopically confirm that the secondary fragment resulting from further loss of HCN, C2H2+ (m/z 26), is the acetylene cation (HCCH+). The spectroscopic characterization of the identified C3H3N+ isomers and their hydrogen-bonded dimers with Ar and N2 provides insight into the acidity of their CH and NH groups. Finally, the vibrational properties of Pym+ in the 3 μm range are probed by IRPD of Pym+-(N2)1-2 clusters, which shows a high π-binding affinity of Pym+ toward a nonpolar hydrophobic ligand. Its νCH spectrum confirms the different acidity of the three nonequivalent CH groups.
Collapse
Affiliation(s)
- Kuntal Chatterjee
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
32
|
Observation of Enhanced Dissociative Photochemistry in the Non-Native Nucleobase 2-Thiouracil. Molecules 2020; 25:molecules25143157. [PMID: 32664261 PMCID: PMC7397253 DOI: 10.3390/molecules25143157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
We present the first study to measure the dissociative photochemistry of 2-thiouracil (2-TU), an important nucleobase analogue with applications in molecular biology and pharmacology. Laser photodissociation spectroscopy is applied to the deprotonated and protonated forms of 2-TU, which are produced in the gas-phase using electrospray ionization mass spectrometry. Our results show that the deprotonated form of 2-thiouracil ([2-TU-H]−) decays predominantly by electron ejection and hence concomitant production of the [2-TU-H]· free-radical species, following photoexcitation across the UVA-UVC region. Thiocyanate (SCN−) and a m/z 93 fragment ion are also observed as photodecay products of [2-TU-H]− but at very low intensities. Photoexcitation of protonated 2-thiouracil ([2-TU·H]+) across the same UVA-UVC spectral region produces the m/z 96 cationic fragment as the major photofragment. This ion corresponds to ejection of an HS· radical from the precursor ion and is determined to be a product of direct excited state decay. Fragment ions associated with decay of the hot ground state (i.e., the ions we would expect to observe if 2-thiouracil was behaving like UV-dissipating uracil) are observed as much more minor products. This behaviour is consistent with enhanced intersystem crossing to triplet excited states compared to internal conversion back to the ground state. These are the first experiments to probe the effect of protonation/deprotonation on thionucleobase photochemistry, and hence explore the effect of pH at a molecular level on their photophysical properties.
Collapse
|
33
|
Arpa EM, Brister MM, Hoehn SJ, Crespo-Hernández CE, Corral I. On the Origin of the Photostability of DNA and RNA Monomers: Excited State Relaxation Mechanism of the Pyrimidine Chromophore. J Phys Chem Lett 2020; 11:5156-5161. [PMID: 32501702 DOI: 10.1021/acs.jpclett.0c00935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Today's genetic composition is the result of continual refinement processes on primordial heterocycles present in prebiotic Earth and at least partially regulated by ultraviolet radiation. Femtosecond transient absorption spectroscopy and state-of-the-art ab initio calculations are combined to unravel the electronic relaxation mechanism of pyrimidine, the common chromophore of the nucleobases. The excitation of pyrimidine at 268 nm populates the S1(nπ*) state directly. A fraction of the population intersystem crosses to the triplet manifold within 7.8 ps, partially decaying within 1.5 ns, while another fraction recovers the ground state in >3 ns. The pyrimidine chromophore is not responsible for the photostability of the nucleobases. Instead, C2 and C4 amino and/or carbonyl functionalization is essential for shaping the topography of pyrimidine's potential energy surfaces and results in accessible conical intersections between the initially populated electronic excited state and the ground state.
Collapse
Affiliation(s)
| | - Matthew M Brister
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Sean J Hoehn
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Carlos E Crespo-Hernández
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
34
|
Omidyan R, Abedini F, Shahrokh L, Azimi G. Excited State Deactivation Mechanism in Protonated Uracil: New Insights from Theoretical Studies. J Phys Chem A 2020; 124:5089-5097. [PMID: 32469520 DOI: 10.1021/acs.jpca.0c02284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have conducted here a theoretical exploration, discussing the distinct excited state lifetimes reported experimentally for the two lowest lying protonated isomers of uracil. In this regard, the first-principal computational levels as well as the nonadiabatic surface hopping dynamics have been employed. It has been revealed that relaxation of the 1ππ* state of enol-enol form (EE+) to the ground is barrier-free via out-of-plane coordinates, resulting in an ultrashort S1 lifetime of this species. For the second most stable isomer (EK+), however, a significant barrier predicted in the CASPT2 S1 potential energy profile along the twisting coordinate has been proposed to explain the relevant long lifetime reported experimentally.
Collapse
Affiliation(s)
- Reza Omidyan
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Fatemeh Abedini
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Leila Shahrokh
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Gholamhassan Azimi
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| |
Collapse
|
35
|
|
36
|
Erickson BA, Heim ZN, Pieri E, Liu E, Martinez TJ, Neumark DM. Relaxation Dynamics of Hydrated Thymine, Thymidine, and Thymidine Monophosphate Probed by Liquid Jet Time-Resolved Photoelectron Spectroscopy. J Phys Chem A 2019; 123:10676-10684. [PMID: 31756106 DOI: 10.1021/acs.jpca.9b08258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relaxation dynamics of thymine and its derivatives thymidine and thymidine monophosphate are studied using time-resolved photoelectron spectroscopy applied to a water microjet. Two absorption bands are studied; the first is a bright ππ* state which is populated using tunable-ultraviolet light in the range 4.74-5.17 eV and probed using a 6.20 eV probe pulse. By reversing the order of these pulses, a band containing multiple ππ* states is populated by the 6.20 eV pulse and the lower energy pulse serves as the probe. The lower lying ππ* state is found to decay in ∼400 fs in both thymine and thymidine independent of pump photon energy, while thymidine monophosphate decays vary from 670 to 840 fs with some pump energy dependence. The application of a computational quantum mechanical/molecular mechanical scheme at the XMS-CASPT2//CASSCF/AMBER level of theory suggests that conformational differences existing between thymidine and thymidine monophosphate in solution account for this difference. The higher lying ππ* band is found to decay in ∼600 fs in all three cases, but it is only able to be characterized when the 5.17 eV probe pulse is used. Notably, no long-lived signal from an nπ* state can be identified in either experiment on any of the three molecules.
Collapse
Affiliation(s)
- Blake A Erickson
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Zachary N Heim
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Elisa Pieri
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Erica Liu
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Todd J Martinez
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Daniel M Neumark
- Department of Chemistry , University of California , Berkeley , California 94720 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
37
|
Abedini F, Omidyan R, Salehi M. Theoretical insights on nonradiative deactivation mechanisms of protonated xanthine. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Beć KB, Grabska J, Czarnecki MA, Huck CW, Wójcik MJ, Nakajima T, Ozaki Y. IR Spectra of Crystalline Nucleobases: Combination of Periodic Harmonic Calculations with Anharmonic Corrections Based on Finite Models. J Phys Chem B 2019; 123:10001-10013. [DOI: 10.1021/acs.jpcb.9b06285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krzysztof B. Beć
- Institute of Analytical Chemistry, University of Innsbruck, A6020 Innsbruck, Austria
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Justyna Grabska
- Institute of Analytical Chemistry, University of Innsbruck, A6020 Innsbruck, Austria
| | - Mirosław A. Czarnecki
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Christian W. Huck
- Institute of Analytical Chemistry, University of Innsbruck, A6020 Innsbruck, Austria
| | - Marek J. Wójcik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yukihiro Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
39
|
Todd ZR, Szabla R, Szostak JW, Sasselov DD. UV photostability of three 2-aminoazoles with key roles in prebiotic chemistry on the early earth. Chem Commun (Camb) 2019; 55:10388-10391. [PMID: 31380533 PMCID: PMC9631353 DOI: 10.1039/c9cc05265h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023]
Abstract
Three related molecules in the 2-aminoazole family are potentially important for prebiotic chemistry: 2-aminooxazole, 2-aminoimidazole, and 2-aminothiazole, which can provide critical functions as an intermediate in nucleotide synthesis, a nucleotide activating agent, and a selective agent, respectively. Here, we examine the wavelength-dependent photodegradation of these three molecules under mid-range UV light (210-290 nm). We then assess the implications of the observed degradation rates for the proposed prebiotic roles of these compounds. We find that all three 2-aminoazoles degrade under UV light, with half lives ranging from ≈7-100 hours under a solar-like spectrum. 2-Aminooxazole is the least photostable, while 2-aminoimidazole is the most photostable. The relative photostabilities are consistent with the order in which these molecules would be used prebiotically: AO is used first to build nucleotides and AI is used last to activate them.
Collapse
Affiliation(s)
- Zoe R. Todd
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics60 Garden StreetCambridgeMA 02138USA
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital185 Cambridge StreetBostonMA 02114USA
| | - Rafał Szabla
- Institute of Physics, Polish Academy of SciencesAl. Lotników 32/46PL-02668WarsawPoland
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital185 Cambridge StreetBostonMA 02114USA
| | - Dimitar D. Sasselov
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics60 Garden StreetCambridgeMA 02138USA
| |
Collapse
|
40
|
Taccone MI, Cruz-Ortiz AF, Dezalay J, Soorkia S, Broquier M, Grégoire G, Sánchez CG, Pino GA. UV Photofragmentation of Cold Cytosine–M+ Complexes (M+: Na+, K+, Ag+). J Phys Chem A 2019; 123:7744-7750. [DOI: 10.1021/acs.jpca.9b06495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martín I. Taccone
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria,
Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - Andrés F. Cruz-Ortiz
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria,
Pabellón Argentina, X5000HUA Córdoba, Argentina
| | - Jordan Dezalay
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Satchin Soorkia
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Michel Broquier
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
- Centre Laser de I’Université Paris-Sud (CLUPS/LUMAT), Univ. Paris-Sud, CNRS, IOGS, Université Paris-Saclay, F-91405 Orsay, France
| | - Gilles Grégoire
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Cristián G. Sánchez
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Gustavo A. Pino
- INFIQC (CONICET), Ciudad Universitaria, Pabellón Argentina, 5000 Córdoba, Argentina
- Departamento de Fisicoquímica, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón Argentina, X5000HUA Córdoba, Argentina
- Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria,
Pabellón Argentina, X5000HUA Córdoba, Argentina
| |
Collapse
|
41
|
Close DM, Bernhard WA. Comprehensive model for X-ray-induced damage in protein crystallography. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:945-957. [PMID: 31274416 DOI: 10.1107/s1600577519005083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Acquisition of X-ray crystallographic data is always accompanied by structural degradation owing to the absorption of energy. The application of high-fluency X-ray sources to large biomolecules has increased the importance of finding ways to curtail the onset of X-ray-induced damage. A significant effort has been under way with the aim of identifying strategies for protecting protein structure. A comprehensive model is presented that has the potential to explain, both qualitatively and quantitatively, the structural changes induced in crystalline protein at ∼100 K. The first step is to consider the qualitative question: what are the radiation-induced intermediates and expected end products? The aim of this paper is to assist in optimizing these strategies through a fundamental understanding of radiation physics and chemistry, with additional insight provided by theoretical calculations performed on the many schemes presented.
Collapse
Affiliation(s)
- David M Close
- Department of Physics, East Tennessee State University, Box 70652, Johnson City, TN 37614, USA
| | - William A Bernhard
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
42
|
Zhang Y, de La Harpe K, Hariharan M, Kohler B. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent. Faraday Discuss 2019; 207:267-282. [PMID: 29383346 DOI: 10.1039/c7fd00205j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
43
|
Shi HM, Guo GH, Sun ZG. Numerical convergence of the Sinc discrete variable representation for solving molecular vibrational states with a conical intersection in adiabatic representation. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1812275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hai-mei Shi
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guang-hai Guo
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Zhi-gang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
44
|
Sasidharanpillai S, Friedman AA, Loppnow GR. Initial excited-state structural dynamics of 2′-deoxyadenosine. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purine nucleobases (adenosine and guanosine) are prone to spontaneous breaking of the nucleosidic bond to form abasic sites in both DNA and RNA. However, the purines also undergo photochemical reactions, including oxidation and cycloaddition, to form damage sites, albeit at lower photochemical quantum yields than the pyrimidines. In this study, we use ultraviolet resonance Raman spectroscopy to measure the initial excited-state structural dynamics in the nucleoside, 2′-deoxyadenosine. The resonance Raman-derived initial excited-state structural dynamics throughout the 260 nm La excited electronic state of adenine are found to be smaller in the nucleoside than in the previously reported 9-methyladenine nucleobase derivative, consistent with what is found for the pyrimidines thymine and uracil. Interestingly, resonance-enhanced vibrational modes in this electronic state also contain internal coordinates localized on the sugar, which may represent a different energy dissipation mechanism than in the pyrimidine nucleosides. The results will be discussed in terms of the initial excited-state photophysics and photochemistry of DNA and RNA.
Collapse
Affiliation(s)
| | - Adam A. Friedman
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Glen R. Loppnow
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
45
|
Maiti S, Kim J, Park JH, Nam D, Lee JB, Kim YJ, Kee JM, Seo JK, Myung K, Rohde JU, Choe W, Kwon OH, Hong SY. Chemoselective Trifluoroethylation Reactions of Quinazolinones and Identification of Photostability. J Org Chem 2019; 84:6737-6751. [DOI: 10.1021/acs.joc.9b00470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saikat Maiti
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jaeshin Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jae-Heon Park
- Center for Soft and Living Matter, IBS, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | | | - Jae Bin Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Ye-Jin Kim
- Center for Soft and Living Matter, IBS, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | | | | | - Kyungjae Myung
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | | | | | - Oh-Hoon Kwon
- Center for Soft and Living Matter, IBS, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Sung You Hong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
46
|
Pitzer M, Ozga C, Küstner-Wetekam C, Reiß P, Knie A, Ehresmann A, Jahnke T, Giuliani A, Nahon L. State-Dependent Fragmentation of Protonated Uracil and Uridine. J Phys Chem A 2019; 123:3551-3557. [PMID: 30943036 DOI: 10.1021/acs.jpca.9b01822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Action spectroscopy using photon excitation in the VUV range (photon energy 4.5-9 eV) was performed on protonated uracil (UraH+) and uridine (UrdH+). The precursor ions with m/ z 113 and m/ z 245, respectively, were produced by an electrospray ionization source and accumulated inside a quadrupole ion trap mass spectrometer. After irradiation with tunable synchrotron radiation, product ion mass spectra were obtained. Fragment yields as a function of excitation energy show several maxima that can be attributed to the photoexcitation into different electronic states. For uracil, vertically excited states were calculated using the equation-of-motion coupled cluster approach and compared to the observed maxima. This allows to establish correlations between electronic states and the resulting fragment masses and can thus help to disentangle the complex de-excitation and fragmentation pathways of nucleic acid building blocks. Photofragmentation of the nucleoside uridine shows a significantly lower variety of fragments, indicating stabilization of the nucleobase by the attached sugar.
Collapse
Affiliation(s)
- Martin Pitzer
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 7610001 , Israel.,Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Christian Ozga
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Catmarna Küstner-Wetekam
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Philipp Reiß
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - André Knie
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Arno Ehresmann
- Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT) , University of Kassel , 34132 Kassel , Germany
| | - Till Jahnke
- Institute for Nuclear Physics , Goethe-University , 60438 Frankfurt , Germany
| | | | | |
Collapse
|
47
|
Kunin A, Neumark DM. Time-resolved radiation chemistry: femtosecond photoelectron spectroscopy of electron attachment and photodissociation dynamics in iodide-nucleobase clusters. Phys Chem Chem Phys 2019; 21:7239-7255. [PMID: 30855623 DOI: 10.1039/c8cp07831a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Iodide-nucleobase (I-·N) clusters studied by time-resolved photoelectron spectroscopy (TRPES) are an opportune model system for examining radiative damage of DNA induced by low-energy electrons. By initiating charge transfer from iodide to the nucleobase and following the dynamics of the resulting transient negative ions (TNIs) with femtosecond time resolution, TRPES provides a novel window into the chemistry triggered by the attachment of low-energy electrons to nucleobases. In this Perspective, we examine and compare the dynamics of electron attachment, autodetachment, and photodissociation in a variety of I-·N clusters, including iodide-uracil (I-·U), iodide-thymine (I-·T), iodide-uracil-water (I-·U·H2O), and iodide-adenine (I-·A), to develop a more unified representation of our understanding of nucleobase TNIs. The experiments probe whether dipole-bound or valence-bound TNIs are formed initially and the subsequent time evolution of these species. We also provide an outlook for forthcoming applications of TRPES to larger iodide-containing complexes to enable the further investigation of microhydration dynamics in nucleobases, as well as electron attachment and photodissociation in more complex nucleic acid constituents.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
48
|
Imaging the Renner-Teller effect using laser-induced electron diffraction. Proc Natl Acad Sci U S A 2019; 116:8173-8177. [PMID: 30952783 DOI: 10.1073/pnas.1817465116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of neutral carbonyl disulfide (CS2) in the [Formula: see text] excited electronic state using laser-induced electron diffraction (LIED). We unambiguously identify the ultrafast symmetric stretching and bending of the field-dressed neutral CS2 molecule with combined picometer and attosecond resolution using intrapulse pump-probe excitation and measurement. We invoke the Renner-Teller effect to populate the [Formula: see text] excited state in neutral CS2, leading to bending and stretching of the molecule. Our results demonstrate the sensitivity of LIED in retrieving the geometric structure of CS2, which is known to appear as a two-center scatterer.
Collapse
|
49
|
Kaur R, Welsch R. Probing photodissociation dynamics using ring polymer molecular dynamics. J Chem Phys 2019; 150:114105. [PMID: 30901996 DOI: 10.1063/1.5086218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The performance of the ring polymer molecular dynamics (RPMD) approach to simulate typical photodissociation processes is assessed. The correct description of photodissociation requires the calculation of correlation functions or expectation values associated with non-equilibrium initial conditions, which was shown to be possible with RPMD very recently [J. Chem. Phys. 145, 204118 (2016)]. This approach is combined with treatment of the nonadiabatic dynamics employing the ring polymer surface hopping approach (RPSH), which is based on Tully's fewest switches surface hopping (FSSH) approach. The performance is tested using one-dimensional photodissociation models. It is found that RPSH with non-equilibrium initial conditions can well reproduce the time-dependent dissociation probability, and adiabatic and diabatic populations for cases where the crossing point is below and above the Franck-Condon point, respectively, while standard FSSH fails to reproduce the exact quantum dynamics in the latter case. Thus, it is shown that RPSH is an efficient and accurate alternative to standard FSSH, which is one of the most widely employed approaches to study photochemistry.
Collapse
Affiliation(s)
- Rajwant Kaur
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ralph Welsch
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
50
|
Hernández FJ, Bonafé FP, Aradi B, Frauenheim T, Sánchez CG. Simulation of Impulsive Vibrational Spectroscopy. J Phys Chem A 2019; 123:2065-2072. [DOI: 10.1021/acs.jpca.9b00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Federico J. Hernández
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Franco P. Bonafé
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universität Bremen, Bremen 28359, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, Universität Bremen, Bremen 28359, Germany
| | - Cristián G. Sánchez
- Universidad Nacional de Córdoba. Facultad de Ciencias Quı́micas, Departamento de Quı́mica Teórica y Computacional, Córdoba Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba, INFIQC (CONICET-Universidad Nacional de Córdoba), Córdoba 5000, Argentina
| |
Collapse
|