1
|
Yavuz E, Sakir M, Onses MS, Salem S, Yilmaz E. Advancements in reusable SERS substrates for trace analysis applications. Talanta 2024; 279:126640. [PMID: 39128272 DOI: 10.1016/j.talanta.2024.126640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Surface Enhanced Raman Spectroscopy (SERS) technique is an effective analytical technique in which fingerprint information about analytes can be obtained, can provide detection limit performance at the single molecule level, and analyzes are performed in a single step without any intermediate steps. SERS technique offers additional benefits rather than other analytical techniques including high selectivity, ultrasensitive detection, uncomplicated protocols, in situ sampling, on-set capability and cost-effectiveness. As a result of the combination of developments in materials and nanotechnology science with the SERS analysis technique, this technique strengthens its use advantage day by day. The most important factor that limited the use of this technique was the fact that the solution containing the desired analyte(s) was dropped onto the SERS substrate and the same substrate could not be reused in subsequent analyses. To solve this problem, scientists have focused on developing reusable SERS substrates in recent years. In these studies, scientists basically used three SERS substrate cleaning applications (1) washing the SERS substrate with a suitable solvent that can elute the analyte from SERS surface after analysis, (2) cleaning the SERS substrate with catalytic degradation of analytes after analysis by modifying them with catalytic active materials and (3) Applying plasma cleaning procedure to SERS substrate after analysis and (4) applying adsorption and desorption procedure prior to SERS analysis. Herein, the aim of this review article is to evaluate the reusable SERS substrates-based methods based on their level of development and their potential to recycle. This review offers a coherent discussion on a wide range of sensing schemes employed in fabricating the SERS substrates. We utilized a critical approach in which elaborative examples were selected to highlight key shortcomings of various experimental configurations. In the same vein, there is a discussion of the advantages and limitations concerning the key instrumental advances and the expansion of the recent methods developed in this area.
Collapse
Affiliation(s)
- Emre Yavuz
- Erzincan Binali Yildirim University, Cayirli Vocational School, Department of Medical Services and Technicians, 24503, Erzincan, Turkey
| | - Menekse Sakir
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey
| | - M Serdar Onses
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey; Department of Materials Science and Engineering, Faculty of Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Samaa Salem
- Polymers and Pigment Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Erkan Yilmaz
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey; Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey; Technology Research & Application Center (TAUM), Erciyes University, Kayseri, 38039, Turkey; ChemicaMed Chemical Inc., Erciyes Teknopark, Erciyes University Technology Development Zone, 38039, Kayseri, Turkey.
| |
Collapse
|
2
|
Malik U, Mazur M, Gudi RD, Mandaliya DD, Selvakannan PR, Bhargava SK. Colloidal carbon soot templated TiO 2/Ag surface functionalized 3D printed metal brushes as new generation surface enhanced Raman scattering substrates. J Colloid Interface Sci 2024; 671:325-335. [PMID: 38815369 DOI: 10.1016/j.jcis.2024.05.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
This present work demonstrated the functional transformation of 3D printed metal substrates into a new family of Surface-enhanced Raman Scattering substrates, a promising approach in developing SERS-based Point-of-care (PoC) analytical platforms. l-Powder Bed Fusion (l-PBF, Additive manufacturing or 3D printing technique) printed metal substrates have rough surfaces, and exhibit high thermal stability and intrinsic chemical inertness, necessitating a suitable surface functionalization approach. This present work demonstrated a unique multi-stage approach to transform l-PBF printed metal structures as recyclable SERS substrates by colloidal carbon templating, chemical vapor deposition, and electroless plating methods sequentially. The surface of the printed metal structures was functionalized using the colloidal carbon soot particles, that were formed by the eucalyptus oil flame deposition method. These carbon particles were shown to interact with the metals present in the printed structures by forming metal carbides and function as an adlayer on the surface. Subsequent deposition of TiO2 onto these templates led to strong grafting of TiO2 and retaining the fractal structure of the soot template onto the metal surface. Electroless deposition of silver nanoparticles resulted in the formation of fractally structured TiO2/Ag nanostructures and these functionalized printed metal structures were shown as excellent SERS substrates in enhancing the vibrational spectral features of Rhodamine B (RhB). The presence of TiO2 photocatalyst on the surface was shown to remove the RhB analyte from the surface under photochemical conditions, which enables the regeneration of SERS activity, and the substrate can be recycled. The migration of metals from the printed metal structures into the fractally ordered TiO2/Ag nanostructures was found to enhance the photocatalytic activity and increase the recyclability of these substrates. This study demonstrates the potential of 3D-printed Inconel metal substrates as next-generation recyclable SERS platforms, offering a substantial advancement over traditional colloidal, thin-film, flexible, and hard SERS substrates.
Collapse
Affiliation(s)
- Uzma Malik
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Maciej Mazur
- Centre for Additive Manufacturing, School of Engineering, RMIT University, 3001, Victoria, Australia
| | - Ravindra D Gudi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dharmendra D Mandaliya
- Department of Chemical Engineering, L.D. College of Engineering, Ahmedabad 380015, India
| | - P R Selvakannan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia.
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne 3001, Victoria, Australia.
| |
Collapse
|
3
|
Samriti, Kumar P, Kuznetsov AY, Swart HC, Prakash J. Sensitive, Stable, and Recyclable ZnO/Ag Nanohybrid Substrates for Surface-Enhanced Raman Scattering Metrology. ACS MATERIALS AU 2024; 4:413-423. [PMID: 39006401 PMCID: PMC11240408 DOI: 10.1021/acsmaterialsau.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 07/16/2024]
Abstract
Surface-enhanced Raman scattering is a practical, noninvasive spectroscopic technique that measures chemical fingerprints for varieties of molecules in multiple applications. However, synthesizing appropriate substrates for practical, long-term applications of this method has always been a challenging task. In the present study, we show that ZnO/Ag nanohybrid substrates may act as highly stable, sensitive, and recyclable substrates for surface-enhanced Raman scattering, as illustrated by the detection of methylene blue, selected as a test dye molecule with self-cleaning functionalities. Specifically, we demonstrate the detection enhancement factor of 3.7 × 107 along with exceptional long-term stability explained in terms of the localized surface plasmon resonance from the Ag nanocrystals embedded into the chemically inert ZnO nanoparticles, constituting the nanohybrid. Significantly, these substrates can be efficiently cleaned and regenerated while maintaining their high performance upon recycling. As a result, using these substrates, up to 10-12 M detection sensitivity has been demonstrated, enabling the accuracy required in modern environmental monitoring, bioassays, and analytical chemistry. Thus, ZnO nanoparticles with embedded Ag nanocrystals constitute a novel class of advanced nanohybrid substrates for use in multiple applications of surface-enhanced Raman scattering metrology.
Collapse
Affiliation(s)
- Samriti
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh 177005, India
| | - Promod Kumar
- Department of Physics, University of the Free State, Bloemfontein 9301, Republic of South Africa
| | - A Yu Kuznetsov
- Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, Oslo N-0316, Norway
| | - H C Swart
- Department of Physics, University of the Free State, Bloemfontein 9301, Republic of South Africa
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh 177005, India
| |
Collapse
|
4
|
Sarkar D, Som A, Unni K, Manna S, Thalappil P. Interfacial Growth of Large Area Single-Crystalline Silver Sheets Through Ambient Microdroplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400159. [PMID: 38671561 DOI: 10.1002/smll.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The creation of micrometer-sized sheets of silver at the air-water interface by direct deposition of electrospray-generated silver ions (Ag+) on an aqueous dispersion of reduced graphene oxide (RGO), in ambient conditions, is reported. In the process of electrospray deposition (ESD), an electrohydrodynamic flow is created in the aqueous dispersion, and the graphene sheets assemble, forming a thin film at the air-water interface. The deposited Ag+ coalesce to make single-crystalline Ag sheets on top of this assembled graphene layer. Fast neutralization of Ag+ forming atomic Ag, combined with their enhanced mobility on graphene surfaces, presumably facilitates the growth of larger Ag clusters. Moreover, restrictions imposed by the interface drive the crystal growth in 2D. By controlling the precursor salt concentration, RGO concentration, deposition time, and ion current, the dimensionality of the Ag sheets can be tuned. These Ag sheets are effective substrates for surface-enhanced Raman spectroscopy (SERS), as demonstrated by the successful detection of methylene blue at nanomolar concentrations.
Collapse
Affiliation(s)
- Depanjan Sarkar
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
- Centre of Excellence on Molecular Materials and Functions, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
| | - Anirban Som
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
- Centre of Excellence on Molecular Materials and Functions, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
| | - Keerthana Unni
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
- Centre of Excellence on Molecular Materials and Functions, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
| | - Sujan Manna
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
- Centre of Excellence on Molecular Materials and Functions, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
| | - Pradeep Thalappil
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
- Centre of Excellence on Molecular Materials and Functions, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 60036, India
| |
Collapse
|
5
|
Krishna SBN, Jakmunee J, Mishra YK, Prakash J. ZnO based 0-3D diverse nano-architectures, films and coatings for biomedical applications. J Mater Chem B 2024; 12:2950-2984. [PMID: 38426529 DOI: 10.1039/d4tb00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Thin-film nano-architecting is a promising approach that controls the properties of nanoscale surfaces to increase their interdisciplinary applications in a variety of fields. In this context, zinc oxide (ZnO)-based various nano-architectures (0-3D) such as quantum dots, nanorods/nanotubes, nanothin films, tetrapods, nanoflowers, hollow structures, etc. have been extensively researched by the scientific community in the past decade. Owing to its unique surface charge transport properties, optoelectronic properties and reported biomedical applications, ZnO has been considered as one of the most important futuristic bio-nanomaterials. This review is focused on the design/synthesis and engineering of 0-3D nano-architecture ZnO-based thin films and coatings with tunable characteristics for multifunctional biomedical applications. Although ZnO has been extensively researched, ZnO thin films composed of 0-3D nanoarchitectures with promising thin film device bio-nanotechnology applications have rarely been reviewed. The current review focuses on important details about the technologies used to make ZnO-based thin films, as well as the customization of properties related to bioactivities, characterization, and device fabrication for modern biomedical uses that are relevant. It features biosensing, tissue engineering/wound healing, antibacterial, antiviral, and anticancer activity, as well as biomedical diagnosis and therapy with an emphasis on a better understanding of the mechanisms of action. Eventually, key issues, experimental parameters and factors, open challenges, etc. in thin film device fabrications and applications, and future prospects will be discussed, followed by a summary and conclusion.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban-4000, South Africa
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban-4000, South Africa
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur 177005, (H.P.), India.
| |
Collapse
|
6
|
Malik U, Hubesch R, Koley P, Mazur M, Mehla S, Butti SK, Brandt M, Selvakannan PR, Bhargava S. Surface functionalized 3D printed metal structures as next generation recyclable SERS substrates. Chem Commun (Camb) 2023; 59:13406-13420. [PMID: 37850470 DOI: 10.1039/d3cc04154a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Combining the design flexibility and rapid prototyping capabilities of additive manufacturing with photocatalytic and plasmonic functionalities is promising for the development of next-generation SERS applications such as point of care diagnostics and in situ monitoring of chemical reactions in fuels and chemical processing. Laser powder bed fusion (LPBF) is a well-matured additive manufacturing technique which generates metallic structures through localised melting and joining of metal powders using a laser. LPBF reduces material wastage during manufacturing, is applicable to a wide range of metals and alloys, and allows printing of complex internal structures. This feature article elaborates the use of soot templating, chemical vapour deposition and electroless plating techniques for grafting plasmonic and semiconductor nanoparticles on the surface of LPBF manufactured metallic substrates. The capability to fabricate different types of intricate metallic lattices using additive manufacturing is demonstrated and technical challenges in their adequate functionalization are elaborated. The developed methodology allows tailoring of the substrate structure, composition, morphology, plasmonic and photocatalytic activities and thus unveils a new class of recyclable SERS substrates.
Collapse
Affiliation(s)
- Uzma Malik
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Roxanne Hubesch
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Paramita Koley
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Maciej Mazur
- Centre for Additive Manufacturing, School of Engineering, RMIT University, 3001 Victoria, Australia
| | - Sunil Mehla
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Sai Kishore Butti
- Chemical Engineering and Process Technology Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Milan Brandt
- Centre for Additive Manufacturing, School of Engineering, RMIT University, 3001 Victoria, Australia
| | - P R Selvakannan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| | - Suresh Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, 3001 Victoria, Australia.
| |
Collapse
|
7
|
Chauhan N, Saxena K, Rawal R, Yadav L, Jain U. Advances in surface-enhanced Raman spectroscopy-based sensors for detection of various biomarkers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:32-41. [PMID: 37648087 DOI: 10.1016/j.pbiomolbio.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) allows the ultrasensitive detection of analytes present in traces or even single molecule levels by the generation of electromagnetic fields. It is a powerful vibrational spectroscopic method that is capable to detect traces of chemical and biological analytes. SERS technique is involved in the extremely sophisticated studies of molecules with high specificity and sensitivity. In the vicinity of nanomaterials decorated surfaces, SERS can monitor extremely low concentrations of analytes in a non-destructive manner with narrow line widths. This review article is focused on some recently developed SERS-based sensors for distinct types of analytes like disease-related biomarkers, organic and inorganic molecules, various toxins, dyes, pesticides, bacteria as well as single molecules. This study aims to enlighten the arising sensing approaches based on the SERS technique. Apart from this, some basics of the SERS technique like their mechanism, detection strategy, and involvement of some specific nanomaterials are also highlighted herein. Finally, the study concluded with some discussion of applications of SERS in various fields like food and environmental analysis.
Collapse
Affiliation(s)
- Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, India
| | - Rachna Rawal
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Lalit Yadav
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, India.
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India.
| |
Collapse
|
8
|
Yin L, Jayan H, Cai J, El-Seedi HR, Guo Z, Zou X. Development of a Sensitive SERS Method for Label-Free Detection of Hexavalent Chromium in Tea Using Carbimazole Redox Reaction. Foods 2023; 12:2673. [PMID: 37509765 PMCID: PMC10378949 DOI: 10.3390/foods12142673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Tea plants absorb chromium-contaminated soil and water and accumulate in tea leaves. Hexavalent chromium (Cr6+) is a very toxic heavy metal; excessive intake of tea containing Cr6+ can cause serious harm to human health. A reliable and sensitive surface-enhanced Raman spectroscopy (SERS) method was developed using Au@Ag nanoparticles as an enhanced substrate for the determination of Cr6+ in tea. The Au@AgNPs coated with carbimazole showed a highly selective reaction to Cr6+ in tea samples through a redox reaction between Cr6+ and carbimazole. The Cr6+ in the contaminated tea sample reacted with methimazole-the hydrolysate of carbimazole-to form disulfide, which led to the decrease in the Raman intensity of the peak at 595 cm-1. The logarithm of the concentration of Cr6+ has a linear relationship with the Raman intensity at the characteristic peak and showed a limit of detection of 0.945 mg/kg for the tea sample. The carbimazole functionalized Au@AgNPs showed high selectivity in analyzing Cr6+ in tea samples, even in the presence of other metal ions. The SERS detection technique established in this study also showed comparable results with the standard ICP-MS method, indicating the applicability of the established technique in practical applications.
Collapse
Affiliation(s)
- Limei Yin
- Key Laboratory of Modern Agricultural Equipment and Technology of Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianrong Cai
- Key Laboratory of Modern Agricultural Equipment and Technology of Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Shukla K, Gupta R, Gupta RK, Prakash J. Highly efficient visible light active doped metal oxide photocatalyst and SERS substrate for water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34054-34068. [PMID: 36508093 DOI: 10.1007/s11356-022-24639-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
The development of efficient nanomaterials with promising optical and surface properties for multifunctional applications has always been a subject of novel research. In this work, the study of highly efficient TiO2 nanorods (NRs) and Ta-doped TiO2 NRs (Ta-TiO2 NRs) synthesized by alkaline hydrothermal treatment followed by soaking treatment has been reported. NRs were investigated for their potential applications as recyclable/reproducible visible light active photocatalysts and surface-enhanced Raman scattering (SERS) substrates in wastewater treatment. NRs were characterized by various microscopic (scanning and transmission electron microscopy), spectroscopic (X-ray diffraction, X-ray photoelectron, UV-visible, photoluminescence, and Raman spectroscopy), and surface (Brunauer-Emmett-Teller) techniques. The NRs exhibited promising optical properties with a band gap of 2.95 eV (TiO2 NRs) and 2.58 eV (Ta-TiO2 NRs) showing excellent photo-degradation activities for methylene blue (MB) dye molecules under natural sunlight. Particularly, Ta-TiO2 NRs showed enhanced response as visible light active photocatalysts in normal sunlight and also as SERS substrate attributed to the additional defects introduced by Ta doping. It could be explained by the combined effect of doping-induced enhanced visible light absorption and charge transfer (CT) properties of Ta-TiO2 NRs. Furthermore, Ta-TiO2 NRs were investigated for their long-term stability, reproducibility of the data, and recyclability in view of their potential applications in water treatment.
Collapse
Affiliation(s)
- Komal Shukla
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Rajeev Gupta
- Department of Physics, School of Engineering Studies, University of Petroleum & Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, India.
| |
Collapse
|
10
|
Prakash J, Krishna SBN, Kumar P, Kumar V, Ghosh KS, Swart HC, Bellucci S, Cho J. Recent Advances on Metal Oxide Based Nano-Photocatalysts as Potential Antibacterial and Antiviral Agents. Catalysts 2022; 12:1047. [DOI: 10.3390/catal12091047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Photocatalysis, a unique process that occurs in the presence of light radiation, can potentially be utilized to control environmental pollution, and improve the health of society. Photocatalytic removal, or disinfection, of chemical and biological species has been known for decades; however, its extension to indoor environments in public places has always been challenging. Many efforts have been made in this direction in the last two–three years since the COVID-19 pandemic started. Furthermore, the development of efficient photocatalytic nanomaterials through modifications to improve their photoactivity under ambient conditions for fighting with such a pandemic situation is a high research priority. In recent years, several metal oxides-based nano-photocatalysts have been designed to work efficiently in outdoor and indoor environments for the photocatalytic disinfection of biological species. The present review briefly discusses the advances made in the last two to three years for photocatalytic viral and bacterial disinfections. Moreover, emphasis has been given to the tailoring of such nano-photocatalysts in disinfecting surfaces, air, and water to stop viral/bacterial infection in the indoor environment. The role of such nano-photocatalysts in the photocatalytic disinfection of COVID-19 has also been highlighted with their future applicability in controlling such pandemics.
Collapse
|
11
|
Chakraborty A, Ruzimuradov O, Gupta RK, Cho J, Prakash J. TiO 2 nanoflower photocatalysts: Synthesis, modifications and applications in wastewater treatment for removal of emerging organic pollutants. ENVIRONMENTAL RESEARCH 2022; 212:113550. [PMID: 35654159 DOI: 10.1016/j.envres.2022.113550] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide (TiO2) has been considered as one of the most promising photocatalysts nanomaterials and is being used in a variety of fields of energy and environment under sunlight irradiation via photocatalysis. Highly efficient photocatalytic materials require the design of the proper structure with excellent morphology, interfacial structures, optical and surface properties, etc. Which are the key points to realize effective light-harvesting for photocatalytic applications. Hierarchical TiO2 based nanoflower structures (i.e., 3D nanostructures) possess such characteristics and have attracted much attention in recent years. The uniqueness of TiO2 nanoflowers (NFs) with a coarse texture and arranged structures demonstrates higher photocatalytic activity. This review deals with the hydrothermal synthesis of 3D TiO2 NFs and effect of shape/size as well as various key synthesis parameters to improve their optoelectronic and photocatalytic properties. Furthermore, to improve their photocatalytic properties, various strategies such as doping engineering and heterojunction/nanocomposite formation with other functional nanomaterials have been discussed followed by their potential applications in photocatalytic degradation of various emerging pollutants discharged into the wastewater from various sources. Importance of such 3D nanoarchitecutres and future research in other fields of current interest in environments are discussed.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Olim Ruzimuradov
- Department of Natural and Mathematic Sciences, Turin Polytechnic University in Tashkent, Malaya Kolsevaya 17, Tashkent, 100095, Uzbekistan
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Junghyun Cho
- Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, Himachal Pradesh, India.
| |
Collapse
|
12
|
Sun Q, Xu Y, Gao Z, Zhou H, Zhang Q, Xu R, Zhang C, Yao H, Liu M. High-Performance Surface-Enhanced Raman Scattering Substrates Based on the ZnO/Ag Core-Satellite Nanostructures. NANOMATERIALS 2022; 12:nano12081286. [PMID: 35457994 PMCID: PMC9027200 DOI: 10.3390/nano12081286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/10/2022]
Abstract
Recently, hierarchical hybrid structures based on the combination of semiconductor micro/nanostructures and noble metal nanoparticles have become a hot research topic in the area of surface-enhanced Raman scattering (SERS). In this work, two core-satellite nanostructures of metal oxide/metal nanoparticles were successfully introduced into SERS substrates, assembling monodispersed small silver nanoparticles (Ag NPs) on large polydispersed ZnO nanospheres (p-ZnO NSs) or monodispersed ZnO nanospheres (m-ZnO NSs) core. The p-ZnO NSs and m-ZnO NSs were synthesized by the pyrolysis method without any template. The Ag NPs were prepared by the thermal evaporation method without any annealing process. An ultralow limit of detection (LOD) of 1 × 10−13 M was achieved in the two core-satellite nanostructures with Rhodamine 6G (R6G) as the probe molecule. Compared with the silicon (Si)/Ag NPs substrate, the two core-satellite nanostructures of Si/p-ZnO NSs/Ag NPs and Si/m-ZnO NSs/Ag NPs substrates have higher enhancement factors (EF) of 2.6 × 108 and 2.5 × 108 for R6G as the probe molecule due to the enhanced electromagnetic field. The two core-satellite nanostructures have great application potential in the low-cost massive production of large-area SERS substrates due to their excellent SERS effect and simple preparation process without any template.
Collapse
Affiliation(s)
- Qianqian Sun
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
- Correspondence: (Q.S.); (H.Y.); (M.L.)
| | - Yujie Xu
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Zhicheng Gao
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Hang Zhou
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Qian Zhang
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Ruichong Xu
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Chao Zhang
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Haizi Yao
- Key Laboratory of Smart Lighting in Henan Province, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
- Correspondence: (Q.S.); (H.Y.); (M.L.)
| | - Mei Liu
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
- Correspondence: (Q.S.); (H.Y.); (M.L.)
| |
Collapse
|
13
|
Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread. MICRO AND NANO ENGINEERING 2022. [PMCID: PMC8685168 DOI: 10.1016/j.mne.2021.100100] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The whole world is struggling with current coronavirus pandemic that shows urgent need to develop novel technologies, medical innovations or innovative materials for controlling SARS-CoV-2 infection. The mode of infection of SARS-CoV-2 is still not well known and seems to spread through surface, air, and water. Therefore, the whole surrounding environment needs to be disinfected with continuous function. For that purpose, materials with excellent antiviral properties, cost effective, environmental friendly and practically applicable should be researched. Titanium dioxide (TiO2) under ultraviolet light produces strong oxidative effect and is utilized as photocatalytic disinfectant in biomedical field. TiO2 based photocatalysts are effective antimicrobial/antiviral agents under ambient conditions with potential to be used even in indoor environment for inactivation of bacteria/viruses. Interestingly, recent studies highlight the effective disinfection of SARS-CoV-2 using TiO2 photocatalysts. Here, scope of TiO2 photocatalysts as emerging disinfectant against SARS-CoV-2 infection has been discussed in view of their excellent antibacterial and antiviral activities against various bacteria and viruses (e.g. H1N1, MNV, HSV, NDV, HCoV etc.). The current state of development of TiO2 based nano-photocatalysts as disinfectant shows their potential to combat with SARS-CoV-2 viral infection and are promising for any other such variants or viruses, bacteria in future studies.
Collapse
|
14
|
Wang Z, Lai Y, Cai J, Jia S, Lin L, Feng Z, Zheng Z, Xie R, Li J. A photo-responsive p-Si/TiO2/Ag heterostructure with charge transfer for recyclable surface-enhanced Raman scattering substrates. CrystEngComm 2022. [DOI: 10.1039/d1ce01310f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Si/TiO2/Ag heterostructure is prepared as a recyclable SERS substrate with EF of 1.23 × 1012 and excellent repeatability, which can boost performance effectively by the synergistic contribution of the EM and CT enhancement effects.
Collapse
Affiliation(s)
- Zhezhe Wang
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
| | - Yueting Lai
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China
- Fujian College of Water Conservancy and Electric Power, Sanming, 366000, China
| | - Jieyi Cai
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China
| | - Siyi Jia
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China
| | - Lin Lin
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
| | - Zhuohong Feng
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
| | - Zhiqiang Zheng
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
| | - Rongrong Xie
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Jiabing Li
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
15
|
Enhanced charge-transfer induced by conduction band electrons in aluminum-doped zinc oxide/molecule/Ag sandwich structures observed by surface-enhanced Raman spectroscopy. J Colloid Interface Sci 2021; 610:164-172. [PMID: 34923264 DOI: 10.1016/j.jcis.2021.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Accepted: 12/04/2021] [Indexed: 11/21/2022]
Abstract
In the semiconductor/molecule/metal system, enhancing the efficiency of the charge-transfer (CT) plays a pivotal role in improving the sensitivity of semiconductor-based surface-enhanced Raman scattering (SERS). In this work, use of SERS for detection of an enhanced CT in a chemically-etched Al-doped ZnO (AZO), 4-mercaptopyridine (MPy) molecule, and Ag nanoparticles (NPs) (AZO/MPy/Ag) sandwich structure is reported. A series of CT routes are proposed in the energy level diagram of AZO/MPy/Ag assemblies under the excitation line at 633 nm. Very interestingly, for the first of its kind, a significant CT route from the conduction band (CB) of AZO to the lowest unoccupied molecular orbital (LUMO) of MPy molecule is detected. This route can remarkably improve the degree of CT in the AZO/MPy/Ag system by about 48% compared with that of the ZnO/MPy/Ag system. Furthermore, the uniquely enhanced CT route is also further confirmed by alternative probe molecules like p-aminothiophenol (PATP) and 4-mercaptobenzoic acid (MBA). The discovery of this extra CT route will inevitably play an irreplaceable role in SERS enhancement through its participating in the CT enhancement mechanism.
Collapse
|
16
|
Huang J, Tang C, Chen G, He Z, Wang T, He X, Yi T, Liu Y, Zhang L, Du K. Toward the Limitation of Dealloying: Full Spectrum Responsive Ultralow Density Nanoporous Gold for Plasmonic Photocatalytic SERS. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7735-7744. [PMID: 33533584 DOI: 10.1021/acsami.0c20766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmon-mediated chemical reaction has a great potential to create self-cleaning surface-enhanced Raman scattering (SERS) substrates. However, few works have been reported to promote this goal. Here, we report ultralow density nanoporous gold (ULDNPG) that possesses an impressive full spectrum responsive characteristic with a reflectivity lower than 5% in the waveband of 300-900 nm. ULDNPG was fabricated by a sandwich dealloying strategy from ultradilute Au-Ag solid solutions with the Au content as low as 1-5 at.%. The prepared ULDNPG presents excellent SERS properties, including high sensitivity, high uniformity, and reproducibility. The full spectrum responsive characteristic of ULDNPG leads to an obvious plasmonic photocatalytic activity. The short lifetime of the SP-excited hot carriers causes a restricted self-cleaning SERS property and a strong photothermal effect for ULDNPG structures.
Collapse
Affiliation(s)
- Jinglin Huang
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Cuilan Tang
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Guo Chen
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Zhibing He
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Tao Wang
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Xiaoshan He
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Taimin Yi
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Yansong Liu
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Ling Zhang
- Sichuan Co-Innovation Center for New Energetic Material, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Kai Du
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| |
Collapse
|
17
|
Guo X, Li J, Arabi M, Wang X, Wang Y, Chen L. Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors. ACS Sens 2020; 5:601-619. [PMID: 32072805 DOI: 10.1021/acssensors.9b02039] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecularly imprinted polymers (MIPs) receive extensive interest, owing to their structure predictability, recognition specificity, and application universality as well as robustness, simplicity, and inexpensiveness. Surface-enhanced Raman scattering (SERS) is regarded as an ideal optical detection candidate for its unique features of fingerprint recognition, nondestructive property, high sensitivity, and rapidity. Accordingly, MIP based SERS (MIP-SERS) sensors have attracted significant research interest for versatile applications especially in the field of chemo- and bioanalysis, showing excellent identification and detection performances. Herein, we comprehensively review the recent advances in MIP-SERS sensors construction and applications, including sensing principles and signal enhancement mechanisms, focusing on novel construction strategies and representative applications. First, the basic structure of the MIP-SERS sensors is briefly outlined. Second, novel imprinting strategies are highlighted, mainly including multifunctional monomer imprinting, dummy template imprinting, living/controlled radical polymerization, and stimuli-responsive imprinting. Third, typical application of MIP-SERS sensors in chemo/bioanalysis is summarized from both small and macromolecular aspects. Lastly, the challenges and perspectives of the MIP-SERS sensors are proposed, orienting sensitivity improvement and application expanding.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|