1
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Farag MR, El-Kassas S, Attia YA, Alhotan RA, Mahmoud MA, Di Cerbo A, Alagawany M. Yucca schidigera Extract Mitigates the Oxidative Damages, Inflammation, and Neurochemical Impairments in the Brains of Quails Exposed to Lead. Biol Trace Elem Res 2024; 202:713-724. [PMID: 37171738 DOI: 10.1007/s12011-023-03696-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The present study explored the neurotoxic impacts of lead (Pb) and the potential alleviating effect of Yucca schidigera extract (YSE) in Japanese quails. About 360 adult Japanese quails (8 weeks old) were used. Quails were randomly distributed to six groups with 4 replicates each: the control group (fed basal diet, BD), the BD + YSE1 and BD + YSE2 groups (BD + 100 and 200 mg/kg diet of YSE, respectively), the Pb group (BD + 100 mg/kg Pb), and the Pb + YSE1 and Pb + YSE2 groups (BD + Pb + 100 and 200 mg/kg YSE, respectively). This feeding trial lasted for 8 weeks. The exposure to Pb in the diet induced oxidative damage stress in the brain of exposed quails reflected by the significant increase in the oxidative markers including malonaldehyde (MDA) and protein carbonyl (PC) and the significant reduction in the activities of antioxidants including catalase (CAT), superoxide dismutase (SOD), and the reduced glutathione (GSH). Brain neurochemistry and enzyme activities were also altered following Pb exposure. Pb significantly reduced serotonin, dopamine, norepinephrine, GABA, Ach, and Na + /K + -ATPase activities. Pb dietary intoxication markedly increased brain inflammatory biomarkers, including tumor necrosis factor (TNF-α), myeloperoxidase, and nitric oxide. Peripherally, Pb toxicity decreased the amino acid neurotransmitters (glutamic acid, glycine, and aspartic acid) in the serum of birds. At the transcriptomic level, Pb exposure upregulated the transcription patterns of CASP3, TNF-α, HSP70, and IL-1β. The single effect of YSE maintained that all the assessed parameters were not changed compared to the control. Interestingly, the YSE co-supplementation with Pb alleviated the Pb-induced neuro-oxidative damages by lowering the lipid, protein, and DNA damage, and the inflammatory biomarkers.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44111, Egypt
| | - Seham El-Kassas
- Animal, Poultry, and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt
| | - Youssef A Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Alhotan
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, New Valley University, Kharga, New Valley, Egypt
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44511, Egypt.
| |
Collapse
|
3
|
Alghareeb SA, Alfhili MA, Alsughayyir J. Stimulation of Hemolysis and Eryptosis by β-Caryophyllene Oxide. Life (Basel) 2023; 13:2299. [PMID: 38137900 PMCID: PMC10744803 DOI: 10.3390/life13122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Eryptosis stimulated by anticancer drugs can lead to anemia in patients. β-caryophyllene oxide (CPO) is an anticancer sesquiterpene present in various plants; however, its effect on the structure and function of human red blood cells (RBCs) remains unexplored. The aim of this study was to investigate the hemolytic and eryptotic activities and underlying molecular mechanisms of CPO in human RBCs. METHODS Cells were treated with 10-100 μM of CPO for 24 h at 37 °C, and hemolysis, LDH, AST, and AChE activities were photometrically assayed. Flow cytometry was employed to determine changes in cell volume from FSC, phosphatidylserine (PS) externalization by annexin-V-FITC, intracellular calcium by Fluo4/AM, and oxidative stress by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Cells were also cotreated with CPO and specific signaling inhibitors and antihemolytic agents. Furthermore, whole blood was exposed to CPO to assess its toxicity to other peripheral blood cells. RESULTS CPO induced concentration-responsive hemolysis with LDH and AST leakage, in addition to PS exposure, cell shrinkage, Ca2+ accumulation, oxidative stress, and reduced AChE activity. The toxicity of CPO was ameliorated by D4476, staurosporin, and necrosulfonamide. ATP and PEG 8000 protected the cells from hemolysis, while urea and isotonic sucrose had opposite effects. CONCLUSIONS CPO stimulates hemolysis and eryptosis through energy depletion, Ca2+ buildup, oxidative stress, and the signaling mediators casein kinase 1α, protein kinase C, and mixed lineage kinase domain-like pseudokinase. Development of CPO as an anticancer therapeutic must be approached with prudence to mitigate adverse effects on RBCs using eryptosis inhibitors, Ca2+ channel blockers, and antioxidants.
Collapse
Affiliation(s)
| | | | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (S.A.A.); (M.A.A.)
| |
Collapse
|
4
|
Hadeiy SK, Habtemariam S, Shankayi Z, Shahyad S, Sahraei H, Asghardoust Rezaei M, Bahrami F. Amelioration of pain and anxiety in sleep-deprived rats by intra-amygdala injection of cinnamaldehyde. Sleep Med X 2023; 5:100069. [PMID: 37424741 PMCID: PMC10323214 DOI: 10.1016/j.sleepx.2023.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Background Sleep disorders are accompanied by increased anxiety and somatic pain. In addition, it has been observed that anxiety and pain have a boosting effect on each other, resulting in continued sleep disturbances. Amygdala's (CeA) central nucleus plays a crucial role in these processes. Cinnamaldehyde (Cinn) is an aromatic compound with anti-anxiety, antioxidant, and sleep-promoting properties. The present study uses sleep-deprived rats to examine the effects of an intra-CeA injection of Cinn on pain and anxiety. Methods Sleep deprivation (SD) was induced using the platform technique. 35 male Wistar rats were divided into five groups. Anxiety state and nociception were evaluated among groups using formalin test (F.T.), open field test (OFT), and elevated plus maze (EPM). Anxiety tests (OFT and EPM) were conducted in all groups. The first group was undergone FT without induction of SD (SD-FT+). The second group received SD without FT(SD+FT-). The third group received both SD and FT(SD+FT+). The treatment and vehicle groups have undergone both SD and FT in addition to the respectively intra-CeA injection of Cinn (SD+FT+ Cinn) and Cinn vehicle (SD+FT+ VC). The recorded behaviors were analyzed between groups using IBM SPSS 24th version. Results SD did not lead to any significant difference in nociceptive behaviors in FT between groups SD-FT+ and SD+FT+ (P ≥ 0.05). At the same time, there was a considerable discrepancy in rearing behaviors (P < 0.006) and the number of fecal boli (P < 0.004) recorded in OFM between these groups. Treatment with Cinn led to decreased nociception (P < 0.038), decreased rearing behaviors (P < 0.01), and reduced defecation (P < 0.004) in group SD + FT+ Cinn in comparison to the group SD+FT+. There were no differences in anxiety test results between the first and second groups (P ≥ 0.05). Conclusion SD can lead to elevated anxiety, while intra-CeA injection of Cinn ameliorated both perceptions of acute pain and anxiety. Besides, the conduction of FT before the anxiety test led to no disturbance in the results of anxiety tests.
Collapse
Affiliation(s)
- Seyed Kaveh Hadeiy
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services U.K., University of Greenwich, Chatham-Maritime, Kent, ME4 4 T, UK.B., UK
| | - Zeinab Shankayi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of physiology and medical physics, school of medicine, Baqiyatallah University of medical sciences, Tehran, Iran
| | - Shima Shahyad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of physiology and medical physics, school of medicine, Baqiyatallah University of medical sciences, Tehran, Iran
| | | | - Farideh Bahrami
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of physiology and medical physics, school of medicine, Baqiyatallah University of medical sciences, Tehran, Iran
| |
Collapse
|
5
|
Abdelsalam M, Fathi M. Improving productivity in rabbits by using some natural feed additives under hot environmental conditions - A review. Anim Biosci 2023; 36:540-554. [PMID: 36634656 PMCID: PMC9996268 DOI: 10.5713/ab.22.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/24/2022] [Indexed: 01/12/2023] Open
Abstract
Heat stress is a major challenge to animal production in tropical and subtropical climates. Rabbits suffer from heat stress more than farm animals because they have few sweat glands, and their bodies are covered with thick fur. Intensive farming relies on antibiotics as antimicrobials or growth promoters to increase animals' productivity and health. However, the European Union and many countries have banned or restricted the use of antibiotics in animal feed for human health concerns. Several studies have found that replacing antibiotics in rabbit feed with natural plants or feed additives increases productivity and improves immune capacity, especially under heat stress conditions. Growth performance, immune response, gut microflora, and carcass yield may be increased in rabbits fed a diet supplemented with some natural plants and/or propolis. In this review article, we discuss and summarize the effects of some herbs and plant extracts as alternative feed additives on rabbit productivity, especially for those raised under hot ambient temperatures.
Collapse
Affiliation(s)
- Magdy Abdelsalam
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Al-Qassim 51452, Saudi Arabia.,Department of Animal Production, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
| | - Moataz Fathi
- Department of Animal Production and Breeding, College of Agriculture and Veterinary Medicine, Qassim University, Al-Qassim 51452, Saudi Arabia.,Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra 11241, Cairo, Egypt
| |
Collapse
|
6
|
Farag MR, Alagawany M, Abd El-Hack ME, Abdelnour SA, Dhama K, Swelum AA, Di Cerbo A. Dandelion Herb: Chemical Composition and Use in Poultry Nutrition. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:124-136. [DOI: 10.2174/9789815049015122010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Taraxacum officinale, also known as dandelion herb, is a popular medicinal
and therapeutic herb used for many years and is mostly raised in Europe, Asia, North
and South America. It contains several nutrients and bioactive substances, especially
the leaves and roots of this herb, which are a rich source of fiber, lecithin, choline, and
micronutrients such as minerals (potassium, magnesium, calcium, zinc, etc., iron) and
vitamins (A, C, K, and B-complex). The root has been commonly used for digestive
and liver problems due to its stimulatory effects on the production of bile and
detoxification functions. The leaves of dandelion have stimulatory functions on the
digestive system and possess diuretic effects. Furthermore, several studies have shown
that dandelion leaves can enhance the growth and productivity of poultry. Various
functions on the intestinal mucosa have been reported, including the effects on the
architecture of villi, villus height/crypt depth ratio, and cellular infiltration. This herb
also has various beneficial functions, such as immunomodulatory effects, stimulation
of the digestive system and insulin activation, enhancing the metabolism of androgens,
and acting as a probiotic, antiangiogenic, antineoplastic and demulcent. Moreover, the
dandelion herb can treat indigestions and hepatitis B infection. Due to the lack of studies on the effects of dandelion, further research has to be conducted to exploit the
medicinal properties of this herb for its beneficial health impact on humans, pet and
livestock animals (e.g., poultry) nutrition.
Collapse
Affiliation(s)
- Mayada R. Farag
- Zagazig University,Forensic Medicine and Toxicology Department,Zagazig,Egypt
| | | | | | | | - Kuldeep Dhama
- ICAR-Indian Veterinary Research Institute,Bareilly,India
| | - Ayman A. Swelum
- Department of Animal Production,King Saud University,Riyadh,Saudi Arabia
| | | |
Collapse
|
7
|
Li D, Zheng X, Zhang Y, Li X, Chen X, Yin Y, Hu J, Li J, Guo M, Wang X. What Should Be Responsible for Eryptosis in Chronic Kidney Disease? Kidney Blood Press Res 2022; 47:375-390. [PMID: 35114677 DOI: 10.1159/000522133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Renal anemia is an important complication of chronic kidney disease (CKD). In addition to insufficient secretion of erythropoietin (EPO) and erythropoiesis disorders, the impact of eryptosis on renal anemia demands attention. However, a systemic analysis concerning the pathophysiology of eryptosis has not been expounded. SUMMARY The complicated conditions in CKD patients, including oxidative stress, osmotic stress, metabolic stress, accumulation of uremic toxins, and iron deficiency, affect the normal skeleton structure of red blood cells (RBCs) and disturbs ionic homeostasis, causing phosphatidylserine to translocate to the outer lobules of the RBC membrane that leads to early elimination and/or shortening of the RBC lifespan. Inadequate synthesis of RBCs cannot compensate for their accelerated destruction, thus exacerbating renal anemia. Meanwhile, EPO treatment alone will not reverse renal anemia. A variety of eryptosis inhibitors have so far been found, but evidence of their effectiveness in the treatment of CKD remains to be established. KEY MESSAGES In this review, the pathophysiological processes and factors influencing eryptosis in CKD were elucidated. The aim of this review was to underline the importance of eryptosis in renal anemia and determine some promising research directions or possible therapeutic targets to correct anemia in CKD.
Collapse
Affiliation(s)
- Dongxin Li
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China,
| | - Xujuan Zheng
- Health Science Centre, Shenzhen University, Shenzhen, China
| | - Yunxia Zhang
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Xuexun Chen
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Yonghua Yin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, China
| | - Jingwen Hu
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Jialin Li
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Min Guo
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Xiangming Wang
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| |
Collapse
|
8
|
Masyita A, Mustika Sari R, Dwi Astuti A, Yasir B, Rahma Rumata N, Emran TB, Nainu F, Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X 2022; 13:100217. [PMID: 35498985 PMCID: PMC9039924 DOI: 10.1016/j.fochx.2022.100217] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Terpenes and terpenoids are the main bioactive compounds of essential oils (EOs). EOs and their major constituents confer several biological activities. EOs are potential as natural food preservatives.
Essential oils (EOs) are volatile and concentrated liquids extracted from different parts of plants. Bioactive compounds found in EOs, especially terpenes and terpenoids possess a wide range of biological activities including anticancer, antimicrobial, anti-inflammatory, antioxidant, and antiallergic. Available literature confirms that EOs exhibit antimicrobial and food preservative properties that are considered as a real potential application in food industry. Hence, the purpose of this review is to present an overview of current knowledge of EOs for application in pharmaceutical and medical industries as well as their potential as food preservatives in food industry.
Collapse
Affiliation(s)
- Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Reka Mustika Sari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia.,Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Budiman Yasir
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia.,Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Nur Rahma Rumata
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
9
|
Anti-Eryptotic Activity of Food-Derived Phytochemicals and Natural Compounds. Int J Mol Sci 2022; 23:ijms23063019. [PMID: 35328440 PMCID: PMC8951285 DOI: 10.3390/ijms23063019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/05/2023] Open
Abstract
Human red blood cells (RBCs), senescent or damaged due to particular stress, can be removed by programmed suicidal death, a process called eryptosis. There are various molecular mechanisms underlying eryptosis. The most frequent is the increase in the cytoplasmic concentration of Ca2+ ions, later exposure of erythrocytes to oxidative stress, hyperosmotic shock, ceramide formation, stimulation of caspases, and energy depletion. Phosphatidylserine (PS) exposed by eryptotic RBCs due to interaction with endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor, causes the RBCs to adhere to vascular wall with consequent damage to the microcirculation. Eryptosis can be triggered by various xenobiotics and endogenous molecules, such as high cholesterol levels. The possible diseases associated with eryptosis are various, including anemia, chronic kidney disease, liver failure, diabetes, hypertension, heart failure, thrombosis, obesity, metabolic syndrome, arthritis, and lupus. This review addresses and collates the existing ex vivo and animal studies on the inhibition of eryptosis by food-derived phytochemicals and natural compounds including phenolic compounds (PC), alkaloids, and other substances that could be a therapeutic and/or co-adjuvant option in eryptotic-driven disorders, especially if they are introduced through the diet.
Collapse
|
10
|
Shang C, Lin H, Fang X, Wang Y, Jiang Z, Qu Y, Xiang M, Shen Z, Xin L, Lu Y, Gao J, Cui X. Beneficial effects of cinnamon and its extracts in the management of cardiovascular diseases and diabetes. Food Funct 2021; 12:12194-12220. [PMID: 34752593 DOI: 10.1039/d1fo01935j] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) and diabetes are the leading causes of death worldwide, which underlines the urgent necessity to develop new pharmacotherapies. Cinnamon has been an eminent component of spice and traditional Chinese medicine for thousands of years. Numerous lines of findings have elucidated that cinnamon has beneficial effects against CVDs in various ways, including endothelium protection, regulation of immune response, lowering blood lipids, antioxidative properties, anti-inflammatory properties, suppression of vascular smooth muscle cell (VSMC) growth and mobilization, repression of platelet activity and thrombosis and inhibition of angiogenesis. Furthermore, emerging evidence has established that cinnamon improves diabetes, a crucial risk factor for CVDs, by enhancing insulin sensitivity and insulin secretion; regulating the enzyme activity involved in glucose; regulating glucose metabolism in the liver, adipose tissue and muscle; ameliorating oxidative stress and inflammation to protect islet cells; and improving diabetes complications. In this review, we summarized the mechanisms by which cinnamon regulates CVDs and diabetes in order to provide a theoretical basis for the further clinical application of cinnamon.
Collapse
Affiliation(s)
- Chang Shang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hongchen Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuqin Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuling Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhilin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yi Qu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Zihuan Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Laiyun Xin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China. .,First Clinical Medical School, Shandong University of Chinese Medicine, Shandong, 250355, China
| | - Yingdong Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Jialiang Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xiangning Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
11
|
Dhyani R, Srivastava SK, Shankar K, Ghosh T, Beniwal A, Navani NK. A chemical genetic approach using genetically encoded reporters to detect and assess the toxicity of plant secondary metabolites against bacterial pathogens. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126399. [PMID: 34329040 DOI: 10.1016/j.jhazmat.2021.126399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Plant secondary metabolites are emerging as attractive alternatives in the development of therapeutics against infectious and chronic diseases. Due to the present pandemic, therapeutics showing toxicity against bacterial pathogens and viruses are gaining interest. Plant metabolites of terpenoid and phenylpropanoid categories have known antibacterial and antiviral properties. These metabolites have also been associated with toxicity to eukaryotic cells in terms of carcinogenicity, hepatotoxicity, and neurotoxicity. Sensing methods that can report the exact antibacterial dosage, formation, and accumulation of these antibacterial compounds are needed. The whole-cell reporters for such antibacterial metabolites are cost-effective and easy to maintain. In the present study, battery of toxicity sensors containing fluorescent transcriptional bioreporters was constructed, followed by fine-tuning the response using gene-debilitated E. coli mutants. This study shows that by combining regulatory switches with chemical genetics strategy, it may be possible to detect and elucidate the mode of action of effective antibacterial plant secondary metabolites - thymol, cinnamaldehyde, eugenol, and carvacrol in both pure and complex formats. Apart from the detection of adulteration of pure compounds present in complex mixture of essential oils, this approach will be useful to detect authenticity of essential oils and thus reduce unintended harmful effects on human and animal health.
Collapse
Affiliation(s)
- Rajat Dhyani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | | | - Krishna Shankar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Tamoghna Ghosh
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Arun Beniwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Naveen Kumar Navani
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
12
|
Cionti C, Taroni T, Sabatini V, Meroni D. Nanostructured Oxide-Based Systems for the pH-Triggered Release of Cinnamaldehyde. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1536. [PMID: 33801042 PMCID: PMC8003980 DOI: 10.3390/ma14061536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Cinnamaldehyde is a natural product with antibacterial, antifungal, and anti-inflammatory properties, poorly stable in environmental conditions. Systems for the controlled release of cinnamaldehyde are of great interest to the food and pharmaceutical industries. Here, a new oxide-based construct for the release of cinnamaldehyde catalyzed by acidic pH was obtained by a facile grafting method based on amino-silane linkers and imine chemistry. The grafting procedure led to a loading of ca. 5 molecules/nm2, determined on oxide powders with CHN and TGA measurements. The covalent grafting of cinnamaldehyde, demonstrated by FTIR analyses, preserved the molecule stability, simplifying storage. Release tests were performed at different pH values (between 5.0 and 7.4). Thanks to imine chemistry, a fast cinnamaldehyde (CIN) release was observed in a pH 5.0 environment. Using 1 mg/mL suspensions, CIN concentrations within the range adopted in the food industry were obtained (12.4 ppm). The grafting procedure was also performed on a porous film based on a photocatalytic oxide, demonstrating the versatility of this method, adaptable to both powders and macroscopic materials. By taking advantage of the photoactivity of the oxide, regeneration of the fouled film was achieved upon UV irradiation for 1 h, opening the door to reusable devices for the controlled release of cinnamaldehyde.
Collapse
Affiliation(s)
- Carolina Cionti
- Department of Chemistry, Faculty of Science and Technology, Università degli Studi di Milano, via Golgi 19, 20133 Milan, Italy; (C.C.); (T.T.); (V.S.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, via Giusti 9, 50121 Florence, Italy
| | - Tommaso Taroni
- Department of Chemistry, Faculty of Science and Technology, Università degli Studi di Milano, via Golgi 19, 20133 Milan, Italy; (C.C.); (T.T.); (V.S.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, via Giusti 9, 50121 Florence, Italy
| | - Valentina Sabatini
- Department of Chemistry, Faculty of Science and Technology, Università degli Studi di Milano, via Golgi 19, 20133 Milan, Italy; (C.C.); (T.T.); (V.S.)
| | - Daniela Meroni
- Department of Chemistry, Faculty of Science and Technology, Università degli Studi di Milano, via Golgi 19, 20133 Milan, Italy; (C.C.); (T.T.); (V.S.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, via Giusti 9, 50121 Florence, Italy
| |
Collapse
|
13
|
Luo X, Zhao B, Chen B, Chen H, Han T, Bsoul NBN, Yan H. Trans-Cinnamaldehyde Increases Random Pattern Flap Survival Through Activation of the Nitric Oxide Pathway. Drug Des Devel Ther 2021; 15:679-688. [PMID: 33628013 PMCID: PMC7899309 DOI: 10.2147/dddt.s297458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background The application of random pattern skin flaps is limited in plastic surgery reconstruction due to necrosis. Trans-cinnamaldehyde has antibacterial, anticancer, and antioxidant properties. In this study, we aimed to investigate the effect of trans-cinnamaldehyde on skin flap survival and its possible mechanism regarding nitric oxide. Materials and Methods One hundred forty male Sprague-Dawley rats were randomly divided into seven groups (n = 20 each group). After the dorsal flap was raised, different doses of trans-cinnamaldehyde (10, 20, and 30 mg/kg) were immediately given by oral gavage in the three different groups. To assess the possible involvement of the nitric oxide system, NG-nitro-L-arginine methyl ester (L-NAME, a nonselective nitric oxide synthase inhibitor) was used in this study. All flap samples were incised on postoperative day 7. Results Our results showed that flap survival was increased significantly in the 20 mg/kg (P < 0.001) trans-cinnamaldehyde (TC) group compared to the control group or 30 mg/kg TC group. This protective function was restrained by coadministration of L-NAME with 20 mg/kg TC. The results of histopathology, laser Doppler, arteriography mediated with oxide–gelatine, and fluorescent staining all showed a significant increase in capillary count, collagen deposition, angiogenesis, and flap perfusion. Immunohistochemistry results revealed a significant increase in the expression of CD34, eNOS, and VEGF. Conclusion Trans-cinnamaldehyde increased flap survival through the nitric oxide synthase pathway and contributed to angiogenesis. A concentration of 20 mg/kg trans-cinnamaldehyde was recommended in this study.
Collapse
Affiliation(s)
- Xiaobin Luo
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Bin Zhao
- Department of Post Anaesthesia Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Baoxia Chen
- Department of Post Anaesthesia Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Hongyu Chen
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Tao Han
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Najeeb Bassam Najeeb Bsoul
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Hede Yan
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Key Laboratory of Orthopedics of Zhejiang Province, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| |
Collapse
|
14
|
Mameri A, Bournine L, Mouni L, Bensalem S, Iguer-Ouada M. Oxidative stress as an underlying mechanism of anticancer drugs cytotoxicity on human red blood cells' membrane. Toxicol In Vitro 2021; 72:105106. [PMID: 33539984 DOI: 10.1016/j.tiv.2021.105106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/17/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
The aim of this study is to investigate the direct in vitro effects of anticancer drugs on red blood cells (RBCs) and to explore the underlying mechanism, mainly by measuring RBCs oxidative stress (OS) status. After RBCs direct contact with fourteen (14) anticancer drugs, several parameters were assessed including: cellular turbidity, methemoglobin (metHb) generation, released Hb and Hb stability. Moreover, intracellular Hb, considered as new molecular target of anticancer drugs, was quantified inside RBCs. MDA level, the main biomarker of OS, was simultaneously measured. The cellular turbidity reveled severe (docetaxel "TXT", 0.03 ± 0.002), moderate (methotrexate "MTX", 0.49 ± 0.009), or none (5-fluorouracil "5-FU", 0.76 ± 0.029) membrane cytotoxicity (MC). An inverse relationship between cell concentration, released Hb and metHb content was obtained. High metHb generation, revealing intense OS, was also mostly expressed in paclitaxel "TXL" and etoposide "VP16". Further, epirubicin "EPI" and "TXT" induced important oxidation of membrane lipids with 0.32 ± 0.014 and 0.26 ± 0.004, respectively. Also, MTX (0.17 ± 0.006) and doxorubicin "DOX" (0.32 ± 0.034) affected significantly Hb stability by a direct contact with molecule. These findings demonstrated that anticancer drugs have the ability to induce membrane damages by the exacerbation of OS through membrane lipid peroxidation and Hb oxidation even inside RBCs.
Collapse
Affiliation(s)
- Amal Mameri
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurances Qualités (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria
| | - Lamine Bournine
- Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria; Laboratoire de Biotechnologie Végétales et Ethnobotanique (LBVEB), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Lotfi Mouni
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurances Qualités (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria; Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algeria
| | - Sihem Bensalem
- Laboratoire de Biotechnologie Végétales et Ethnobotanique (LBVEB), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| | - Mokrane Iguer-Ouada
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles (LAEMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria
| |
Collapse
|
15
|
Effects of Liquid Yucca Supplementation on Nitrogen Excretion, Intestinal Bacteria, Biochemical and Performance Parameters in Broilers. Animals (Basel) 2019; 9:ani9121097. [PMID: 31818028 PMCID: PMC6940917 DOI: 10.3390/ani9121097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Yucca schidigera had a positive effect on the improvement of economic traits, performance, and carcass characteristics of broilers. Saponin is the main steroidal chemical constituent of Yucca schidigera extract, which physically binds ammonia and reduces its level. Use of natural antibiotic alternatives such Yucca schidigera is necessary to improve growth rates and feed utilization, as well as decreasing nitrogen losses, feed cost, and global environmental pollution. Abstract This study was done to determine the impacts Yucca schidigera supplementation to drinking water on the excretion of nitrogen, and subsequently the level of ammonia, intestinal bacterial count, hematological and biochemical parameters, and some performance parameters. A total of 270 one-day old Cobb 500 chicks were equally divided into three groups (90 chicks/group). The first control group (G1) was fed on the basal diets without any yucca supplementation. The 2nd and 3rd groups (G2 and G3) were fed on basal diets with Yucca Plus liquid®, at an 8 h/day supplementation rate of 0.5, and 1 mL/L to drinking water, respectively. The chicks that received yucca showed significant decreases in litter nitrogen content, when compared to controls. The chicks that received liquid yucca had reduced counts of total bacteria (TBC) (p < 0.05), Escherichia coli, and a non-significant increase in the number of lactic acid producing bacteria. They also showed increased activity of antioxidant enzymes, increased levels of immunoglobulins M and G, and decreased levels of lipid peroxidation biomarkers, without a harmful effect on liver and kidney function. The chicks that received yucca showed a better feed conversion ratio. In conclusion, the use of natural additives is necessary to decrease nitrogen losses, feed cost, and environmental pollution; without adverse impacts on animal performance. Liquid supplementation of saponins is valuable for the performance, gut health, and welfare of broiler chickens.
Collapse
|
16
|
Singh A, Bodakhe SH. Resveratrol delay the cataract formation against naphthalene-induced experimental cataract in the albino rats. J Biochem Mol Toxicol 2019; 34:e22420. [PMID: 31746523 DOI: 10.1002/jbt.22420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/23/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023]
Abstract
Oxidative stress-induced toxicity plays a major role in ocular diseases such as retinal degeneration, age-related cataract (ARC) formation and macular dystrophy. In this study, we explored the possible role of resveratrol (RSV) at the different dose levels (10, 20 and 40 mg/kg/day, ip) in an experimental model of naphthalene (1 g/kg/day, po)-induced age-related cataracts. Morphological changes in the eyes of the rats in two groups, the RSV and the ARC groups, were monitored weekly, and biochemical parameters in the lenses were assessed after completion of the experimental work. A comparison between the rats in the two groups showed that treatments at RSV doses of 20 and 40 mg/kg/day significantly retarded lenticular opacity, restored antioxidants (CAT, SOD, GPX, GSH), Ca2+ ATPase function, and protein contents, and reduced lipid peroxidation in the lenses of the animals in the RSV group. The treatment with resveratrol at a dose of 10 mg/kg/day did not show any anti-cataractogenic effects. Based on the results of our investigation, we conclude that supplemental doses of resveratrol at 40 mg/kg/day effectively prevent cataract formation associated with the aging via increased soluble protein contents and Ca2+ homeostasis, apart from the antioxidant restoration. The results demonstrate that RSV treatment may be considered as a promising preventive or supplemental measure for delaying and/or preventing the formation of ARCs.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
17
|
Yang G, Jin T, Yin S, Guo D, Zhang C, Xia X, Shi C. trans-Cinnamaldehyde mitigated intestinal inflammation induced by Cronobacter sakazakii in newborn mice. Food Funct 2019; 10:2986-2996. [PMID: 31074758 DOI: 10.1039/c9fo00410f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Necrotizing enterocolitis (NEC) is a serious intestinal disease associated with a high mortality (40-60%) in newborn infants. Cronobacter sakazakii is an important factor for NEC. However, studies regarding NEC pathogenesis and therapeutic treatments are still limited. Here, a C. sakazakii-induced mouse neonatal intestinal inflammation model was employed to determine the effects of trans-cinnamaldehyde (TC) on infections. TC treatment reduced the number of C. sakazakii colony-forming units in the ileal tissues and mitigated the morphological damage in intestinal tissues. Additionally, it reduced the mRNA transcription of inflammatory genes and production of interleukin 6 and tumor necrosis factor-α in mice infected with C. sakazakii. Moreover, TC treatment suppressed caspase-3 activity, modulated enterocyte apoptosis, and inhibited the nuclear factor-kappa B signaling pathway activation induced by C. sakazakii. These findings suggest that TC has protective effects on C. sakazakii-induced murine intestinal inflammation and that it may be a potential agent for preventing NEC.
Collapse
Affiliation(s)
- Gaoji Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Mahmoudi S, Farshid AA, Tamaddonfard E, Imani M, Noroozinia F. Behavioral, histopathological, and biochemical evaluations on the effects of cinnamaldehyde, naloxone, and their combination in morphine-induced cerebellar toxicity. Drug Chem Toxicol 2019; 45:250-261. [PMID: 31656103 DOI: 10.1080/01480545.2019.1681446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Long-term morphine use for therapeutic approaches may lead to serious side effects. Several studies have suggested opioid antagonist and antioxidant therapy for reducing adverse effects of morphine. Cinnamaldehyde has a potent anti-oxidant property. In this study, separate and combined effects of cinnamaldehyde and naloxone (an opioid receptor antagonist) on behavioral changes and cerebellar histological and biochemical outcomes were investigated after long-term morphine administration. Seventy-eight rats were divided into two major morphine-treated and morphine-untreated groups. Morphine-treated group was subdivided into seven subgroups for receiving vehicle, normal saline, cinnamaldehyde (1.25, 5, and 20 mg/kg), naloxone, and cinnamaldehyde plus naloxone before morphine. Morphine-untreated group was subdivided into six subgroups and treated with vehicle, cinnamaldehyde (1.25, 5, and 20 mg/kg), naloxone, and their combination. Chemical compounds were administered for 28 consecutive days. Behavioral tests including footprint, rotarod, and beam balance tests were employed. Histopathological and biochemical alterations of cerebellum were determined. Body and cerebellum weights, stride width, time spent on the rotarod, Purkinje cell number, thickness of molecular and granular layers, superoxide dismutase (SOD), and total antioxidant capacity (TAC) decreased as a result of administrating morphine. Morphine increased beam transverse time, malondealdehyde (MDA), tumor necrosis factor-α (TNF-α), and caspase-3 levels. Histopathological changes such as cellular vacuolation and loss were also produced as a result of treatment with morphine. Cinnamaldehyde, naloxone, and their combination treatments improved all the above-mentioned alterations induced by morphine. We concluded that cinnamaldehyde produced a neuroprotective effect through anti-oxidant, anti-inflammatory, apoptotic, and probably naloxone-sensitive opioid receptor interaction mechanisms.
Collapse
Affiliation(s)
- Soraya Mahmoudi
- Department of Pathobiology, Faculty of Veterinary Medicine, Division of Pathology, Urmia University , Urmia , Iran
| | - Amir Abbas Farshid
- Department of Pathobiology, Faculty of Veterinary Medicine, Division of Pathology, Urmia University , Urmia , Iran
| | - Esmaeal Tamaddonfard
- Department of Basic Sciences, Faculty of Veterinary Medicine, Division of Physiology, Urmia University , Urmia , Iran
| | - Mehdi Imani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Division of Biochemistry, Urmia University , Urmia , Iran
| | - Farahnaz Noroozinia
- Department of Basic Sciences, School of Medicine, Division of Pathology, Urmia University of Medical Sciences , Urmia , Iran
| |
Collapse
|
19
|
Tian QY, Piao XS. Essential Oil Blend Could Decrease Diarrhea Prevalence by Improving Antioxidative Capability for Weaned Pigs. Animals (Basel) 2019; 9:ani9100847. [PMID: 31640257 PMCID: PMC6826739 DOI: 10.3390/ani9100847] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Antibiotics have been applied as growth promoters in swine production for many years. Due to increased concern about drug resistance, there is an urgent need to find alternatives to antibiotics for animal production. Present research indicates that essential oils have a beneficial influence on animal nutrition and production due to the antimicrobial and antioxidant properties. Dietary essential oil supplementation could be an alternative to antibiotics for improving swine production and decreasing diarrhea prevalence during the weaning period. Abstract Finding an alternative to in-feed antibiotics is important because of increasing contemporary concern regarding drug residues and the development of drug-resistant bacteria. The purpose of this study was to test the hypothesis that essential oils added to the feed would decrease diarrhea prevalence in post-weaned pigs. Ninety weaned piglets (initial body weight (BW): 8.1 ± 1.4 kg) were randomly assigned to one of three dietary diets: (1) a control diet (CON, the basal diet without antibiotics), (2) an antibiotic diet (AB, CON supplemented with colistin sulfate, 20 mg/kg and bacitracin zinc, 40 mg/kg), or (3) an essential oil diet (EO, CON supplemented with an essential oil blend 100 mg/kg) in a completely randomized block design for a 28-day period. The results revealed that AB and EO improved the average daily gain of the piglets from day (d) 15 to 28 (p < 0.05). The diarrhea prevalence in piglets fed AB and EO was lower than that of piglets fed CON (p < 0.05). There was no significant difference in the growth performance or diarrhea prevalence between the AB and EO treatments. Nutrient digestibility was measured at d 28. Compared with CON, EO increased the apparent total tract digestibility of gross energy and crude protein (p < 0.05). Villus height in the duodenum and the ratio of villus height to crypt depth in the jejunum for piglets fed AB and EO was greater than those for piglets fed CON (p < 0.05). The essential oil blend improved the superoxide dismutase (SOD) and catalase (CAT) activities and total antioxidant capacity (T-AOC), but decreased the 8-hydroxy deoxyguanosine content in serum on d 14 (p < 0.05). Decreased malondialdehyde (MDA) and protein carbonyl content were observed on d 28 in comparison with CON (p < 0.05). The mucosa in the jejunum of pigs fed EO had greater T-AOC, SOD levels, and glutathione peroxidase (GSH-Px) activities than that of pigs fed CON (p < 0.05). Pigs fed EO and AB had greater GSH-Px activity in the liver tissue than pigs fed CON (p < 0.05). Not only did jejunal and ileal mucosa have EO upregulated SOD1 mRNA expression (p < 0.05), this was also the case in liver tissue. GPx1 expression in the ileal mucosa and GPx4 expression in the liver tissue were higher for pigs fed EO when compared to those fed CON (p < 0.05). Collectively, a dietary essential oil blend supplementation, which has natural antimicrobial properties, could enhance growth performance and decrease diarrhea prevalence in weaned pigs through increases in antioxidative capacity.
Collapse
Affiliation(s)
- Qi Yu Tian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xiang Shu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
|
21
|
Etaee F, Komaki A, Faraji N, Rezvani-Kamran A, Komaki S, Hasanein P, Taheri M, Omidi G. The effects of cinnamaldehyde on acute or chronic stress-induced anxiety-related behavior and locomotion in male mice. Stress 2019; 22:358-365. [PMID: 30806129 DOI: 10.1080/10253890.2019.1567710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Anxiety and stress are considered as universal psychiatric exhibitions of the present societies and lifestyles. Several experiments have been conducted to examine natural anxiolytic agents to find out an alternative to synthetic anxiolytic drugs. The present study investigated the anxiolytic effects of cinnamaldehyde (Cin) on mice behavior in the elevated plus maze (EPM) and open field (OF) tests. Sixty male Swiss mice, weighing 20-30 g, were divided into six groups including: acute stress + mazola oil; chronic stress + oil; acute stress + Cin (20 mg/kg); chronic stress + Cin; non-stress + oil; and non-stress + Cin groups. The groups were administered for seven days (once a day). The acute stress + Cin group showed a meaningful rise in the percentage of entries into the open arms compared to the acute stress + oil group (p <.05). The percentage of time spent in the open arms in the chronic stress + Cin group was significantly higher compared to the chronic stress + oil group (p < .01). The percentage of entries into the open arms increased significantly (p < .01) in the chronic stress + Cin group in comparison with the chronic stress + oil group. The Cin treated groups showed significant increases in the time spent in the center area and in the number of entries into the center area compared with the oil treated groups in OF test. The number of entries into the arms (total activity), as well as locomotor activity was not significant among groups. The results of the present study indicated that Cin, as a natural product, might have anxiolytic effects in mice behavior in the EPM and OF tests. Lay summary The results demonstrated that the administration of cinnamaldehyde (Cin) produced anxiolytic effects in mice. Natural antioxidant products have been reported effective for anxiety. Synthetic medications have notable adverse effects. Therefore, these natural substances with broad therapeutic applicability are able to reduce anxiety-related behavior with rare side effects. According to the results, Cin could decrease anxiety-related behavior in mice.
Collapse
Affiliation(s)
- Farshid Etaee
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
- b Rahe Sabz Addiction Rehabilitation Clinic , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Alireza Komaki
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Nafiseh Faraji
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Arezoo Rezvani-Kamran
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Somayeh Komaki
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Parisa Hasanein
- c Department of Biology, School of Basic Sciences , University of Zabol , Zabol , Iran
| | - Mohammad Taheri
- d Department of Medical Genetics , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ghazaleh Omidi
- a Neurophysiology Research Center , Hamadan University of Medical Sciences , Hamadan , Iran
| |
Collapse
|
22
|
Jarosiewicz M, Michałowicz J, Bukowska B. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants. CHEMOSPHERE 2019; 215:404-412. [PMID: 30336317 DOI: 10.1016/j.chemosphere.2018.09.161] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/18/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Brominated flame retardants (BFRs) such as tetrabromobisphenol A (TBBPA) and tetrabromobisphenol S (TBBPS) as well as bromophenols, i.e. 2,4-dibromophenol (2,4-DBP), 2,4,6-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) have raised wide concerns due to their widespread occurrence in the environment and adverse effects observed in living organisms including human. The effect of BFRs on apoptosis of human erythrocytes has not been examined, that is why we have decided to assess eryptotic potential of these substances by determining changes in phosphatidylserine (PS) translocation, alterations in intracellular ROS and calcium ion levels, as well as caspase-3 and calpain activation in this cell type. It has been found that all BFRs studied even in the concentration of 0.001 μg/mL induced ROS formation. The compounds examined caused apoptosis by PS externalization and caspase-3 activation in human red blood cells. It has also been shown that calcium ions and calpain did not play a significant role in eryptosis induction by BFRs studied in human erythrocytes.
Collapse
Affiliation(s)
- Monika Jarosiewicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-237 Łódź, Poland.
| | - Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-237 Łódź, Poland
| | - Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143 St., 90-237 Łódź, Poland
| |
Collapse
|
23
|
Cinnamaldehyde ameliorates STZ-induced rat diabetes through modulation of IRS1/PI3K/AKT2 pathway and AGEs/RAGE interaction. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:243-258. [DOI: 10.1007/s00210-018-1583-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
|
24
|
Alagawany M, Abd El-Hack ME, Farag MR, Elnesr SS, El-Kholy MS, Saadeldin IM, Swelum AA. Dietary supplementation of Yucca schidigera extract enhances productive and reproductive performances, blood profile, immune function, and antioxidant status in laying Japanese quails exposed to lead in the diet. Poult Sci 2018; 97:3126-3137. [PMID: 29846703 DOI: 10.3382/ps/pey186] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/13/2018] [Indexed: 11/20/2022] Open
Abstract
The present study investigated the toxic impacts of lead (LD) on the productive and reproductive performances of Japanese quails and the role of Yucca schidigera extract (YSE) in reducing these impacts. A total of 360 mature Japanese quails (at 2 months of age) were used and the experiment was lasted for 8 wk. The birds were divided into 6 equal groups as follows: control (basal diet), basal diet + 100 mg LD/kg diet, basal diet + YSE (100 mg/kg diet), basal diet + YSE (200 mg/kg diet), basal diet + LD (100 mg/kg diet) + YSE (100 mg/kg diet), and basal diet + LD (100 mg/kg diet) + YSE (200 mg/kg diet). LD resulted in a significant decrease in feed intake (FI), feed conversion ratio (FCR), and egg production of birds compared with the control group. Supplementation of YSE (100 or 200) to LD containing diet could significantly improve the quail performance parameters to be comparable with the control values. Fertility and hatchability % were decreased by LD, whereas YSE at both levels (100 or 200) separately or in combination with LD showed fertility and hatchability percentages comparable to that of control. Triglycerides, cholesterol, and LDL contents in LD plus YSE100 or LD plus YSE200 groups were significantly decreased than LD alone group. LD significantly decreased superoxide dismutase and catalase activities in the serum with no effect on reduced glutathione content. Co-exposure to YSE100 or YSE200 with LD significantly increased the catalase activity and numerically increased the superoxide dismutase activity than LD alone. YSE100 or YSE200 decreased malondialdehyde contents than LD alone group. LD plus YSE100 or YSE200 groups exhibited significant improvements in the level of immunoglobulins. Co-exposure to YSE with LD significantly decreased the LD residues in egg than the LD group. The obtained results showed that YSE exhibited a potential modulatory role against the LD-induced inhibitory effects on the productive and reproductive performances of Japanese quails and YSE at 200 mg/kg diet was more effective than 100 mg/kg diet in reversing the LD-induced alterations.
Collapse
Affiliation(s)
- M Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - M E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - M R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt
| | - S S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| | - M S El-Kholy
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - I M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - A A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
25
|
Kaur N, Gupta P, Saini V, Sherawat S, Gupta S, Dua A, Kumar V, Injeti E, Mittal A. Cinnamaldehyde regulates H 2 O 2 -induced skeletal muscle atrophy by ameliorating the proteolytic and antioxidant defense systems. J Cell Physiol 2018; 234:6194-6208. [PMID: 30317570 DOI: 10.1002/jcp.27348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Skeletal muscle atrophy/wasting is associated with impaired protein metabolism in diverse physiological and pathophysiological conditions. Elevated levels of reactive oxygen species (ROS), disturbed redox status, and weakened antioxidant defense system are the major contributing factors toward atrophy. Regulation of protein metabolism by controlling ROS levels and its associated catabolic pathways may help in treating atrophy and related clinical conditions. Although cinnamaldehyde (CNA) enjoys the established status of antioxidant and its role in ROS management is reported, impact of CNA on skeletal muscle atrophy and related pathways is still unexplored. In the current study, the impact of CNA on C2C12 myotubes and the possible protection of cultured cells from H 2 O 2 -induced atrophy is examined. Myotubes were treated with H 2 O 2 in the presence and absence of CNA and the changes in the antioxidative, proteolytic systems, and mitochondrial functions were scored. Morphological analysis showed significant protective effects of CNA on length, diameter, and nuclei fusion index of myotubes. The evaluation of biochemical markers of atrophy; creatine kinase, lactate dehydrogenase, succinate dehydrogenase along with the study of muscle-specific structural protein (i.e., myosin heavy chain-fast [MHCf] type) showed significant protection of proteins by CNA. CNA pretreatment not only checked the activation of proteolytic systems (ubiquitin-proteasome E3-ligases [MuRF1/Atrogin1]), autophagy [Beclin1/LC3B], cathepsin L, calpain, caspase), but also prevented any alteration in the activities of antioxidative defense enzymes (catalase, glutathione- S-transferase, glutathione-peroxidase, superoxide dismutase, glutathione reductase). The results suggest that CNA protects myotubes from H 2 O 2 -induced atrophy by inhibiting/resisting the amendments in proteolytic systems and maintains cellular redox-balance.
Collapse
Affiliation(s)
- Nirmaljeet Kaur
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| | - Prachi Gupta
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| | - Vikram Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Sherawat
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| | - Sanjeev Gupta
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| | - Anita Dua
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| | - Vinod Kumar
- Department of Chemistry, M.M. University, Ambala, India
| | - Elisha Injeti
- Department of Pharmaceutical Sciences, School of Pharmacy, Cedarville University, Cedarville, Ohio
| | - Ashwani Mittal
- Skeletal Muscle Lab, University College, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
26
|
Abdelnour S, Alagawany M, El-Hack MEA, Sheiha AM, Saadeldin IM, Swelum AA. Growth, Carcass Traits, Blood Hematology, Serum Metabolites, Immunity, and Oxidative Indices of Growing Rabbits Fed Diets Supplemented with Red or Black Pepper Oils. Animals (Basel) 2018; 8:ani8100168. [PMID: 30279392 PMCID: PMC6211009 DOI: 10.3390/ani8100168] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to examine the impacts of the supplementation of red or black pepper oils to rabbit diet as growth promoters on New Zealand white (NZW) rabbits. One hundred and forty weaned NZW rabbits were divided randomly into seven groups in a completely randomized experiment using different quantities of red pepper oil (RPO; 0.5, 1.0, 1.5 g/kg diet) or black pepper oil (BPO; 0.5, 1.0, 1.5 g/kg diet), in addition to the control group. Compared to the control, values of live body weight (LBW) for rabbits fed either RPO or BPO enriched diets were greater. The concentrations of serum triglycerides and cholesterol were lower (p < 0.01) in the RPO- and BPO-treated groups than in the control. Immunity parameters and antioxidant indices were improved in treated groups in comparison to the control. Dietary RPO or BPO can affect some growth traits, improve immunity parameters and the antioxidant activity, and decrease the lipid profile and lipid peroxidation. The use of 0.5 g RPO/kg diet as a dietary supplement had a larger effect on growth parameters than the other treatment groups.
Collapse
Affiliation(s)
- Sameh Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Asmaa M Sheiha
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
27
|
Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 2018; 286:826-854. [PMID: 30028073 DOI: 10.1111/febs.14606] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The average lifespan of circulating erythrocytes usually exceeds hundred days. Prior to that, however, erythrocytes may be exposed to oxidative stress in the circulation which could cause injury and trigger their suicidal death or eryptosis. Oxidative stress activates Ca2+ -permeable nonselective cation channels in the cell membrane, thus, stimulating Ca2+ entry and subsequent cell membrane scrambling resulting in phosphatidylserine exposure and activation of Ca2+ -sensitive K+ channels leading to K+ exit, hyperpolarization, Cl- exit, and ultimately cell shrinkage due to loss of KCl and osmotically driven water. While the mechanistic link between oxidative stress and anemia remains ill-defined, several diseases such as diabetes, hepatic failure, malignancy, chronic kidney disease and inflammation have been identified to display both increased oxidative stress as well as eryptosis. Recent compelling evidence suggests that oxidative stress is an important perpetrator in accelerating erythrocyte loss in different systemic conditions and an underlying mechanism for anemia associated with these pathological states. In the present review, we discuss the role of oxidative stress in reducing erythrocyte survival and provide novel insights into the possible use of antioxidants as putative antieryptotic and antianemic agents in a variety of systemic diseases.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls-University Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Florian Lang
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany.,Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
28
|
Farag MR, Alagawany M, Abd El-Hack ME, El-Sayed SAA, Ahmed SYA, Samak DH. Yucca schidigera extract modulates the lead-induced oxidative damage, nephropathy and altered inflammatory response and glucose homeostasis in Japanese quails. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:311-321. [PMID: 29571109 DOI: 10.1016/j.ecoenv.2018.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/28/2018] [Accepted: 03/03/2018] [Indexed: 05/26/2023]
Abstract
The present study was conducted to explore the toxic effects of lead (Pb) on the physiological responses of Japanese quails and to investigate the potential modulatory role of Yucca schidigera extract (YSE) against these effects. 360 mature Japanese quails (at 2 months of age) were used and the experiment was lasted for 8 weeks. The birds were divided into six equal groups as follow: control (basal diet, BD), BD+Pb (100 mg/kg diet), BD+YSE (100 mg/kg diet), BD+YSE (200 mg/kg diet), BD+Pb (100 mg/kg diet) +YSE (100 mg/kg diet) and BD+ Pb (100 mg/kg diet) + YSE (200 mg/kg diet). Pb induced a significant reduction in superoxide dismutase (SOD) and catalase (CAT) activities and reduced glutathione (GSH) level. While, increased protein carbonyl (PC) and malondialdehyde (MDA) content in tissues of exposed birds. Pb increased level of 8-hydroxy-2-deoxyguanosine (8-OHdG) and lactate dehydrogenase (LDH) activity in serum. YSE significantly reduced the Pb -induced oxidative stress in co-treated groups especially at 200 mg/kg diet. YSE could modulate the Pb -induced decreased urea, creatinine and beta-2 microglobulin (B2M) levels. YSE200 was found to be better than the YSE100 in decreasing levels of inflammatory markers including tumor necrosis factor (TNF-α), nitric oxide (NO), transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF). Furthermore, YSE significantly regulates glucose homeostasis in co-exposed quails. Pb residues were found to be significantly higher in kidney and pancreas tissues of Pb group compared to other groups. YES decreased the expression of metallothionein-1 in the renal and pancreatic tissues, while elevated insulin expression in the pancreatic cells by immunostaining in co-exposed groups. In conclusion, the present results conclusively demonstrate the potential modulatory effect of YSE against the Pb-induced toxic effects in different organs of Japanese quails.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt.
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Sabry A A El-Sayed
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Sarah Y A Ahmed
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faulty of Veterinary Medicine, Damanhour University, 22516, Egypt
| |
Collapse
|
29
|
Sicińska P. Di-n-butyl phthalate, butylbenzyl phthalate and their metabolites induce haemolysis and eryptosis in human erythrocytes. CHEMOSPHERE 2018; 203:44-53. [PMID: 29605748 DOI: 10.1016/j.chemosphere.2018.03.161] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Phthalates have been extensively used as plasticizers in various fields, including food, cosmetic, and pharmaceutical industry. Those compounds do not form covalent bonds to substances they are being added to, and thus they may migrate easily and penetrate various products used every day. They may reach organisms with air, food, or by a direct skin contact. Significant levels of phthalates and their metabolites are found in urine, breast milk, blood serum, venous blood, and cord blood. The purpose of this study was to assess the simple toxicity (haemolysis) and programmed death (eryptosis) caused by following phthalates: di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBP) and their metabolites: mono-n-butyl phthalate (MBP) and mono-benzyl phthalate (MBzP) in vitro in human RBCs. RBCs were incubated with the above mentioned compounds at concentrations ranging between 0.5 and 500 μg/mL for 24 h. Obtained results demonstrated that DBP and BBP possess higher haemolytic properties compared to their metabolites. The lethal concentration (LC50) was determined. The value was 126.37 ± 5.94 μg/mL for DBP, and 103.65 ± 4.03 μg/mL for BBP, and for metabolites the LC50 value was over 500 μg/mL. All compounds induced eryptosis causing translocation of phosphatidylserine, increased cytosolic calcium ions level, increased caspase-3 and calpain activation in human erythrocytes. BBP caused translocation of phosphatidylserine at a lower concentration compared to DBP. In case of other parameters, more pronounced changes were evoked by DBP at lower concentrations. Metabolites showed a significantly lower toxicity compared to parent compounds.
Collapse
Affiliation(s)
- Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz., Pomorska 141/143 St. 90-236 Lodz, Poland.
| |
Collapse
|
30
|
Liu H, Zhu G, Fan Y, Du Y, Lan M, Xu Y, Zhu W. Natural Products Research in China From 2015 to 2016. Front Chem 2018; 6:45. [PMID: 29616210 PMCID: PMC5869933 DOI: 10.3389/fchem.2018.00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
This review covers the literature published by chemists from China during the 2015-2016 on natural products (NPs), with 1,985 citations referring to 6,944 new compounds isolated from marine or terrestrial microorganisms, plants, and animals. The emphasis is on 730 new compounds with a novel skeleton or/and significant bioactivity, together with their source organism and country of origin.
Collapse
Affiliation(s)
- Haishan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guoliang Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yaqin Fan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuqi Du
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Lan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yibo Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
31
|
Insights on Localized and Systemic Delivery of Redox-Based Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2468457. [PMID: 29636836 PMCID: PMC5832094 DOI: 10.1155/2018/2468457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022]
Abstract
Reactive oxygen and nitrogen species are indispensable in cellular physiology and signaling. Overproduction of these reactive species or failure to maintain their levels within the physiological range results in cellular redox dysfunction, often termed cellular oxidative stress. Redox dysfunction in turn is at the molecular basis of disease etiology and progression. Accordingly, antioxidant intervention to restore redox homeostasis has been pursued as a therapeutic strategy for cardiovascular disease, cancer, and neurodegenerative disorders among many others. Despite preliminary success in cellular and animal models, redox-based interventions have virtually been ineffective in clinical trials. We propose the fundamental reason for their failure is a flawed delivery approach. Namely, systemic delivery for a geographically local disease limits the effectiveness of the antioxidant. We take a critical look at the literature and evaluate successful and unsuccessful approaches to translation of redox intervention to the clinical arena, including dose, patient selection, and delivery approach. We argue that when interpreting a failed antioxidant-based clinical trial, it is crucial to take into account these variables and importantly, whether the drug had an effect on the redox status. Finally, we propose that local and targeted delivery hold promise to translate redox-based therapies from the bench to the bedside.
Collapse
|
32
|
Dorri M, Hashemitabar S, Hosseinzadeh H. Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol 2018; 41:338-351. [DOI: 10.1080/01480545.2017.1417995] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mahyar Dorri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shirin Hashemitabar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Friedman M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10406-10423. [PMID: 29155570 DOI: 10.1021/acs.jafc.7b04344] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cinnamaldehyde is a major constituent of cinnamon essential oils produced by aromatic cinnamon plants. This compound has been reported to exhibit antimicrobial properties in vitro in laboratory media and in animal feeds and human foods contaminated with disease-causing bacteria including Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. This integrated review surveys and interprets our current knowledge of the chemistry, analysis, safety, mechanism of action, and antibiotic activities of cinnamaldehyde in food animal (cattle, lambs, calves, pigs, poultry) diets and in widely consumed liquid (apple, carrot, tomato, and watermelon juices, milk) and solid foods. Solid foods include various fruits (bayberries, blueberries, raspberries, and strawberries), vegetables (carrots, celery, lettuce, spinach, cucumbers, and tomatoes), meats (beef, ham, pork, and frankfurters), poultry (chickens and turkeys), seafood (oysters and shrimp), bread, cheese, eggs, infant formula, and peanut paste. The described findings are not only of fundamental interest but also have practical implications for food safety, nutrition, and animal and human health. The collated information and suggested research needs will hopefully facilitate and guide further studies needed to optimize the use of cinnamaldehyde alone and in combination with other natural antimicrobials and medicinal antibiotics to help prevent and treat food animal and human diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|
34
|
Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem Biol Interact 2017; 279:73-83. [PMID: 29128605 DOI: 10.1016/j.cbi.2017.11.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/24/2017] [Accepted: 11/07/2017] [Indexed: 01/15/2023]
Abstract
Erythrocytes are the main cells in circulation. They are devoid of internal membrane structures and easy to be isolated and handled providing a good model for different assays. Red blood cells (RBCs) plasma membrane is a multi-component structure that keeps the cell morphology, elasticity, flexibility and deformability. Alteration of membrane structure upon exposure to xenobiotics could induce various cellular abnormalities and releasing of intracellular components. Therefore the morphological changes and extracellular release of haemoglobin [hemolysis] and increased content of extracellular adenosine triphosphate (ATP) [as signs of membrane stability] could be used to evaluate the cytotoxic effects of various molecules. The nucleated RBCs from birds, fish and amphibians can be used to evaluate genotoxicity of different xenobiotics using comet, DNA fragmentation and micronucleus assays. The RBCs could undergo programmed cell death (eryptosis) in response to injury providing a useful model to analyze some mechanisms of toxicity that could be implicated in apoptosis of nucleated cells. Erythrocytes are vulnerable to peroxidation making it a good biological membrane model for analyzing the oxidative stress and lipid peroxidation of various xenobiotics. The RBCs contain a large number of enzymatic and non-enzymatic antioxidants. The changes of the RBCs antioxidant capacity could reflect the capability of xenobiotics to generate reactive oxygen species (ROS) resulting in oxidative damage of tissue. These criteria make RBCs a valuable in vitro model to evaluate the cytotoxicity of different natural or synthetic and organic or inorganic molecules by cellular damage measures.
Collapse
|
35
|
Lang F, Bissinger R, Abed M, Artunc F. Eryptosis - the Neglected Cause of Anemia in End Stage Renal Disease. Kidney Blood Press Res 2017; 42:749-760. [PMID: 29151105 DOI: 10.1159/000484215] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/23/2017] [Indexed: 11/19/2022] Open
Abstract
End stage renal disease (ESRD) invariably leads to anemia which has been mainly attributed to compromised release of erythropoietin from the defective kidneys with subsequent impairment of erythropoiesis. However, erythropoietin replacement only partially reverses anemia pointing to the involvement of additional mechanisms. As shown more recently, anemia of ESRD is indeed in large part a result of accelerated erythrocyte loss due to suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the cell surface. Phosphatidylserine exposing erythrocytes are bound to and engulfed by macrophages and are thus rapidly cleared from circulating blood. If the loss of erythrocytes cannot be fully compensated by enhanced erythropoiesis, stimulation of eryptosis leads to anemia. Eryptotic erythrocytes may further adhere to the vascular wall and thus impair microcirculation. Stimulators of eryptosis include complement, hyperosmotic shock, energy depletion, oxidative stress, and a wide variety of xenobiotics. Signaling involved in the stimulation of eryptosis includes increase of cytosolic Ca2+ activity, ceramide, caspases, calpain, p38 kinase, protein kinase C, Janus-activated kinase 3, casein kinase 1α, and cyclin-dependent kinase 4. Eryptosis is inhibited by AMP-activated kinase, p21-activated kinase 2, cGMP-dependent protein kinase, mitogen- and stress-activated kinase MSK1/2, and some illdefined tyrosine kinases. In ESRD eryptosis is stimulated at least in part by a plasma component, as it is triggered by exposure of erythrocytes from healthy individuals to plasma from ESRD patients. Several eryptosis-stimulating uremic toxins have been identified, such as vanadate, acrolein, methylglyoxal, indoxyl sulfate, indole-3-acetic acid and phosphate. Attempts to fully reverse anemia in ESRD with excessive stimulation of erythropoiesis enhances the number of circulating suicidal erythrocytes and bears the risk of interference with micocirculation, At least in theory, anemia in ESRD could preferably be treated with replacement of erythropoietin and additional inhibition of eryptosis thus avoiding eryptosis-induced impairment of microcirculation. A variety of eryptosis inhibitors have been identified, their efficacy in ESRD remains, however, to be shown.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, University of Tübingen, Tübingen, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Rosi Bissinger
- Department of Internal Medicine III, University of Tübingen, Tübingen, Germany
| | - Majed Abed
- Department of Physiology I, University of Tübingen, Tübingen, Germany
| | - Ferruh Artunc
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Tübingen, Germany
| |
Collapse
|
36
|
Abed M, Thiel C, Towhid S, Alzoubi K, Honisch S, Lang F, Königsrainer A. Stimulation of Erythrocyte Cell Membrane Scrambling by C-Reactive Protein. Cell Physiol Biochem 2017; 41:806-818. [DOI: 10.1159/000458745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/25/2017] [Indexed: 12/29/2022] Open
Abstract
Background: Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phosphatidylserine-translocation, is triggered by fever and inflammation. Signaling includes increased cytosolic Ca2+-activity ([Ca2+]i), caspase activation, and ceramide. Inflammation is associated with increased plasma concentration of C-reactive protein (CRP). The present study explored whether CRP triggers eryptosis. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide abundance and caspase-3-activity utilizing FITC-conjugated antibodies. Moreover, blood was drawn from patients with acute appendicitis (9♀,11♂) and healthy volunteers (10♀,10♂) for determination of CRP, blood count and phosphatidylserine. Results: A 48h CRP treatment significantly increased the percentage of annexin-V-binding cells (≥5µg/ml), [Ca2+]i (≥5µg/ml), ceramide (20µg/ml) and caspase-activity (20µg/ml). Annexin-V-binding was significantly blunted by caspase inhibitor zVAD (10µM). The percentage of phosphatidylserine-exposing erythrocytes in freshly drawn blood was significantly higher in appendicitis patients (1.83±0.21%) than healthy volunteers (0.81±0.09%), and significantly higher following a 24h incubation of erythrocytes from healthy volunteers to patient plasma than to plasma from healthy volunteers. The percentage of phosphatidylserine-exposing erythrocytes correlated with CRP plasma concentration. Conclusion: C-reactive protein triggers eryptosis, an effect at least partially due to increase of [Ca2+]i, increase of ceramide abundance and caspase activation.
Collapse
|