1
|
Diawara MO, Li S, Zhang M, Bigambo FM, Yang X, Wang X, Dong T, Wu D, Yan C, Xia Y. Evaluation of multiple organophosphate insecticide exposure in relation to altered thyroid hormones in NHANES 2007-2008 adult population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116139. [PMID: 38428240 DOI: 10.1016/j.ecoenv.2024.116139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
The thyroid gland is susceptible to chemical exposure such as organophosphate insecticides (OPIs). With the ubiquitous nature of these products, humans are simultaneously exposed to a multitude of chemicals. This study aimed to evaluate the association between an individual and a mixture of OPI metabolites and changes in serum thyroid hormone (TH) concentrations. The analyzed data were 1,434 participants from the United States National Health and Nutrition Examination Surveys (NHANES) cycle 2007-2008. Generalized linear model (GLM) regression, weighted quantile sum (WQS), and adaptive least absolute shrinkage and selection operator (adaptive LASSO) regression were used to investigate the associations between urinary OPI metabolites and altered serum THs. In GLM, all of the five urinary OPI metabolites were inversely associated with free triiodothyronine (FT3) among the male subjects; meanwhile, higher thyroglobulin (Tg) was related to dimethylphosphate (DMP). Moreover, in WQS models, the metabolite mixture induced FT3 down-regulation (β = -0.209 (95% CI: -0.310, -0.114)), and caused an increased Tg concentration (β = 0.120 (95% CI: 0.024, 0.212)), however, any significant association was observed among female participants. Consistently, the weighted index and LASSO coefficient demonstrated dimethylthiophosphate (DMTP) as the strongest metabolite in the FT3 model (mean weight= 3.449e-01 and β =-0.022, respectively), and dimethylphosphate (DMP) represented the highest association in the Tg model (mean weight= 9.873e-01 and β =-0.020, respectively). Further research is required to confirm our results and investigate the clinical impacts of these disruptions.
Collapse
Affiliation(s)
- Massira Ousseni Diawara
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Songtao Li
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Francis Manyori Bigambo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xu Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenghao Yan
- Department of Engineering, University College London, London WC1E 6BT, UK
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Kaur R, Choudhary D, Bali S, Bandral SS, Singh V, Ahmad MA, Rani N, Singh TG, Chandrasekaran B. Pesticides: An alarming detrimental to health and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170113. [PMID: 38232846 DOI: 10.1016/j.scitotenv.2024.170113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Pesticides are chemical substances of natural or synthetic origin that are used to eradicate pests and insects. These are indispensable in the agricultural processes for better crop production. Pesticide use aims to promote crop yield and protect the crops from diseases and damage. Pesticides must be handled carefully and disposed of appropriately because they are dangerous to people and other species by default. Environmental pollution occurs when pesticide contamination spreads away from the intended plants. Older pesticides such as lindane and dichlorodiphenyltrichloroethane (DDT) may remain in water and soil for a longer time. These accumulate in various parts of the food chain and cause damage to the ecosystem. Biological techniques in the management of pest control such as importation, augmentation, and conservation, and the accompanying procedures are more efficient, less expensive, and ecologically sound than other ways. This review mainly focuses on the consequences on the targeted and non-targeted organisms including the health and well-being of humans by the use of pesticides and their toxicity. The side effects that occur when a pesticide's LD50 exceeds the accepted limit through oral or skin penetration due to their binding to various receptors such as estrogen receptors, GABA, EGFR, and others. These pesticide classes include carbamates, pyrethroids, organochlorides, organophosphorus, and others. The current study seeks to highlight the urgent requirement for a novel agricultural concept that includes a major reduction in the use of chemical pesticides.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India.
| | - Diksha Choudhary
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Samriddhi Bali
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | | | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Md Altamash Ahmad
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | | | | |
Collapse
|
3
|
Mohanty B. Pesticides exposure and compromised fitness in wild birds: Focusing on the reproductive endocrine disruption. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105800. [PMID: 38458691 DOI: 10.1016/j.pestbp.2024.105800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 03/10/2024]
Abstract
Exposure of pesticides to wildlife species, especially on the aspect of endocrine disruption is of great concern. Wildlife species are more at risk to harmful exposures to the pesticides in their natural habitat through diet and several other means. Species at a higher tropic level in the food chain are more susceptible to the deleterious effects due to sequential biomagnifications of the pesticides/metabolites. Pesticides directly affect fitness of the species in the wild causing reproductive endocrine disruption impairing the hormones of the gonads and thyroid glands as reproduction is under the influence of cross regulations of these hormones. This review presents a comprehensive compilation of important literatures on the impact of the current use pesticides in disruption of both the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid axes particularly in birds addressing impacts on the reproductive impairments and overall fitness. In addition to the epidemiological studies, laboratory investigations those provide supportive evidences of the probable mechanisms of disruption in the wild also have been incorporated in this review. To accurately predict the endocrine-disruption of the pesticides as well as to delineate the risk associated with potential cumulative effects, studies are to be more focused on the environmentally realistic exposure dose, mixture pesticide exposures and transgenerational effects. In addition, strategic screening/appropriate methodologies have to be developed to reveal the endocrine disruption potential of the contemporary use pesticides. Demand for adequate quantitative structure-activity relationships and insilico molecular docking studies for timely validation have been highlighted.
Collapse
|
4
|
Biosca-Brull J, Basaure P, Guardia-Escote L, Cabré M, Blanco J, Morales-Navas M, Sánchez-Santed F, Colomina MT. Environmental exposure to chlorpyrifos during gestation, APOE polymorphism and the risk on autistic-like behaviors. ENVIRONMENTAL RESEARCH 2023; 237:116969. [PMID: 37659636 DOI: 10.1016/j.envres.2023.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Autism spectrum disorder (ASD) encompasses several neurodevelopmental conditions characterized by communication and social impairment, as well as repetitive patterns of behavior. However, it can co-occur with other mental conditions such as anxiety. The massive use of chlorpyrifos (CPF) has been linked to the increased prevalence of developmental disorders. Likewise, ASD has also been closely linked to a wide variety of genetic factors. The aims of the present investigation are to study how gestational CPF exposure and APOE polymorphism affects communication skills, early development and mid-term anxiety-like behaviors, as well as, changes in gene expression related to the cholinergic system. C57BL/6J and humanized apoE3 and apoE4 homozygous mice were exposed to 0 or 1 mg/kg/day of CPF through the diet, from gestational day (GD) 12-18. In addition, a group of C57BL/6J females were injected subcutaneously with 300 mg/kg/day of valproic acid (VPA) on GD 12 and 13. This group was used as a positive control for studying some core and associated autism-like behaviors. Communication skills by means of ultrasonic vocalizations and physical/motor development were assessed during the preweaning period, whereas locomotor activity, anxiety-like behaviors and the gene expression of cholinergic elements were evaluated during adolescence. Our results showed that C57BL/6J mice prenatally exposed to CPF or VPA showed a decrease in body weight and a delay in eye opening. Communication and anxiety behavior were affected differently depending on treatment, while gene expression was altered by sex and treatment. In addition, none of the parameters evaluated in apoE transgenic mice exposed to CPF were affected, but there were differences between genotypes. Therefore, we suggest that prenatal CPF exposure and VPA produce divergent effects on communication and anxiety.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Miguel Morales-Navas
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Center of Environmental, Food and Toxicological Technology (TECNATOX), Reus, Spain.
| |
Collapse
|
5
|
Eytcheson SA, Olker JH, Friedman KP, Hornung MW, Degitz SJ. Assessing utility of thyroid in vitro screening assays through comparisons to observed impacts in vivo. Regul Toxicol Pharmacol 2023; 144:105491. [PMID: 37666444 PMCID: PMC11505866 DOI: 10.1016/j.yrtph.2023.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
To better understand endocrine disruption, the U.S. Environmental Protection Agency's (USEPA) Endocrine Disruptor Screening Program (EDSP) utilizes a two-tiered approach to investigate the potential of a chemical to interact with the estrogen, androgen, or thyroid systems. As in vivo testing lacks the throughput to address data gaps on endocrine bioactivity for thousands of chemicals, in vitro high-throughput screening (HTS) methods are being developed to screen larger chemical libraries. The primary objective of this work was to investigate for how many of the 52 chemicals with weight-of-evidence (WoE) determinations from EDSP Tier 1 screening there are available in vitro HTS data supporting a thyroid impact. HTS data from the USEPA ToxCast program and the EDSP WoE were collected for this analysis. Considering the complexity of endocrine disruption and interpreting HTS data, concordance between in vitro activity and in vivo effects ranges from 58 to 78%. Based on this evaluation, we conclude that the current suite of HTS assays is beneficial for prioritizing chemicals for further inquiry; however, without a more detailed analysis, one cannot conclude whether HTS results are the primary mode-of-action. Furthermore, development of in vitro assays for additional thyroid-relevant molecular initiating events is required to effectively predict in vivo thyroid impacts.
Collapse
Affiliation(s)
- Stephanie A Eytcheson
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, 55804, USA
| | - Jennifer H Olker
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, 55804, USA
| | - Katie Paul Friedman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Research Triangle Park, NC, 27711, USA
| | - Michael W Hornung
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, 55804, USA
| | - Sigmund J Degitz
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, 55804, USA.
| |
Collapse
|
6
|
Khatib I, Rychter P, Falfushynska H. Pesticide Pollution: Detrimental Outcomes and Possible Mechanisms of Fish Exposure to Common Organophosphates and Triazines. J Xenobiot 2022; 12:236-265. [PMID: 36135714 PMCID: PMC9500960 DOI: 10.3390/jox12030018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Pesticides are well known for their high levels of persistence and ubiquity in the environment, and because of their capacity to bioaccumulate and disrupt the food chain, they pose a risk to animals and humans. With a focus on organophosphate and triazine pesticides, the present review aims to describe the current state of knowledge regarding spatial distribution, bioaccumulation, and mode of action of frequently used pesticides. We discuss the processes by which pesticides and their active residues are accumulated and bioconcentrated in fish, as well as the toxic mechanisms involved, including biological redox activity, immunotoxicity, neuroendocrine disorders, and cytotoxicity, which is manifested in oxidative stress, lysosomal and mitochondrial damage, inflammation, and apoptosis/autophagy. We also explore potential research strategies to close the gaps in our understanding of the toxicity and environmental risk assessment of organophosphate and triazine pesticides.
Collapse
Affiliation(s)
- Ihab Khatib
- Department of Physical Rehabilitation and Vital Activity, Ternopil Volodymyr Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine
| | - Piotr Rychter
- Faculty of Science & Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland
| | - Halina Falfushynska
- Department of Physical Rehabilitation and Vital Activity, Ternopil Volodymyr Hnatiuk National Pedagogical University, 46027 Ternopil, Ukraine
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
7
|
Cobilinschi C, Țincu R, Ungureanu R, Dumitru I, Băetu A, Isac S, Cobilinschi CO, Grințescu IM, Mirea L. Toxic-Induced Nonthyroidal Illness Syndrome Induced by Acute Low-Dose Pesticides Exposure-Preliminary In Vivo Study. TOXICS 2022; 10:511. [PMID: 36136476 PMCID: PMC9503844 DOI: 10.3390/toxics10090511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Conditions such as trauma, burns, sepsis, or acute intoxications have considerable consequences on the endocrine status, causing "sick euthyroid syndrome". Organophosphate exposure may induce an increase in acetylcholine levels, thus altering the thyroid's hormonal status. The present study aims to identify the effects of acetylcholinesterase inhibition on thyroid hormones. MATERIAL AND METHODS A prospective experimental study was conducted on twenty Wistar rats. Blood samples were drawn to set baseline values for thyroid-stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4). Chlorpyrifos 0.1 mg/kg was administered by oral gavage to induce acetyl-cholinesterase inhibition. After exhibiting cholinergic symptoms, blood samples were collected to assess levels of cholinesterase and thyroid hormones using ELISA. RESULTS Butyrylcholinesterase levels confirmed major inhibition immediately after intoxication compared to the baseline, certifying the intoxication. A significant increase in T4 levels was noted (p = 0.01) both at 2 h and 48 h after administration of organophosphate in sample rats. Similarly, T3 almost doubled its value 2 h after poisoning (4.2 ng/mL versus 2.5 ng/mL at baseline). Surprisingly, TSH displayed acute elevation with an afterward slow descending trend at 48 h (p = 0.1), reaching baseline value. CONCLUSIONS This study demonstrated that cholinesterase inhibition caused major alterations in thyroid hormone levels, which may be characterized by a transient hypothyroidism status with an impact on survival prognosis.
Collapse
Affiliation(s)
- Cristian Cobilinschi
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Radu Țincu
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Toxicology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Raluca Ungureanu
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Dumitru
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
| | - Alexandru Băetu
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sebastian Isac
- Department of Anesthesiology and Intensive Care I, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Claudia Oana Cobilinschi
- Department of Internal Medicine, Sf Maria Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Marina Grințescu
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Liliana Mirea
- Department of Anesthesiology and Intensive Care, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania
- Department of Anesthesiology and Intensive Care II, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|