1
|
Huang PJ, Lin YL, Chen CH, Lin HY, Fang SC. A chloroplast sulphate transporter modulates glutathione-mediated redox cycling to regulate cell division. PLANT, CELL & ENVIRONMENT 2024; 47:5391-5410. [PMID: 39189939 DOI: 10.1111/pce.15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Glutathione redox cycling is important for cell cycle regulation, but its mechanisms are not well understood. We previously identified a small-sized mutant, suppressor of mat3 15-1 (smt15-1) that has elevated cellular glutathione. Here, we demonstrated that SMT15 is a chloroplast sulphate transporter. Reducing expression of γ-GLUTAMYLCYSTEINE SYNTHETASE, encoding the rate-limiting enzyme required for glutathione biosynthesis, corrected the size defect of smt15-1 cells. Overexpressing GLUTATHIONE SYNTHETASE (GSH2) recapitulated the small-size phenotype of smt15-1 mutant, confirming the role of glutathione in cell division. Hence, SMT15 may regulate chloroplast sulphate concentration to modulate cellular glutathione levels. In wild-type cells, glutathione and/or thiol-containing molecules (GSH/thiol) accumulated in the cytosol at the G1 phase and decreased as cells entered the S/M phase. While the cytosolic GSH/thiol levels in the small-sized mutants, smt15-1 and GSH2 overexpressors, mirrored those of wild-type cells (accumulating during G1 and declining at early S/M phase), GSH/thiol was specifically accumulated in the basal bodies at early S/M phase in the small-sized mutants. Therefore, we propose that GSH/thiol-mediated redox signalling in the basal bodies may regulate mitotic division number in Chlamydomonas reinhardtii. Our findings suggest a new mechanism by which glutathione regulates the multiple fission cell cycle in C. reinhardtii.
Collapse
Affiliation(s)
- Pin-Jui Huang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ling Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chun-Han Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Liñán-Atero R, Aghababaei F, García SR, Hasiri Z, Ziogkas D, Moreno A, Hadidi M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants (Basel) 2024; 13:488. [PMID: 38671935 PMCID: PMC11047511 DOI: 10.3390/antiox13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Plants have proven to be important sources for discovering new compounds that are useful in the treatment of various diseases due to their phytoconstituents. Clove (Syzygium aromaticum L.), an aromatic plant widely cultivated around the world, has been traditionally used for food preservation and medicinal purposes. In particular, clove essential oil (CEO) has attracted attention for containing various bioactive compounds, such as phenolics (eugenol and eugenol acetate), terpenes (β-caryophyllene and α-humulene), and hydrocarbons. These constituents have found applications in cosmetics, food, and medicine industries due to their bioactivity. Pharmacologically, CEO has been tested against a variety of parasites and pathogenic microorganisms, demonstrating antibacterial and antifungal properties. Additionally, many studies have also demonstrated the analgesic, antioxidant, anticancer, antiseptic, and anti-inflammatory effects of this essential oil. However, CEO could degrade for different reasons, impacting its quality and bioactivity. To address this challenge, encapsulation is viewed as a promising strategy that could prolong the shelf life of CEO, improving its physicochemical stability and application in various areas. This review examines the phytochemical composition and biological activities of CEO and its constituents, as well as extraction methods to obtain it. Moreover, encapsulation strategies for CEO and numerous applications in different food fields are also highlighted.
Collapse
Affiliation(s)
- Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | | | - Samuel Rodríguez García
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran;
| | - Dimitrios Ziogkas
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Effects and Mechanisms of Action of Preussin, a Marine Fungal Metabolite, against the Triple-Negative Breast Cancer Cell Line, MDA-MB-231, in 2D and 3D Cultures. Mar Drugs 2023; 21:md21030166. [PMID: 36976215 PMCID: PMC10053333 DOI: 10.3390/md21030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype of breast cancer (BC) with a typically poorer prognosis than other subtypes of BC and limited therapeutic options. Therefore, new drugs would be particularly welcome to help treat TNBC. Preussin, isolated from the marine sponge-associated fungus, Aspergillus candidus, has shown the potential to reduce cell viability and proliferation as well as to induce cell death and cell cycle arrest in 2D cell culture models. However, studies that better mimic the tumors in vivo, such as 3D cell cultures, are needed. Here, we studied the effects of preussin in the MDA-MB-231 cell line, comparing 2D and 3D cell cultures, using ultrastructural analysis and the MTT, BrdU, annexin V-PI, comet (alkaline and FPG modified versions), and wound healing assays. Preussin was found to decrease cell viability, both in 2D and 3D cell cultures, in a dose-dependent manner, impair cell proliferation, and induce cell death, therefore excluding the hypothesis of genotoxic properties. The cellular impacts were reflected by ultrastructural alterations in both cell culture models. Preussin also significantly inhibited the migration of MDA-MB-231 cells. The new data expanded the knowledge on preussin actions while supporting other studies, highlighting its potential as a molecule or scaffold for the development of new anticancer drugs against TNBC.
Collapse
|
4
|
Mitra S, Das R, Emran TB, Labib RK, Noor-E-Tabassum, Islam F, Sharma R, Ahmad I, Nainu F, Chidambaram K, Alhumaydhi FA, Chandran D, Capasso R, Wilairatana P. Diallyl Disulfide: A Bioactive Garlic Compound with Anticancer Potential. Front Pharmacol 2022; 13:943967. [PMID: 36071845 PMCID: PMC9441672 DOI: 10.3389/fphar.2022.943967] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is a life-threatening disease caused by the uncontrolled division of cells, which culminates in a solid mass of cells known as a tumor or liquid cancer. It is the leading cause of mortality worldwide, and the number of cancer patients has been increasing at an alarming rate, with an estimated 20 million cases expected by 2030. Thus, the use of complementary or alternative therapeutic techniques that can help prevent cancer has been the subject of increased attention. Garlic, the most widely used plant medicinal product, exhibits a wide spectrum of biological activities, including antibacterial, hypo-lipidemic, antithrombotic, and anticancer effects. Diallyl disulfide (DADS) is a major organosulfur compound contained within garlic. Recently, several experimental studies have demonstrated that DADS exhibits anti-tumor activity against many types of tumor cells, including gynecological cancers (cervical cancer, ovarian cancer), hematological cancers (leukemia, lymphoma), lung cancer, neural cancer, skin cancer, prostate cancer, gastrointestinal tract and associated cancers (esophageal cancer, gastric cancer, colorectal cancer), hepatocellular cancer cell line, etc. The mechanisms behind the anticancer action of DADS include epithelial-mesenchymal transition (EMT), invasion, and migration. This article aims to review the available information regarding the anti-cancer potential of DADS, as well as summarize its mechanisms of action, bioavailability, and pharmacokinetics from published clinical and toxicity studies.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rafiuddin Khan Labib
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Noor-E-Tabassum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Islamudin Ahmad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Mulawarman University, Samarinda, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
The Effect of Liposomal Diallyl Disulfide and Oxaliplatin on Proliferation of Colorectal Cancer Cells: In Vitro and In Silico Analysis. Pharmaceutics 2022; 14:pharmaceutics14020236. [PMID: 35213970 PMCID: PMC8877238 DOI: 10.3390/pharmaceutics14020236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Diallyl disulfide (DADS) is one of the main bioactive organosulfur compounds of garlic, and its potential against various cancer models has been demonstrated. The poor solubility of DADS in aqueous solutions limits its uses in clinical application. The present study aimed to develop a novel formulation of DADS to increase its bioavailability and therapeutic potential and evaluate its role in combination with oxaliplatin (OXA) in the colorectal cancer system. We prepared and characterized PEGylated, DADS (DCPDD), and OXA (DCPDO) liposomes. The anticancer potential of these formulations was then evaluated in HCT116 and RKO colon cancer cells by different cellular assays. Further, a molecular docking-based computational analysis was conducted to determine the probable binding interactions of DADS and OXA. The results revealed the size of the DCPDD and DCPDO to be 114.46 nm (95% EE) and 149.45 nm (54% EE), respectively. They increased the sensitivity of the cells and reduced the IC50 several folds, while the combinations of them showed a synergistic effect and induced apoptosis by 55% in the cells. The molecular docking data projected several possible targets of DADS and OXA that could be evaluated more precisely by these novel formulations in detail. This study will direct the usage of DCPDD to augment the therapeutic potential of DCPDO against colon cancer in clinical settings.
Collapse
|
6
|
Kaluzki I, Hailemariam-Jahn T, Doll M, Kaufmann R, Balermpas P, Zöller N, Kippenberger S, Meissner M. Dimethylfumarate Inhibits Colorectal Carcinoma Cell Proliferation: Evidence for Cell Cycle Arrest, Apoptosis and Autophagy. Cells 2019; 8:E1329. [PMID: 31661890 PMCID: PMC6912700 DOI: 10.3390/cells8111329] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Recent studies have proven that Dimethylfumarate (DMF) has a marked anti-proliferative impact on diverse cancer entities e.g., on malignant melanoma. To explore its anti-tumorigenic potential, we examined the effects of DMF on human colon carcinoma cell lines and the underlying mechanisms of action. Human colon cancer cell line HT-29 and human colorectal carcinoma cell line T84 were treated with or without DMF. Effects of DMF on proliferation, cell cycle progression, and apoptosis were analyzed mainly by Bromodeoxyuridine (BrdU)- and Lactatdehydrogenase (LDH)assays, caspase activation, flowcytometry, immunofluorescence, and immunoblotting. In addition, combinational treatments with radiation and chemotherapy were performed. DMF inhibits cell proliferation in both cell lines. It was shown that DMF induces a cell cycle arrest in G0/G1 phase, which is accompanied by upregulation of p21 and downregulation of cyclin D1 and Cyclin dependent kinase (CDK)4. Furthermore, upregulation of autophagy associated proteins suggests that autophagy is involved. In addition, the activation of apoptotic markers provides evidence that apoptosis is involved. Our results show that DMF supports the action of oxaliplatin in a synergetic manner and failed synergy with radiation. We demonstrated that DMF has distinct antitumorigenic, cell dependent effects on colon cancer cells by arresting cell cycle in G0/G1 phase as well as activating both the autophagic and apoptotic pathways and synergizes with chemotherapy.
Collapse
Affiliation(s)
- Irina Kaluzki
- Department of Dermatology, Venereology and Allergology, Goethe-University, 60323 Frankfurt am Main, Germany.
| | - Tsige Hailemariam-Jahn
- Department of Dermatology, Venereology and Allergology, Goethe-University, 60323 Frankfurt am Main, Germany.
| | - Monika Doll
- Department of Dermatology, Venereology and Allergology, Goethe-University, 60323 Frankfurt am Main, Germany.
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Goethe-University, 60323 Frankfurt am Main, Germany.
| | - Panagiotis Balermpas
- Department of Radiation Oncology, Universitäts Spital, 8091 Zürich, Switzerland.
| | - Nadja Zöller
- Department of Dermatology, Venereology and Allergology, Goethe-University, 60323 Frankfurt am Main, Germany.
| | - Stefan Kippenberger
- Department of Dermatology, Venereology and Allergology, Goethe-University, 60323 Frankfurt am Main, Germany.
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, Goethe-University, 60323 Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Chua LK, Lim CL, Ling APK, Chye SM, Koh RY. Anticancer Potential of Syzygium Species: a Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:18-27. [PMID: 30535971 DOI: 10.1007/s11130-018-0704-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer is a preventable and treatable disease, however, the incidence rates are on the rise. Classical treatment modalities for cancer include surgery, radiotherapy and chemotherapy. However, these are associated with detrimental side effects such as nausea and emesis. Therefore, researchers currently vest interest in complementary and alternative medicines for cancer treatment and prevention. Plants such as Syzygium sp. are a common basis of complementary medicines due to its abundance of bioactive phytochemicals. Numerous natural compounds derived from Syzygium sp., such as phenolics, oleanolic acids, and betulinic acids, and dimethyl cardamonins, were reported to have anticancer effects. Many possess the ability to inhibit cell proliferation and induce apoptosis. In this review, we discuss the vast potential Syzygium sp. harbours as a source of anticancer natural compounds due to its abundance, easy acceptability, affordability and safety for regular consumption.
Collapse
Affiliation(s)
- Lee Kee Chua
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Kaluzki I, Hrgovic I, Hailemariam-Jahn T, Doll M, Kleemann J, Valesky EM, Kippenberger S, Kaufmann R, Zoeller N, Meissner M. Dimethylfumarate inhibits melanoma cell proliferation via p21 and p53 induction and bcl-2 and cyclin B1 downregulation. Tumour Biol 2016; 37:13627-13635. [PMID: 27468725 DOI: 10.1007/s13277-016-5285-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023] Open
Abstract
Recent evidence suggests that dimethylfumarate (DMF), known as a highly potent anti-psoriatic agent, might have anti-tumorigenic properties in melanoma. It has recently been demonstrated that DMF inhibits melanoma proliferation by apoptosis and cell cycle inhibition and therefore inhibits melanoma metastasis. Nonetheless, the underlying mechanisms remain to be evaluated. To elucidate the effects of DMF on melanoma cell lines (A375, SK-Mel), we first performed cytotoxicity assays. No significant lactatedehydogenase (LDH) release could be found. In further analysis, we showed that DMF suppresses melanoma cell proliferation in a concentration-dependent manner. To examine whether these effects are conveyed by apoptotic mechanisms, we studied the amount of apoptotic nucleosomes and caspase 3/7 activity using ELISA analysis. Significant apoptosis was induced by DMF in both cell lines, and this could be paralleled with bcl-2 downregulation and PARP-1 cleavage. We also performed cell cycle analysis and found that DMF induced concentration-dependent arrests of G0/G1 as well as G2/M. To examine the underlying mechanisms of cell cycle arrest, we analyzed the expression profiles of important cell cycle regulator proteins such as p53, p21, cyclins A, B1, and D1, and CDKs 3, 4, and 6. Interestingly, DMF induced p53 and p21 yet inhibited cyclin B1 expression in a concentration-dependent manner. Other cell cycle regulators were not influenced by DMF. The knockdown of DMF induced p53 via siRNA led to significantly reduced apoptosis but had no influence on cell cycle arrest. We examined the adhesion of melanoma cells on lymphendothelial cells during DMF treatment and found a significant reduction in interaction. These data provide evidence that DMF inhibits melanoma proliferation by reinduction of important cell cycle inhibitors leading to a concentration-dependent G0/G1 or G2/M cell cycle arrest and induction of apoptosis via downregulation of bcl-2 and induction of p53 and PARP-1 cleavage. Hence, DMF might be an interesting agent in the treatment of melanoma and is worth further investigation in vivo.
Collapse
Affiliation(s)
- Irina Kaluzki
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Igor Hrgovic
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Tsige Hailemariam-Jahn
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Monika Doll
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Johannes Kleemann
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Eva Maria Valesky
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Stefan Kippenberger
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Nadja Zoeller
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Valesky EM, Hrgovic I, Doll M, Wang XF, Pinter A, Kleemann J, Kaufmann R, Kippenberger S, Meissner M. Dimethylfumarate effectively inhibits lymphangiogenesis via p21 induction and G1 cell cycle arrest. Exp Dermatol 2016; 25:200-5. [PMID: 26663097 DOI: 10.1111/exd.12907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 01/07/2023]
Abstract
Different pathologies, such as lymphoedema, cancer or psoriasis, are associated with abnormal lymphatic vessel formation. Therefore, influencing lymphangiogenesis is an interesting target. Recent evidence suggests that dimethylfumarate (DMF), an antipsoriatic agent, might have antitumorigenic and antilymphangiogenic properties. To prove this assumption, we performed proliferation and functional assays with primary human dermal lymphendothelial cells (DLEC). We could demonstrated that DMF suppresses DLEC proliferation and formation of capillary-like structures. Underlying apoptotic mechanisms could be ruled out. Cell cycle analysis demonstrated a pronounced G1-arrest. Further evaluations revealed increases in p21 expression. In addition, DMF suppressed Cyclin D1 and Cyclin A expression in a concentration-dependent manner. p21 knockdown experiments demonstrated a p21-dependent mechanism of regulation. Further analysis showed an increased p21 mRNA expression after DMF treatment. This transcriptional regulation was enforced by post-transcriptional and post-translational mechanisms. In addition, we could demonstrate that the combination of a proteasomal inhibitor and DMF superinduced the p21 expression. Hence, DMF is a new antilymphangiogenic compound and might be used in various illnesses associated with increased lymphangiogenesis.
Collapse
Affiliation(s)
- Eva Maria Valesky
- Department of Dermatology, Venereology and Allergology, Goethe-University, Frankfurt am Main, Germany
| | - Igor Hrgovic
- Department of Dermatology, Venereology and Allergology, Goethe-University, Frankfurt am Main, Germany
| | - Monika Doll
- Department of Dermatology, Venereology and Allergology, Goethe-University, Frankfurt am Main, Germany
| | - Xiao-Fan Wang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Andreas Pinter
- Department of Dermatology, Venereology and Allergology, Goethe-University, Frankfurt am Main, Germany
| | - Johannes Kleemann
- Department of Dermatology, Venereology and Allergology, Goethe-University, Frankfurt am Main, Germany
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Goethe-University, Frankfurt am Main, Germany
| | - Stefan Kippenberger
- Department of Dermatology, Venereology and Allergology, Goethe-University, Frankfurt am Main, Germany
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Dubey D, Kieseier BC, Hartung HP, Hemmer B, Warnke C, Menge T, Miller-Little WA, Stuve O. Dimethyl fumarate in relapsing-remitting multiple sclerosis: rationale, mechanisms of action, pharmacokinetics, efficacy and safety. Expert Rev Neurother 2015; 15:339-46. [PMID: 25800129 DOI: 10.1586/14737175.2015.1025755] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dimethyl fumarate (DMF), a fumaric acid ester, is a new orally available disease-modifying agent that was recently approved by the US FDA and the EMA for the management of relapsing forms of multiple sclerosis (MS). Fumaric acid has been used for the management of psoriasis, for more than 50 years. Because of the known anti-inflammatory properties of fumaric acid ester, DMF was brought into clinical development in MS. More recently, neuroprotective and myelin-protective mechanism actions have been proposed, making it a possible candidate for MS treatment. Two Phase III clinical trials (DEFINE, CONFIRM) have evaluated the safety and efficacy of DMF in patients with relapsing-remitting MS. Being an orally available agent with a favorable safety profile, it has become one of the most commonly prescribed disease-modifying agents in the USA and Europe.
Collapse
|
11
|
Molecular mechanisms for the anti-cancer effects of diallyl disulfide. Food Chem Toxicol 2013; 57:362-70. [DOI: 10.1016/j.fct.2013.04.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 12/30/2022]
|
12
|
Hanot M, Boivin A, Malésys C, Beuve M, Colliaux A, Foray N, Douki T, Ardail D, Rodriguez-Lafrasse C. Glutathione depletion and carbon ion radiation potentiate clustered DNA lesions, cell death and prevent chromosomal changes in cancer cells progeny. PLoS One 2012. [PMID: 23185232 PMCID: PMC3502420 DOI: 10.1371/journal.pone.0044367] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Poor local control and tumor escape are of major concern in head-and-neck cancers treated by conventional radiotherapy or hadrontherapy. Reduced glutathione (GSH) is suspected of playing an important role in mechanisms leading to radioresistance, and its depletion should enable oxidative stress insult, thereby modifying the nature of DNA lesions and the subsequent chromosomal changes that potentially lead to tumor escape. This study aimed to highlight the impact of a GSH-depletion strategy (dimethylfumarate, and l-buthionine sulfoximine association) combined with carbon ion or X-ray irradiation on types of DNA lesions (sparse or clustered) and the subsequent transmission of chromosomal changes to the progeny in a radioresistant cell line (SQ20B) expressing a high endogenous GSH content. Results are compared with those of a radiosensitive cell line (SCC61) displaying a low endogenous GSH level. DNA damage measurements (γH2AX/comet assay) demonstrated that a transient GSH depletion in resistant SQ20B cells potentiated the effects of irradiation by initially increasing sparse DNA breaks and oxidative lesions after X-ray irradiation, while carbon ion irradiation enhanced the complexity of clustered oxidative damage. Moreover, residual DNA double-strand breaks were measured whatever the radiation qualities. The nature of the initial DNA lesions and amount of residual DNA damage were similar to those observed in sensitive SCC61 cells after both types of irradiation. Misrepaired or unrepaired lesions may lead to chromosomal changes, estimated in cell progeny by the cytome assay. Both types of irradiation induced aberrations in nondepleted resistant SQ20B and sensitive SCC61 cells. The GSH-depletion strategy prevented the transmission of aberrations (complex rearrangements and chromosome break or loss) in radioresistant SQ20B only when associated with carbon ion irradiation. A GSH-depleting strategy combined with hadrontherapy may thus have considerable advantage in the care of patients, by minimizing genomic instability and improving the local control.
Collapse
Affiliation(s)
- Maïté Hanot
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Oullins, France
- Fondation Synergie Lyon Cancer, Lyon, France
| | - Anthony Boivin
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Céline Malésys
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Michaël Beuve
- Institut de Physique Nucléaire de Lyon, UMR 5822, Université Lyon 1, IN2P3/CNRS, Villeurbanne, France
| | - Anthony Colliaux
- Institut de Physique Nucléaire de Lyon, UMR 5822, Université Lyon 1, IN2P3/CNRS, Villeurbanne, France
| | - Nicolas Foray
- Institut National de la Santé et de la Recherche Médicale, U836, Groupe de Radiobiologie, Faculté de Médecine de Lyon-Sud, Oullins, France
| | - Thierry Douki
- Commissariat à l'Energie Atomique (CEA), Service de Chimie Inorganique et Biologique UMR-E 3 (CEA-UJF), Laboratoire Lésions des Acides Nucléiques, Grenoble, France
| | - Dominique Ardail
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Claire Rodriguez-Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Oullins, France
- Unité Médicale d'Oncologie Moléculaire et Transfert, Hospices Civils Lyon, Centre de Biologie Sud, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
- * E-mail:
| |
Collapse
|
13
|
Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P. Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 2011; 750:107-131. [PMID: 22178957 DOI: 10.1016/j.mrrev.2011.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.
Collapse
Affiliation(s)
- Carmela Fimognari
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Lorenzo Ferruzzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Monia Lenzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
14
|
Altonsy MO, Andrews SC. Diallyl Disulphide, a Beneficial Component of Garlic Oil, Causes a Redistribution of Cell-Cycle Growth Phases, Induces Apoptosis, and Enhances Butyrate-Induced Apoptosis in Colorectal Adenocarcinoma Cells (HT-29). Nutr Cancer 2011; 63:1104-13. [DOI: 10.1080/01635581.2011.601846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Boivin A, Hanot M, Malesys C, Maalouf M, Rousson R, Rodriguez-Lafrasse C, Ardail D. Transient alteration of cellular redox buffering before irradiation triggers apoptosis in head and neck carcinoma stem and non-stem cells. PLoS One 2011; 6:e14558. [PMID: 21283807 PMCID: PMC3023721 DOI: 10.1371/journal.pone.0014558] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 12/22/2010] [Indexed: 01/11/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is an aggressive and recurrent malignancy owing to intrinsic radioresistance and lack of induction of apoptosis. The major focus of this work was to design a transient glutathione depleting strategy during the course of irradiation of HNSCC in order to overcome their radioresistance associated with redox adaptation. Methodology/Principal Findings Treatment of SQ20B cells with dimethylfumarate (DMF), a GSH-depleting agent, and L-Buthionine sulfoximine (BSO), an inhibitor of GSH biosynthesis 4 h before a 10 Gy irradiation led to the lowering of the endogenous GSH content to less than 10% of that in control cells and to the triggering of radiation-induced apoptotic cell death. The sequence of biochemical events after GSH depletion and irradiation included ASK-1 followed by JNK activation which resulted in the triggering of the intrinsic apoptotic pathway through Bax translocation to mitochondria. Conclusions This transient GSH depletion also triggered radiation-induced cell death in SQ20B stem cells, a key event to overcome locoregional recurrence of HNSCC. Finally, our in vivo data highlight the relevance for further clinical trials of endogenous redox modulation to enhance the cytotoxic effects of radiotherapy.
Collapse
Affiliation(s)
- Anthony Boivin
- Université de Lyon, Université Lyon-I, Lyon, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EA-3738, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Maité Hanot
- Université de Lyon, Université Lyon-I, Lyon, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EA-3738, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Céline Malesys
- Université de Lyon, Université Lyon-I, Lyon, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EA-3738, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Mira Maalouf
- Université de Lyon, Université Lyon-I, Lyon, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EA-3738, Faculté de Médecine Lyon-Sud, Oullins, France
| | | | - Claire Rodriguez-Lafrasse
- Université de Lyon, Université Lyon-I, Lyon, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EA-3738, Faculté de Médecine Lyon-Sud, Oullins, France
- Hospices Civils de Lyon, Lyon, France
| | - Dominique Ardail
- Université de Lyon, Université Lyon-I, Lyon, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EA-3738, Faculté de Médecine Lyon-Sud, Oullins, France
- Hospices Civils de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
16
|
DMF inhibits PDGF-BB induced airway smooth muscle cell proliferation through induction of heme-oxygenase-1. Respir Res 2010; 11:145. [PMID: 20961405 PMCID: PMC2972257 DOI: 10.1186/1465-9921-11-145] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 10/20/2010] [Indexed: 01/01/2023] Open
Abstract
Background Airway wall remodelling is an important pathology of asthma. Growth factor induced airway smooth muscle cell (ASMC) proliferation is thought to be the major cause of airway wall thickening in asthma. Earlier we reported that Dimethylfumarate (DMF) inhibits platelet-derived growth factor (PDGF)-BB induced mitogen and stress activated kinase (MSK)-1 and CREB activity as well as IL-6 secretion by ASMC. In addition, DMF altered intracellular glutathione levels and thereby reduced proliferation of other cell types. Methods We investigated the effect of DMF on PDGF-BB induced ASMC proliferation, on mitogen activated protein kinase (MAPK) activation; and on heme oxygenase (HO)-1 expression. ASMC were pre-incubated for 1 hour with DMF and/or glutathione ethylester (GSH-OEt), SB203580, hemin, cobalt-protoporphyrin (CoPP), or siRNA specific to HO-1 before stimulation with PDGF-BB (10 ng/ml). Results PDGF-BB induced ASMC proliferation was inhibited in a dose-dependant manner by DMF. PDGF-BB induced the phosphorylation of ERK1/2 and p38 MAPK, but not of JNK. DMF enhanced the PDGF-BB induced phosphorylation of p38 MAPK and there by up-regulated the expression of HO-1. HO-1 induction inhibited the proliferative effect of PDGF-BB. HO-1 expression was reversed by GSH-OEt, or p38 MAPK inhibition, or HO-1 siRNA, which all reversed the anti-proliferative effect of DMF. Conclusion Our data indicate that DMF inhibits ASMC proliferation by reducing the intracellular GSH level with subsequent activation of p38 MAPK and induction of HO-1. Thus, DMF might reduce ASMC and airway remodelling processes in asthma.
Collapse
|