1
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
2
|
Han S, Bommireddy R, Kim P, Selvaraj P, Shin DM. Chemoprevention of Head and Neck Cancer: A Review of Current Approaches and Future Perspectives. Cancer Prev Res (Phila) 2024; 17:443-455. [PMID: 38978394 DOI: 10.1158/1940-6207.capr-24-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/07/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a spectrum of heterogeneous malignancies. A variety of genetic, environmental, and lifestyle factors contribute to the development of HNSCC. Carcinogenesis is a multistep process in which cell proliferation-associated oncogenes and cell-cycle regulation-associated tumor suppressor genes are dysregulated, resulting in premalignant lesions. Immune evasion is a critical step in the progression of benign lesions to advanced cancer. This review discusses the advances that have been made in chemoprevention strategies for HNSCC. The rationale for the use of chemopreventive agents to inhibit head and neck cancer development is highlighted by the positive outcomes of several clinical trials. We discuss the potential of some of the commonly studied agents including vitamin A analogs, EGFR inhibitors, COX-2 inhibitors, metabolic modulators, and natural compounds such as green tea, as well as immunotherapy and photodynamic therapy to prevent HNSCC. Our review provides insight into the potential benefits of these agents and the gaps that remain to be addressed. The published results reaffirm the promise of chemoprevention in head and neck cancer and suggest that continued exploration is needed to overcome the limitations. Because the current focus on chemopreventive agents is limited, major efforts in precision oncology approaches and substantial increase in funding will promote research into chemoprevention, which will eventually decrease the incidence of HNSCC.
Collapse
Affiliation(s)
- Sanghoon Han
- Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Ramireddy Bommireddy
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| | - Pauline Kim
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Pharmaceutical Services, Emory University Hospital Midtown, Atlanta, Georgia
| | - Periasamy Selvaraj
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Dong M Shin
- Winship Cancer Institute, Emory University, Atlanta, Georgia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
3
|
Li S, Sun Y. Phytochemicals targeting epidermal growth factor receptor (EGFR) for the prevention and treatment of HNSCC: A review. Medicine (Baltimore) 2023; 102:e34439. [PMID: 37800790 PMCID: PMC10553117 DOI: 10.1097/md.0000000000034439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 10/07/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops from the mucosal epithelium of the oral cavity, pharynx, and larynx, and is the most common malignancy of the head and neck, the incidence of which continues to rise. The epidermal growth factor receptor is thought to play a key role in the pathogenesis of HNSCC. Inhibition of epidermal growth factor receptor has been identified as an effective target for the treatment of HNSCC. Many phytochemicals have emerged as potential new drugs for the treatment of HNSCC. A systematic search was conducted for research articles published in PubMed, and Medline on relevant aspects. This review provides an overview of the available literature and reports highlighting the in vitro effects of phytochemicals on epidermal growth factor in various HNSCC cell models and in vivo in animal models and emphasizes the importance of epidermal growth factor as a current therapeutic target for HNSCC. Based on our review, we conclude that phytochemicals targeting the epidermal growth factor receptor are potentially effective candidates for the development of new drugs for the treatment of HNSCC. It provides an idea for further development and application of herbal medicines for cancer treatment.
Collapse
Affiliation(s)
- Shaling Li
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Longmatan District, Luzhou City, Sichuan Province, China
| | | |
Collapse
|
4
|
Kaushik M, Tiku AB. Molecular pathways modulated by phytochemicals in head and neck cancer. J Cell Commun Signal 2023; 17:469-483. [PMID: 36454443 PMCID: PMC10409696 DOI: 10.1007/s12079-022-00711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
In the last few years, natural dietary phytochemicals have shown immense potential in the suppression and incidence of Head and Neck Cancer (HNC). From various in-vitro, animal, and epidemiological studies it is now clear that intake of foods rich in dietary phytochemicals lower the risk of HNC. These phytochemicals have been reported to target different stages of Head and Neck cancer (initiation to promotion) by modulating many cellular signaling pathways. A single phytochemical may target different pathways simultaneously or a single pathway may be targeted by a diversity of phytochemicals. This review highlights the molecular pathways modulated by a large number of phytochemicals relevant to HNC with an intent to identify specific signaling pathways that could be therapeutically targeted. Therefore, relevant literature was screened and scrutinized for molecular details. We have focused on the complexity of the molecular mechanisms that are modulated by various phytochemicals and the role they can play in better clinical efficacy and management of head and neck cancer. In-depth knowledge of these molecular mechanisms can lead to innovative therapeutic strategies using phytochemicals alone or along with available treatments for various cancers including HNC. Molecular pathways modulated by Phytochemicals.
Collapse
Affiliation(s)
- Mahesh Kaushik
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashu Bhan Tiku
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Liew YX, Karen-Ng LP, Vincent-Chong VK. A Comprehensive Review of Natural Products as Therapeutic or Chemopreventive Agents against Head and Neck Squamous Cell Carcinoma Cells Using Preclinical Models. Biomedicines 2023; 11:2359. [PMID: 37760799 PMCID: PMC10525836 DOI: 10.3390/biomedicines11092359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a type of cancer that arises from the epithelium lining of the oral cavity, hypopharynx, oropharynx, and larynx. Despite the advancement of current treatments, including surgery, chemotherapy, and radiotherapy, the overall survival rate of patients afflicted with HNSCC remains poor. The reasons for these poor outcomes are due to late diagnoses and patient-acquired resistance to treatment. Natural products have been extensively explored as a safer and more acceptable alternative therapy to the current treatments, with numerous studies displaying their potential against HNSCC. This review highlights preclinical studies in the past 5 years involving natural products against HNSCC and explores the signaling pathways altered by these products. This review also addresses challenges and future directions of natural products as chemotherapeutic and chemoprevention agents against HNSCC.
Collapse
Affiliation(s)
- Yoon Xuan Liew
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Lee Peng Karen-Ng
- Oral Cancer Research & Coordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Vui King Vincent-Chong
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
6
|
Starska-Kowarska K. Dietary Carotenoids in Head and Neck Cancer-Molecular and Clinical Implications. Nutrients 2022; 14:nu14030531. [PMID: 35276890 PMCID: PMC8838110 DOI: 10.3390/nu14030531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Head and neck cancer (HNC) is one of the most common cancers in the world according to GLOBCAN. In 2018, it was reported that HNC accounts for approximately 3% of all human cancers (51,540 new cases) and is the cause of nearly 1.5% of all cancer deaths (10,030 deaths). Despite great advances in treatment, HNC is indicated as a leading cause of death worldwide. In addition to having a positive impact on general health, a diet rich in carotenoids can regulate stages in the course of carcinogenesis; indeed, strong epidemiological associations exist between dietary carotenoids and HNS, and it is presumed that diets with carotenoids can even reduce cancer risk. They have also been proposed as potential chemotherapeutic agents and substances used in chemoprevention of HNC. The present review discusses the links between dietary carotenoids and HNC. It examines the prospective anticancer effect of dietary carotenoids against intracellular cell signalling and mechanisms, oxidative stress regulation, as well as their impact on apoptosis, cell cycle progression, cell proliferation, angiogenesis, metastasis, and chemoprevention; it also provides an overview of the limited preclinical and clinical research published in this arena. Recent epidemiological, key opinion-forming systematic reviews, cross-sectional, longitudinal, prospective, and interventional studies based on in vitro and animal models of HNC also indicate that high carotenoid content obtained from daily supplementation has positive effects on the initiation, promotion, and progression of HNC. This article presents these results according to their increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
7
|
Porcheri C, Mitsiadis TA. New Scenarios in Pharmacological Treatments of Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13215515. [PMID: 34771677 PMCID: PMC8583200 DOI: 10.3390/cancers13215515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent types of cancer with a lethal outcome in half of the diagnosed cases. Mostly, HNSCC develops in the oral cavity, and its development is associated with tobacco and areca nut/betel quid usage, alcohol consumption, and HPV infection. Oral squamous cell carcinoma, as other head and neck cancers, presents a high degree of intratumor heterogeneity, which makes their treatment difficult, and directly correlates with drug resistance. Since the classical treatments for HNSCC oftentimes do not resolve the clinical picture, there is great need for novel therapeutic approaches, models for drug testing, and new drug delivery systems.
Collapse
|
8
|
Amin ARMR, Wang D, Nannapaneni S, Lamichhane R, Chen ZG, Shin DM. Combination of resveratrol and green tea epigallocatechin gallate induces synergistic apoptosis and inhibits tumor growth in vivo in head and neck cancer models. Oncol Rep 2021; 45:87. [PMID: 33864659 PMCID: PMC8025073 DOI: 10.3892/or.2021.8038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Despite widespread interest in chemoprevention and therapy due to the high margin of safety of dietary natural compounds, clinical intervention with single agents has failed to yield the expected outcomes, mostly due to poor bioavailability and low potency. Combinations of natural agents with synergistic effects are gaining increasing attention. In the present study, in vitro and in vivo antitumor effects of a combination of two natural dietary agents, green tea epigallocatechin gallate (EGCG) and resveratrol were investigated. It was revealed that their combination at low doses (at which single agents induce minimal apoptosis) synergistically increased apoptosis (combination index <1) in head and neck cancer cell lines. Synergistic apoptosis was also supported by caspase-3 and PARP cleavage. The combination also significantly inhibited growth of xenografted head and neck tumors in nude mice as supported by significant inhibition of tumor volume, tumor weight and Ki67 expression, and increase in TUNEL-positive cells. Mechanistic studies revealed that the combination inhibited AKT-mTOR signaling both in vitro and in vivo. In addition, overexpression of constitutively active AKT protected cells from apoptosis induced by the combination of EGCG and resveratrol. Collectively, the present results for the first time suggest that the combination of EGCG and resveratrol has synergistic growth inhibitory effects and provide an important rationale for future clinical development for chemoprevention and treatment of head and neck cancer.
Collapse
Affiliation(s)
- A R M Ruhul Amin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Sreenivas Nannapaneni
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Rajan Lamichhane
- Department of Clinical and Translational Sciences, John C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Zhuo Georgia Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Flavonoids Induce Migration Arrest and Apoptosis in Detroit 562 Oropharynx Squamous Cell Carcinoma Cells. Processes (Basel) 2021. [DOI: 10.3390/pr9030426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite advances in the treatment of head and neck squamous cell carcinoma (HNSCC), the morbidity remains at a high level due to the resistance of SCC cells to chemotherapeutics. This study aimed to determine and compare the magnitude of the flavonoids’ effectiveness in activating apoptosis and migration arrest in HNSCC cells in vitro. Methods: Head and neck SCC cells of the Detroit 562 line were exposed to a range of concentrations (5–100 μM) of quercetin (Que), hesperidin (Hes) and rutin (Rut) for 24 and 48 h. The SCC cell viability and migration rate were investigated using cytotoxicity and migration inhibition assays. Muse Cell Analyzer flow cytometry was utilized to quantitatively assess the apoptosis rate of Detroit 562 cells exposed to Que, Hes and Rut. The morphology of the SCC cells was evaluated via hematoxylin-eosin staining. Results: The viability diminishment of the Detroit 562-line cells treated with Que, Hes and Rut for 48 h revealed a significant dose-dependent trend, relatively equal for three substances, whereas the most noticeable cytotoxic effect observed for Hes. Exposure to Hes and Rut exhibited a dose-dependent increased proportion of apoptotic SCC cells, at either necrosis or late apoptosis stage. Detroit 562 SCC migration rate and cells motility were halted for the 100 µM dose of Hes and Que. The comparative results elucidated that Hesperidin and Quercetin achieved a more potent reduction of Detroit 562 migration at 24 h. Conclusions: Hesperidin, rutin and quercetin are capable of inducing apoptosis and migration arrest in the Detroit 562 cell line to various extents, resulting in proapoptotic attenuating effects at different magnitudes.
Collapse
|
10
|
Cinar I, Yayla M, Celik M, Bilen A, Bayraktutan Z. Role of Endothelin 1 on Proliferation and Migration of Human MCF-7 Cells. Eurasian J Med 2020; 52:277-282. [PMID: 33209081 DOI: 10.5152/eurasianjmed.2020.20033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective The aim of this study was to explore the role of endothelin 1 (ET-1) in human breast cancer proliferation and migration and antagonism of endothelin receptor A (ETAR) and endothelin receptor B (ETBR) by using the non-selective dual ETA/ETB receptor antagonist bosentan and determine its anti-proliferative, anti-metastatic, and apoptotic effects demonstrated by nuclear factor kappa B (NF-kB), vascular endothelial growth factor (VEGF), Caspase 3 and Caspase 9 expression on endothelin-induced proliferation of MCF-7 cell line in vitro. Materials and Methods A total of 8,000 cells were seeded into e-plates 24 hours after the cells were incubated with or without 10-4 M BOS (1 hour before ET-1 treatment); 10-7, 10-8, and 10-9 M ET-1 for 1-4 days. Results Whether ET-1 is present or not in the tumor area, bosentan exerts anti-proliferative effect on breast cancer. However, ET-1 and bosentan group showed important inhibitory effect on tumor migration compared to bosentan alone, which can be attributed to increased activity of ET-1 axis in the presence of ET-1. The imbalance among the NF-kB, caspases, and VEGF, which are predictive factors of carcinogenesis significantly improved after bosentan administration. Conclusion Our study definitely demonstrated ET-1 and its critical role in cancer progression with apoptotic and anti-apoptotic pathways (NF-κB) and VEGF expression, and migration analyses were also performed. The second major finding was that bosentan inhibited ET-1-mediated effects on tumor proliferation and migration.
Collapse
Affiliation(s)
- Irfan Cinar
- Department of Pharmacology, Kastamonu University School of Medicine, Kastamonu, Turkey
| | - Muhammed Yayla
- Department of Pharmacology, Kastamonu University School of Medicine, Kastamonu, Turkey
| | - Muhammet Celik
- Department of Biochemistry, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Arzu Bilen
- Department of Internal Diseases, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Zafer Bayraktutan
- Department of Biochemistry, Ataturk University Faculty of Medicine, Erzurum, Turkey
| |
Collapse
|
11
|
Molecular targeted therapy: novel therapeutic approach for head and neck cancer. Ther Deliv 2020; 11:637-651. [DOI: 10.4155/tde-2020-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer is a major public health burden worldwide, affecting millions of people each year. One of the major hallmarks of cancer is rapid growth and progression by evasion of host immune responses. Tumor resistance to conventional anticancer drugs by several mechanisms, such as drug inactivation, efflux pumps and enhanced toxicity to normal cells decreases their clinical efficacy. These limitations resulted in the development of new targeted agents, such as monoclonal antibodies and small molecule inhibitors that have high tumor specificity. This paper discusses the therapeutic applications of novel molecular targeted agents and immunotherapy as an alternative treatment option for head and neck cancers, as well as provides insight into future therapeutic approaches for advanced head and neck cancers.
Collapse
|
12
|
Bostan M, Petrică-Matei GG, Radu N, Hainarosie R, Stefanescu CD, Diaconu CC, Roman V. The Effect of Resveratrol or Curcumin on Head and Neck Cancer Cells Sensitivity to the Cytotoxic Effects of Cisplatin. Nutrients 2020; 12:nu12092596. [PMID: 32859062 PMCID: PMC7551591 DOI: 10.3390/nu12092596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Natural compounds can modulate all three major phases of carcinogenesis. The role of the natural compounds such as resveratrol (RSV) and curcumin (CRM) in modulation of anticancer potential of platinum-based drugs (CisPt) is still a topic of considerable debate. In order to enhance head and neck cancer (HNSCC) cells’ sensitivity to the cytotoxic effects of CisPt combined treatments with RSV or CRM were used. The study aim was to evaluate how the RSV or CRM associated to CisPt treatment modulated some cellular processes such as proliferation, P21 gene expression, apoptotic process, and cell cycle development in HNSCC tumor cell line (PE/CA-PJ49) compared to a normal cell line (HUVEC). The results showed that RSV or CRM treatment affected the viability of tumor cells more than normal cells. These natural compounds act against proliferation and sustain the effects of cisplatin by cell cycle arrest, induction of apoptosis and amplification of P21 expression in tumor cells. In conclusion, using RSV or CRM as adjuvants in CisPt therapy might have a beneficial effect by supporting the effects induced by CisPt.
Collapse
Affiliation(s)
- Marinela Bostan
- Center of Immunology, Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania;
- Department of Immunology, Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| | | | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Βucharest, Romania;
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Razvan Hainarosie
- Otorhinolaryngology and Head and Neck Surgery Department-University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (R.H.); (C.D.S.)
| | - Cristian Dragos Stefanescu
- Otorhinolaryngology and Head and Neck Surgery Department-University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (R.H.); (C.D.S.)
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
- Correspondence: (C.C.D.); (V.R.)
| | - Viviana Roman
- Center of Immunology, Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania;
- Correspondence: (C.C.D.); (V.R.)
| |
Collapse
|
13
|
Luetragoon T, Pankla Sranujit R, Noysang C, Thongsri Y, Potup P, Suphrom N, Nuengchamnong N, Usuwanthim K. Anti-Cancer Effect of 3-Hydroxy-β-Ionone Identified from Moringa oleifera Lam. Leaf on Human Squamous Cell Carcinoma 15 Cell Line. Molecules 2020; 25:molecules25163563. [PMID: 32764438 PMCID: PMC7464402 DOI: 10.3390/molecules25163563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma is the most common type of head and neck cancer worldwide. Radiation and chemotherapy are general treatments for patients; however, these remedies can have adverse side effects and tumours develop drug resistance. Effective treatments still require improvement for cancer patients. Here, we investigated the anti-cancer effect of Moringa oleifera (MO) Lam. leaf extracts and their fractions, 3-hydroxy-β-ionone on SCC15 cell line. SCC15 were treated with and without MO leaf extracts and their fractions. MTT assay was used to determine cell viability on SCC15. Cell cycle and apoptosis were evaluated by the Muse™ Cell Analyser. Colony formation and wound closure analysis of SCC15 were performed in 6-well plates. Apoptosis markers were evaluated by immunoblotting. We found that Moringa extracts and 3-HBI significantly inhibited proliferation of SCC15. Moreover, they induced apoptosis and cell cycle arrest at G2/M phase in SCC15 compared to the untreated control. MO extracts and 3-HBI also inhibited colony formation and cell migration of SCC15. Furthermore, we observed the upregulation of cleaved caspase-3 and Bax with downregulation of anti-apoptotic Bcl-2, indicating the induction of cancer cell apoptosis. Our results revealed that MO extracts and 3-HBI provided anti-cancer properties by inhibiting progression and inducing apoptosis of SCC15.
Collapse
Affiliation(s)
- Thitiya Luetragoon
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
- Faculty of Medicine, School of Human Development and Health, University of Southampton, Southampton SO16 6YD, UK
| | - Rungnapa Pankla Sranujit
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Chanai Noysang
- Thai Traditional Medicine College, Rajamangala University of Technology Thanyaburi, Pathum Thani 12130, Thailand; (R.P.S.); (C.N.)
| | - Yordhathai Thongsri
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Pachuen Potup
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
| | - Nungruthai Suphrom
- Department of Chemistry, Faculty of Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Nitra Nuengchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand; (T.L.); (Y.T.); (P.P.)
- Correspondence: ; Tel.: +66-55-966-411; Fax: +66-55-966-234
| |
Collapse
|
14
|
Retracted
: Syringic acid suppresses oral squamous cell carcinoma SCC131 cell proliferation via modulation of mitochondria‐mediated apoptosis signaling pathways. J Biochem Mol Toxicol 2020; 34:e22586. [DOI: 10.1002/jbt.22586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/28/2020] [Accepted: 07/14/2020] [Indexed: 11/07/2022]
|
15
|
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya A, Martorell M, Martins N, Cho WC. Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules 2019; 9:E679. [PMID: 31683894 PMCID: PMC6920853 DOI: 10.3390/biom9110679] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is a heterogeneous disease and one of the major issues of health concern, especially for the public health system globally. Nature is a source of anticancer drugs with abundant pool of diverse chemicals and pharmacologically active compounds. In recent decade, some natural products and synthetic analogs have been investigated for the cancer treatment. This article presents the utilization of natural products as a source of antitumor drugs.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco.
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco.
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10106, Morocco.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
16
|
Zhang X, Yang P, Luo X, Su C, Chen Y, Zhao L, Wei L, Zeng H, Varghese Z, Moorhead JF, Ruan XZ, Chen Y. High olive oil diets enhance cervical tumour growth in mice: transcriptome analysis for potential candidate genes and pathways. Lipids Health Dis 2019; 18:76. [PMID: 30922331 PMCID: PMC6440132 DOI: 10.1186/s12944-019-1023-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Numerous epidemiologic studies have found a close association between obesity and cancer. Dietary fat is a fundamental contributor to obesity and is a risk factor for cancer. Thus far, the impact of dietary olive oil on cancer development remains inconclusive, and little is known about its underlying mechanisms. METHODS Nude mouse xenograft models were used to examine the effects of high olive oil diet feeding on cervical cancer (CC) development and progression. Cell proliferation, migration and invasion were observed by the methods of EdU incorporation, Wound healing and Transwell assay, separately. RNA-sequencing technology and comprehensive bioinformatics analyses were used to elucidate the molecular processes regulated by dietary fat. Differentially expressed genes (DEGs) were identified and were functionally analyzed by Gene Ontology (GO), Kyoto Enrichment of Genes and Genomes (KEGG). Then, protein-protein interaction (PPI) network and sub-PPI network analyses were conducted using the STRING database and Cytoscape software. RESULTS A high olive oil diet aggravated tumourigenesis in an experimental xenograft model of CC. Oleic acid, the main ingredient of olive oil, promoted cell growth and migration in vitro. Transcriptome sequencing analysis of xenograft tumour tissues was then performed to elucidate the regulation of molecular events regulated by dietary fat. Dietary olive oil induced 648 DEGs, comprising 155 up-regulated DEGs and 493 down-regulated DEGs. GO and pathway enrichment analysis revealed that some of the DEGs including EGR1 and FOXN2 were involved in the transcription regulation and others, including TGFB2 and COL4A3 in cell proliferation. The 15 most strongly associated DEGs were selected from the PPI network and hub genes including JUN, TIMP3, OAS1, OASL and EGR1 were confirmed by real-time quantitative PCR analysis. CONCLUSIONS Our study suggests that a high olive oil diet aggravates CC progression in vivo and in vitro. We provide clues to build a potential link between dietary fat and cancerogenesis and identify areas requiring further investigation.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Ping Yang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xuan Luo
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Chunxiao Su
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Yao Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Lei Zhao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Li Wei
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Han Zeng
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Zac Varghese
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, NW3 2PF, London, UK
| | - John F Moorhead
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, NW3 2PF, London, UK
| | - Xiong Z Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, NW3 2PF, London, UK.
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
17
|
Wang Y, Zhang Y, Chen X, Hong Y, Wu Z. [Combined treatment with myo-inositol and luteolin selectively suppresses growth of human lung cancer A549 cells possibly by suppressing activation of PDK1 and Akt]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1378-1383. [PMID: 30514689 DOI: 10.12122/j.issn.1673-4254.2018.11.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To study the effects of myo-inositol and luteolin on human lung cancer A549 cells and explore the possible mechanisms. METHODS A549 cells were treated with different concentrations of myo-inositol and luteolin, either alone or in combination, and the cell viability was examined using MTT assay. A549 cells and human bronchial epithelial Beas-2B cells were treated for 48 h with 10 mmol/L myo-inositol and 20 μmol/L luteolin, alone or in combination, and the cell proliferation was detected using MTT assay; the colony formation and migration of the cells were examined with colony formation assay and wound healing assay, respectively. The protein expression levels in A549 cells were detected using Western blotting. RESULTS Both myo-inositol and luteolin could dose-dependently inhibit the viability of A549 cells. Treatments with 10 mmol/L myo-inositol, 20 μmol/L luteolin, and both for 48 h caused significant reduction in the cell viability (92%, 83% and 70% of the control level, respectively) and colony number (79%, 73% and 43%, respectively), and significantly lowered the wound closure rate (24.61%, 13.08% and 8.65%, respectively, as compared with 29.99% in the control group). Similar treatments with myoinositol and luteolin alone or in combination produced no significant inhibitory effect on the growth, colony formation or migration of Beas-2B cells. The expressions of p-PDK1 and p-Akt in myo-inositol-treated A549 cells and the expression of pPDK1 in luteolin-treated cells were significantly decreased (P < 0.05), and the decrements were more obvious in the combined treatment group (P < 0.05). CONCLUSIONS Luteolin combined with myo-inositol can selectively inhibit the proliferation and migration of A549 cells, and these effects are probably mediated, at least in part, by suppressing the activation of PDK1 and Akt.
Collapse
Affiliation(s)
- Yun Wang
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Yuyuan Zhang
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Xue Chen
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Yun Hong
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| | - Zhengdong Wu
- School of Public Health, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
18
|
Tan Y, Wang Q, Xie Y, Qiao X, Zhang S, Wang Y, Yang Y, Zhang B. Identification of FOXM1 as a specific marker for triple‑negative breast cancer. Int J Oncol 2018; 54:87-97. [PMID: 30365046 PMCID: PMC6254995 DOI: 10.3892/ijo.2018.4598] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to identify the therapeutic role of the forkhead box M1 (FOXM1)-associated pathway in triple-negative breast cancer (TNBC). Using a Cancer Landscapes-based analysis, a gene regulatory network model was constructed. The present results demonstrated that FOXM1 occupies a key position in gene networks and is a critical regulatory gene in breast cancer. Using breast carcinoma gene expression data from The Cancer Genome Atlas, it was identified that FOXM1 expression was increased in the basal-like breast cancer subtype compared with other breast cancer subtypes. RNA-sequencing analysis of MDA-MB-231 cells treated with 4 and 10 µl/ml Thiostrepton identified 662 and 5,888 significantly differentially expressed genes, respectively. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that FOXM1 was highly associated with multiple biological processes and was markedly associated with metabolic pathways in TNBC. The use of Search Tool for the Retrieval of Interacting Genes/Proteins provided a critical assessment and integration of protein-protein interactions, and demonstrated the multiple important functions of FOXM1 in TNBC. Real-time cell analysis, reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining were used to assess the anti-tumor activity of Thiostrepton in TNBC cells in vitro. The present results identified that suppression of FOXM1 using Thiostrepton inhibited MDA-MB-231 cell proliferation and the expression of cell cycle-associated genes, including cyclin A2, cyclin B2, checkpoint kinase 1, centrosomal protein 55 and polo like kinase 1. Immunofluorescence staining analysis demonstrated that vimentin, filamentous actin and zinc finger E-box-binding homeobox 1 were all decreased following treatment with Thiostrepton. Furthermore, a BALB/C nude mouse subcutaneous xenograft model was used to verify the function of FOXM1 in vivo. The present results demonstrated that FOXM1 inhibition significantly suppressed MDA-MB-231 cell tumorigenesis in vivo. Overall, the present results suggested that FOXM1 is a key gene that serves important roles in multiple biological processes in TNBC and that it may serve as a novel therapeutic target in TNBC.
Collapse
Affiliation(s)
- Yanli Tan
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Qixue Wang
- Department of Neurosurgery, Tianjin Neurological Institute, Tianjin 300052, P.R. China
| | - Yingbin Xie
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiaoxia Qiao
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Shun Zhang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yongbin Yang
- Department of Pathology, Hebei University Medical College, Baoding, Hebei 071000, P.R. China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
19
|
Nanda N, Mahmood S, Bhatia A, Mahmood A, Dhawan DK. Chemopreventive role of olive oil in colon carcinogenesis by targeting noncoding RNAs and methylation machinery. Int J Cancer 2018; 144:1180-1194. [PMID: 30155989 DOI: 10.1002/ijc.31837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/02/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Epigenetic therapy induced by dietary components has become a strong interest in the field of cancer prevention. Olive oil, a potent dietary chemopreventive agent, control colon cancer, however, its role in epigenetic therapy remains unclear. Thus, we aimed to investigate the effect of olive oil in a preclinical model of colon cancer by targeting genetic and epigenetic mechanisms. DMH was used to induce colon cancer in rats; while olive oil was given to separate group of rats along with DMH treatment. Tumor burden and incidence in DMH and DMH + olive oil-treated rats was observed by macroscopic examination and histoarchitectural studies. Potent anti-inflammatory, anti-angiogenic and pro-apoptotic activity of olive oil was explored by gene expression and immunohistochemical studies. The effect of olive oil on epigenetic alterations was examined by detecting promoter methylation with MS-HRM and dysregulation of miRNA by TaqMan MicroRNA Assay. We observed that olive oil administration lowered tumor incidence and inhibited the development of tumors in DMH-treated rats. Olive oil markedly decreased the expression of inflammatory and angiogenic markers and restored the expression of pro-apoptotic markers in DMH-treated rats. Furthermore, the inverse relationship between gene expression and DNA methylation, deviant miRNA pattern and miRNA silencing mediated by aberrant DNA methylation was also seen in DMH-treated rats, which was potentially reversible upon olive oil treatment. Our study concludes that olive oil may play a role in the epigenetic therapy by altering NF-κB and apoptotic pathways via targeting noncoding RNAs and methylation machinery that affecting epigenome to prevent colon carcinogenesis.
Collapse
Affiliation(s)
- Neha Nanda
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.,Department of Biophysics, Panjab University, Chandigarh, India
| | - Safrun Mahmood
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Akhtar Mahmood
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | |
Collapse
|
20
|
Natural Compounds as Epigenetic Regulators of Human Dendritic Cell-mediated Immune Function. J Immunother 2018; 41:169-180. [DOI: 10.1097/cji.0000000000000201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Crooker K, Aliani R, Ananth M, Arnold L, Anant S, Thomas SM. A Review of Promising Natural Chemopreventive Agents for Head and Neck Cancer. Cancer Prev Res (Phila) 2018; 11:441-450. [PMID: 29602908 DOI: 10.1158/1940-6207.capr-17-0419] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/15/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) accounts for 300,000 deaths per year worldwide, and overall survival rates have shown little improvement over the past three decades. Current treatment methods including surgery, chemotherapy, and radiotherapy leave patients with secondary morbidities. Thus, treatment of HNSCC may benefit from exploration of natural compounds as chemopreventive agents. With excellent safety profiles, reduced toxicities, antioxidant properties, and general acceptance for use as dietary supplements, natural compounds are viewed as a desirable area of investigation for chemoprevention. Though most of the field is early in development, numerous studies display the potential utility of natural compounds against HNSCC. These compounds face additional challenges such as low bioavailability for systemic delivery, potential toxicities when consumed in pharmacologic doses, and acquired resistance. However, novel delivery vehicles and synthetic analogues have shown to overcome some of these challenges. This review covers 11 promising natural compounds in the chemoprevention of HNSCC including vitamin A, curcumin, isothiocyanate, green tea, luteolin, resveratrol, genistein, lycopene, bitter melon, withaferin A, and guggulsterone. The review discusses the therapeutic potential and associated challenges of these agents in the chemopreventive efforts against HNSCC. Cancer Prev Res; 11(8); 441-50. ©2018 AACR.
Collapse
Affiliation(s)
- Kyle Crooker
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Rana Aliani
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Megha Ananth
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Levi Arnold
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas
| | - Shrikant Anant
- Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Sufi Mary Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas. .,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
22
|
Zhang J, Chen D, Han DM, Cheng YH, Dai C, Wu XJ, Che FY, Heng XY. Tannic acid mediated induction of apoptosis in human glioma Hs 683 cells. Oncol Lett 2018; 15:6845-6850. [PMID: 29849785 PMCID: PMC5962853 DOI: 10.3892/ol.2018.8197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/03/2017] [Indexed: 02/07/2023] Open
Abstract
Tannic acid (TA), a natural plant compound, is known to induce the death of cancer cells in various types of cancer. The present study was designed with the aim of exploring the effects of tannic acid in vitro on HS 683, a glioma cell line, and to study the mechanism involved in the induction of cytotoxicity and apoptosis by TA. TA exhibited maximum cytotoxic activity against the Hs 683 cell line. Nuclear morphology, 4′,6-diamidino-2-phenylindole staining and annexin V/propidium iodide apoptosis assaying of Hs 683 cells confirmed that cell death was due to the induction of apoptosis by TA. Further mechanistic study of TA on Hs 683 cells revealed that it decreased cell growth with increasing TA concentration, that resulted in the activation of pro-caspase 3 and caspase 9 and the cleavage of poly (ADP-ribose) polymerase, implying the induction of apoptosis cascades. Biochemical evidence of apoptosis resulted from the loss of mitochondrial membrane potential and increased intracellular reactive oxygen species production by TA in a dose-dependent manner. Based on this data, TA may be further investigated as a potential anticancer therapeutic lead.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Dong Chen
- Department of Clinical College, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Dian-Ming Han
- Department of Clinical College, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Yan-Hao Cheng
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Chao Dai
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Xiu-Jie Wu
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Feng-Yuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Xue-Yuan Heng
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
23
|
Icaritin Reduces Oral Squamous Cell Carcinoma Progression via the Inhibition of STAT3 Signaling. Int J Mol Sci 2017; 18:ijms18010132. [PMID: 28085115 PMCID: PMC5297765 DOI: 10.3390/ijms18010132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Icaritin, a traditional Chinese medicine, possesses antitumor activity. The current study aimed to investigate icaritin effect and potential mechanism on oral squamous cell carcinoma (OSCC) development. OSCC cells proliferation, apoptosis, and autophagy were analyzed after incubation with icaritin at different concentrations and incubation times. The expressions of proteins related to proliferation, apoptosis, and autophagy, as well as signal transducer and activator of transcription 3 (STAT3) signal network, were also evaluated by western blot. Furthermore, STAT3 was knocked down by siRNA transfection to determine STAT3 role in OSCC cell proliferation and apoptosis. An oral specific carcinogenesis mouse model was used to explore icaritin effect on OSCC in vivo. Icaritin significantly inhibited OSCC proliferation in vitro and reduced the expression of both the cell-cycle progression proteins cyclin A2 and cyclin D1. Besides, icaritin increased cleaved caspase 3 and cleaved poly-(ADP-ribose) polymerase expression leading to apoptosis, and it activated autophagy. Icaritin significantly inhibited the expression of phospho-STAT3 (p-STAT3) in a dose- and time-dependent manner. In the in vivo experiment, the number of malignant tumors in the icaritin-treated group was significantly lower than the control. Overall, icaritin suppressed proliferation, promoted apoptosis and autophagy, and inhibited STAT3 signaling in OSCC in vitro and in vivo. In conclusion, icaritin might be a potential therapeutic agent against OSCC development.
Collapse
|
24
|
Su CC, Lee KI, Chen MK, Kuo CY, Tang CH, Liu SH. Cantharidin Induced Oral Squamous Cell Carcinoma Cell Apoptosis via the JNK-Regulated Mitochondria and Endoplasmic Reticulum Stress-Related Signaling Pathways. PLoS One 2016; 11:e0168095. [PMID: 27930712 PMCID: PMC5145211 DOI: 10.1371/journal.pone.0168095] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/24/2016] [Indexed: 12/11/2022] Open
Abstract
Oral cancer is a subtype of head and neck cancer which represents 2.65% of all human malignancies. Most of oral cancer is histopathologically diagnosed as oral squamous cell carcinoma (OSCC). OSCC is characterized by a high degree of local invasion and a high rate of metastasis to the cervical lymph nodes. How to prevention and treatment of OSCC is important and imperative. Here, we investigated the therapeutic effect and molecular mechanism of cantharidin, an active compound isolated from blister beetles, on OSCC in vitro. Results showed that cantharidin significantly decreased cell viability in human tongue squamous carcinoma-derived SAS, CAL-27, and SCC-4 cell lines. The further mechanistic studies were carried out in SAS cells. Cantharidin also significantly increased apoptosis-related signals, including caspase-9, caspase-7 and caspase-3 proteins. Besides, cantharidin decreased mitochondrial transmembrane potential (MMP) and induced cytochrome c and apoptosis inducing factor (AIF) release. Cantharidin also increased Bax, Bid, and Bak protein expressions and decreased Bcl-2 protein expression. Cantharidin could also increase the endoplasmic reticulum (ER) stress signals, including the expressions of phosphorylated eIF-2α and CHOP, but not Grp78 and Grp94. Furthermore, cantharidin reduced pro-caspase-12 protein expression. In signals of mitogen-activated protein kinases, cantharidin increased the phosphorylation of JNK, but not ERK and p38. Transfection of shRNA-JNK to OSCC cells effectively reversed the cantharidin-induced cell apoptotic signals, including the mitochondrial and ER stress-related signaling molecules. Taken together, these findings suggest that cantharidin induces apoptosis in OSCC cells via the JNK-regulated mitochondria and ER stress-related signaling pathways.
Collapse
Affiliation(s)
- Chin-Chuan Su
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
25
|
Cellular uptake and anticancer activity of salvianolic acid B phospholipid complex loaded nanoparticles in head and neck cancer and precancer cells. Colloids Surf B Biointerfaces 2016; 147:65-72. [PMID: 27490455 DOI: 10.1016/j.colsurfb.2016.07.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022]
Abstract
Salvianolic acid B (SalB) was demonstrated to be a promising chemopreventive agent for head and neck squamous cell carcinoma (HNSCC) in the previous studies by our and other research institution, but the properties like low efficacy, poor systemic delivery, and low bioavailability has hampered its clinical applications. To continue our research program focused on the use of natural compounds on cancer chemoprevention, we propose a first example of phospholipid complex loaded nanoparticles (PLC-NPs) encapsulating SalB as a potential carrier for intervention of HNSCC (HN13, HN30) cells and precancer Leuk1 cells in this study. Qualitative and quantitive studies of cellular uptake showed that intracellular accumulation of SalB was significantly higher when HN13, HN30 and Leuk1 cells were incubated with SalB-PLC-NPs complex (nano-SalB) as against free-SalB. Cell viability assay revealed that the cell growth of HN13 and HN30 cells was significantly inhibited of 56.1% and 29.3%, respectively, for nano-SalB compared to an equivalent amount of free-SalB (P<0.001). Moreover, cell cycle and apoptosis assay showed that a clear trend of cell cycle arrest and induction of apoptosis was also observed within the HNSCC cells treated with nano-SalB. Collectively, this study demonstrated that nano-SalB was significantly more potent had an anticancer effect against HNSCC cells, which serves as the first step toward establishing SalB nano-formulations as promising cancer chemopreventive agents. The current study could pave a new way for the development of drugs that target HNSCC in the future.
Collapse
|
26
|
Costa G, Rocca R, Moraca F, Talarico C, Romeo I, Ortuso F, Alcaro S, Artese A. A Comparative Docking Strategy to Identify Polyphenolic Derivatives as Promising Antineoplastic Binders of G-quadruplex DNAc-mycandbcl-2Sequences. Mol Inform 2016; 35:391-402. [DOI: 10.1002/minf.201501040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/19/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Giosuè Costa
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Roberta Rocca
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Federica Moraca
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Carmine Talarico
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Isabella Romeo
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Francesco Ortuso
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Stefano Alcaro
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| | - Anna Artese
- Università degli Studi “Magna Graecia” di Catanzaro, Dipartimento di Scienze della Salute; Campus “Salvatore Venuta”, Viale Europa 88100 Catanzaro Italy
| |
Collapse
|
27
|
Kim DJ, Lee JH, Park HR, Choi YW. Acetylshikonin inhibits growth of oral squamous cell carcinoma by inducing apoptosis. Arch Oral Biol 2016; 70:149-157. [PMID: 27371806 DOI: 10.1016/j.archoralbio.2016.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Recently, shikonin derivatives from Lithospermum erythrorhizon have been suggested as potential chemotherapeutic agents against numerous types of cancers in addition to their traditional uses, e.g., as anti-inflammatory agents. Acetylshikonin, one of shikonin derivatives, has also been reported to possess anticancer activity. However, few studies of the effectiveness of acetylshikonin against cancer cells have been conducted, and there are no studies of oral cancers. In this study, we investigated the usefulness of acetylshikonin as a treatment regimen for oral cancers by observing the growth inhibitory function of acetylshikonin and the involved mechanisms. DESIGNS The viability, cell cycle, and ratio of apoptotic cells of oral squamous cell carcinoma (OSCC) cells were observed after treatment with acetylshikonin using MTT assay, flow cytometric analysis, and Annexin V/PI staining, respectively. In addition, molecular changes of apoptosis-related pathways and the role of reactive oxygen species (ROS) were analyzed in acetylshikonin-treated cells. RESULTS We observed that acetylshikonin significantly suppressed the growth of OSCC cells by inducing apoptotic cell death, and acetylshikonin affected the viability of a normal keratinocyte cell line HaCaT to a lesser degree, suggesting that acetylshikonin may be a good chemotherapeutic reagent with less toxicity to normal tissues. In addition, we found that acetylshikonin-induced apoptosis of OSCC cells is mediated by ROS as well as G2 cell cycle arrest. ROS production in response to acetylshikonin treatment enhanced the phosphorylation of JNK and p38 MAPK, which are in the major pathways of apoptotic cell death mechanisms. CONCLUSIONS In summary, our data suggest that acetylshikonin is a strong candidate for use as a selective chemotherapeutic agent for the treatment of OSCC.
Collapse
Affiliation(s)
- Da Jeong Kim
- Department of Oral Pathology & BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, South Korea; School of Dentistry, Pusan National University, 49 Busandaehak-Ro, Yangsan 626-870, South Korea
| | - Ji Hye Lee
- Department of Oral Pathology & BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, South Korea; School of Dentistry, Pusan National University, 49 Busandaehak-Ro, Yangsan 626-870, South Korea
| | - Hae Ryoun Park
- Department of Oral Pathology & BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan, South Korea; School of Dentistry, Pusan National University, 49 Busandaehak-Ro, Yangsan 626-870, South Korea; Institute of Translational Dental Sciences, Pusan National University, 49 Busandaehak-Ro, Yangsan 626-870, South Korea.
| | - Young Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Samnangjin-Ro 1268-50, Samnangjin-eup, Miryang 627-706, South Korea.
| |
Collapse
|
28
|
Ahmed M, Hussain AR, Siraj AK, Uddin S, Al-Sanea N, Al-Dayel F, Al-Assiri M, Beg S, Al-Kuraya KS. Co-targeting of Cyclooxygenase-2 and FoxM1 is a viable strategy in inducing anticancer effects in colorectal cancer cells. Mol Cancer 2015; 14:131. [PMID: 26159723 PMCID: PMC4861127 DOI: 10.1186/s12943-015-0406-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/01/2015] [Indexed: 12/16/2022] Open
Abstract
Background Cross-talk between deregulated signaling pathways in cancer cells causes uncontrolled growth and proliferation. These cancers cells become more aggressive and quickly develop resistance to therapy. Therefore targeting of these deregulated pathways simultaneously can result in efficient cell death of cancer cells. In this study we investigated co-expression of Cox-2 and FoxM1 in a cohort of colorectal carcinoma (CRC) samples and also examined whether inhibition of Cox-2 and FoxM1 simultaneously can lead to inhibition of cell viability and induction of apoptosis in colorectal cancer cell lines and in vivo xenografts. Methods Protein expression of Cox-2 and FoxM1 was determined in a large cohort of 770 clinical CRC samples in a tissue micro-array format by immunohistochemistry. Cell death was measured using live dead assay. Apoptosis was measured by annexin V/PI dual staining. Immunoblotting was performed to examine the expression of proteins. Calcusyn software was utilized to estimate the synergistic doses using chou and Talalay method. Results Co-expression of Cox-2 and FoxM1 was detected in 33.3 % (232/697) of CRC’s and associated with an aggressive phenotype characterized by younger age (p = 0.0191), high proliferative index marker; Ki-67 (p = 0.004) and MMP-9 (p = 0.0116) as well as activation of AKT (p = 0.0214). In vitro, inhibition of FoxM1 and Cox-2 with pharmacological inhibitors; Thiostrepton and NS398 resulted in efficient down-regulation of FoxM1 and Cox-2 expression along with in-activation of AKT and inhibition of colony formation, invasion and migratory capability of CRC cells. In addition, there was also inhibition of cell viability and induction of apoptosis via the mitochondrial apoptotic pathway in CRC cell lines. Finally, treatment of CRC xenograft tumors in nude mice with combination of Cox-2 and FoxM1 inhibitors inhibited tumor growth significantly via down-regulation of Cox-2 and FoxM1 expression. Conclusions These findings demonstrate that co-expression of Cox-2 and FoxM1 might play a critical role in the pathogenesis of CRC. Therefore, targeting of these pathways simultaneously with sub toxic doses of pharmacological inhibitors can be a potential therapeutic approach for the treatment of this subset of CRC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0406-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maqbool Ahmed
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia.
| | - Azhar R Hussain
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia.
| | - Abdul K Siraj
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia.
| | - Shahab Uddin
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia.
| | - Nasser Al-Sanea
- Department of Surgery, Colorectal unit, Riyadh, Saudi Arabia.
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | | | - Shaham Beg
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia.
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Center, Riyadh, Saudi Arabia. .,Al-Faisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
29
|
Haque A, Rahman MA, Fuchs JR, Chen ZG, Khuri FR, Shin DM, Amin ARMR. FLLL12 induces apoptosis in lung cancer cells through a p53/p73-independent but death receptor 5-dependent pathway. Cancer Lett 2015; 363:166-75. [PMID: 25917567 DOI: 10.1016/j.canlet.2015.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 01/17/2023]
Abstract
Unlike chemotherapy drugs, the safety of natural compounds such as curcumin has been well established. However, the potential use of curcumin in cancer has been compromised by its low bioavailability, limited tissue distribution and rapid biotransformation leading to low in vivo efficacy. To circumvent these problems, more potent and bioavailable analogs have been synthesized. In the current study, we investigated the mechanism of anti-tumor effect of one such analog, FLLL12, in lung cancers. IC50 values measured by sulforhodamine B (SRB) assay at 72 h and apoptosis assays (annexin V staining, cleavage of PARP and caspase-3) suggest that FLLL12 is 5-10-fold more potent than curcumin against a panel of premalignant and malignant lung cancer cell lines, depending on the cell line. Moreover, FLLL12 induced the expression of death receptor-5 (DR5). Ablation of the expression of the components of the extrinsic apoptotic pathway (DR5, caspase-8 and Bid) by siRNA significantly protected cells from FLLL12-induced apoptosis (p < 0.05). Analysis of mRNA expression revealed that FLLL-12 had no significant effect on the expression of DR5 mRNA expression. Interestingly, inhibition of global phosphatase activity as well as protein tyrosine phosphatases (PTPs), but not of alkaline phosphatases, strongly inhibited DR5 expression and significantly inhibited apoptosis (p < 0.05), suggesting the involvement of PTPs in the regulation of DR5 expression and apoptosis. We further showed that the apoptosis is independent of p53 and p73. Taken together, our results strongly suggest that FLLL12 induces apoptosis of lung cancer cell lines by posttranscriptional regulation of DR5 through activation of protein tyrosine phosphatase(s).
Collapse
Affiliation(s)
- Abedul Haque
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Mohammad A Rahman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - James R Fuchs
- Deaprtment of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Zhuo Georgia Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - A R M Ruhul Amin
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
30
|
Kotowski U, Heiduschka G, Seemann R, Eckl-Dorna J, Schmid R, Kranebitter V, Stanisz I, Brunner M, Lill C, Thurnher D. Effect of the coffee ingredient cafestol on head and neck squamous cell carcinoma cell lines. Strahlenther Onkol 2015; 191:511-7. [PMID: 25575980 DOI: 10.1007/s00066-014-0807-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Cafestol is a diterpene molecule found in coffee beans and has anticarcinogenic properties. The aim of the study was to examine the effects of cafestol in head and neck squamous cell carcinoma (HNSCC) cells. MATERIALS AND METHODS Three HNSCC cell lines (SCC25, CAL27 and FaDu) were treated with increasing doses of cafestol. Then combination experiments with cisplatin and irradiation were carried out. Drug interactions and possible synergy were calculated using the combination index analysis. Clonogenic assays were performed after irradiation with 2, 4, 6 and 8 Gy, respectively, and the rate of apoptosis was measured with flow cytometry. RESULTS Treatment of HNSCC cells with cafestol leads to a dose-dependent reduction of cell viability and to induction of apoptosis. Combination with irradiation shows a reduction of clonogenic survival compared to each treatment method alone. In two of the cell lines a significant additive effect was observed. CONCLUSION Cafestol is a naturally occurring effective compound with growth-inhibiting properties in head and neck cancer cells. Moreover, it leads to a significant inhibition of colony formation.
Collapse
Affiliation(s)
- Ulana Kotowski
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Grimm M, Cetindis M, Lehmann M, Biegner T, Munz A, Teriete P, Kraut W, Reinert S. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? J Transl Med 2014; 12:208. [PMID: 25048361 PMCID: PMC4110933 DOI: 10.1186/1479-5876-12-208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Background Tumor metabolism is a crucial factor for the carcinogenesis of oral squamous cell carcinoma (OSCC). Methods Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, PFK-1, LDHA, TKTL1), mitochondrial enzymes (SDHA, SDHB, ATP synthase) were analyzed in normal oral mucosa (n = 5), oral precursor lesions (simple hyperplasia, n = 11; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 42) by immunohistochemistry and real-time polymerase chain reaction (qPCR) analysis in OSCC cell lines. Metabolism-related proteins were correlated with proliferation activity (Ki-67) and apoptotic properties (TUNEL assay) in OSCC. Specificity of antibodies was confirmed by western blotting in cancer cell lines. Results Expression of IGF-R1, glycolysis-related proteins (GLUT-1, HK 2, LDHA, TKTL1), and mitochondrial enzymes (SDHA, SDHB, ATP synthase) were significantly increased in the carcinogenesis of OSCC. Metabolic active regions of OSCC were strongly correlated with proliferating cancer (Ki-67+) cells without detection of apoptosis (TUNEL assay). Conclusions This study provides the first evidence of the expression of IGF-R1, glycolysis-related proteins GLUT-1, HK 2, PFK-1, LDHA, and TKTL1, as well as mitochondrial enzymes SDHA, SDHB, and ATP synthase in the multi-step carcinogenesis of OSCC. Both, hypoxia-related glucose metabolism and mitochondrial oxidative phosphorylation characteristics are associated with the carcinogenesis of OSCC. Acidosis and OXPHOS may drive a metabolic shift towards the pentose phosphate pathway (PPP). Therefore, inhibition of the PPP, glycolysis, and targeted anti-mitochondrial therapies (ROS generation) by natural compounds or synthetic vitamin derivatives may act as sensitizer for apoptosis in cancer cells mediated by adjuvant therapies in OSCC.
Collapse
Affiliation(s)
- Martin Grimm
- Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, Tuebingen 72076, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hann SS, Chen J, Wang Z, Wu J, Zheng F, Zhao S. Targeting EP4 by curcumin through cross talks of AMP-dependent kinase alpha and p38 mitogen-activated protein kinase signaling: The role of PGC-1α and Sp1. Cell Signal 2013; 25:2566-74. [DOI: 10.1016/j.cellsig.2013.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/25/2022]
|
33
|
Vander Broek R, Snow GE, Chen Z, Van Waes C. Chemoprevention of head and neck squamous cell carcinoma through inhibition of NF-κB signaling. Oral Oncol 2013; 50:930-41. [PMID: 24177052 DOI: 10.1016/j.oraloncology.2013.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/04/2013] [Indexed: 01/27/2023]
Abstract
Nuclear factor-kappa B (NF-κB) transcription factors regulate cellular processes such as inflammation and cell survival. The NF-κB pathway is often activated with development and progression of head and neck squamous cell carcinoma (HNSCC). As such, NF-κB represents an attractive target for chemoprevention. HNSCC involves progression of lesions from premalignant to malignant, providing a window of opportunity for intervention with chemopreventive agents. Appropriate chemopreventive agents should be inexpensive, nontoxic, and target important pathways involved in the development of HNSCC. Several such agents that inhibit the NF-κB pathway have been investigated in HNSCC. Retinoids have been studied most extensively but have shown limited potential in human trials. Epidermal growth factor receptor inhibitors and PI3K-mTOR inhibitors may benefit a subset of patients. Other agents such as green tea extract and curcumin are appealing because they are generally regarded as safe. In contrast, there is evidence that Vitamin E supplementation may actually increase mortality of cancer patients. Repurposed drugs such as cyclooxygenase (COX) inhibitors and antidiabetic drugs are an emerging area of interest. Future research to develop agents with lower toxicity and higher specificity for the NF-κB pathway, and to target these therapies to individual patient genetic signatures should help to increase the utility of chemoprevention in HSNCC.
Collapse
Affiliation(s)
- Robert Vander Broek
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States; Medical Research Scholars Program, NIH, Bethesda, Maryland, United States
| | - Grace E Snow
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States; Medical Research Scholars Program, NIH, Bethesda, Maryland, United States
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States.
| |
Collapse
|
34
|
Zlotogorski A, Dayan A, Dayan D, Chaushu G, Salo T, Vered M. Nutraceuticals as new treatment approaches for oral cancer: II. Green tea extracts and resveratrol. Oral Oncol 2013; 49:502-6. [DOI: 10.1016/j.oraloncology.2013.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/23/2013] [Accepted: 02/26/2013] [Indexed: 12/23/2022]
|
35
|
Zhu H, Bhaijee F, Ishaq N, Pepper DJ, Backus K, Brown AS, Zhou X, Miele L. Correlation of Notch1, pAKT and nuclear NF-κB expression in triple negative breast cancer. Am J Cancer Res 2013; 3:230-239. [PMID: 23593544 PMCID: PMC3623841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023] Open
Abstract
Gene expression profiling reveals elevated Notch1 mRNA expression in triple negative breast cancers (TNBC), both basaloid and claudin-low subtypes. Notch ligands, Jagged1 and Jagged2, have been correlated with poor prognosis in TNBC. AKT, an oncogenic protein kinase family that is activated downstream of Notch in breast cancer cell lines, is frequently activated in breast cancer. Recent publications suggest that inhibition of cell growth, migration, invasion, and induction of apoptosis caused by Notch1 or Jagged1 inhibition may be attributed in part to inactivation of the AKT signaling pathway. There is significant evidence that Notch1 activates NF-κB in several models, and that AKT can mediate NF-κB activation. In this study, we evaluated Notch1 protein expression by immunohistochemistry (IHC) and correlated this with expression of pAKT and nuclear NF-κB p65 (RelA) in TNBC. A tissue microarray (TMA) containing 32 formalin-fixed, paraffin-embedded (FFPE) TNBC tumor specimens was constructed from the archival tissue database of the Department of Pathology at UMMC and IHC for Notch1 protein, pAKT 1/2/3 (Ser473), and NF-κB, p65 subunit was performed on the TMA with appropriate positive and negative controls. Of the 32 TNBC in our cohort, 100% expressed Notch1 protein by IHC: 24 (75%) showed cytoplasmic expression, 25 (78%) showed membranous expression, and 17 (53%) showed both cytoplasmic and membranous expression. Overall, 29 (91%) expressed pAKT by IHC: 28 (97%) showed cytoplasmic expression, 14 (48%) showed nuclear expression and 13 (45%) showed both cytoplasmic and nuclear expression. Nuclear staining for NF-κB p65 was detected in all 32 TNBC specimens with variable intensities. On bivariate analysis, cytoplasmic Notch1 was significantly correlated with cytoplasmic pAKT (r = 0.373, P = 0.035) and nuclear NF-κB (r = 0.483, P = 0.005); both cytoplasmic and nuclear pAKT significantly correlated with nuclear NF-κB (r = 0.391, P = 0.027; r = 0.525, P = 0.002, respectively). These results suggest that 1) the cross-talk between Notch1, AKT and NF-κB identified in preclinical models may operate in a significant fraction of human TNBC, and 2) combination therapy with agents targeting these pathways warrants further investigation.
Collapse
Affiliation(s)
- He Zhu
- Cancer Institute, University of Mississippi Medical CenterJackson, MS 39216
- Department of Pathology, University of Mississippi Medical CenterJackson, MS 39216
| | - Feriyl Bhaijee
- Department of Pathology, University of Mississippi Medical CenterJackson, MS 39216
| | - Nivin Ishaq
- Department of Pathology, University of Mississippi Medical CenterJackson, MS 39216
| | - Dominique J Pepper
- Department of Medicine, University of Mississippi Medical CenterJackson, MS 39216
| | - Kandis Backus
- Cancer Institute, University of Mississippi Medical CenterJackson, MS 39216
| | - Alexandra S Brown
- Department of Pathology, University of Mississippi Medical CenterJackson, MS 39216
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical CenterJackson, MS 39216
| | - Lucio Miele
- Cancer Institute, University of Mississippi Medical CenterJackson, MS 39216
- Department of Medicine, University of Mississippi Medical CenterJackson, MS 39216
- Department of Pharmacology and Toxicology, University of Mississippi Medical CenterJackson, MS 39216
| |
Collapse
|
36
|
Bai LP, Ho HM, Ma DL, Yang H, Fu WC, Jiang ZH. Aminoglycosylation can enhance the G-quadruplex binding activity of epigallocatechin. PLoS One 2013; 8:e53962. [PMID: 23335983 PMCID: PMC3545880 DOI: 10.1371/journal.pone.0053962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/04/2012] [Indexed: 01/16/2023] Open
Abstract
With the aim of enhancing G-quadruplex binding activity, two new glucosaminosides (16, 18) of penta-methylated epigallocatechin were synthesized by chemical glycosylation. Subsequent ESI-TOF-MS analysis demonstrated that these two glucosaminoside derivatives exhibit much stronger binding activity to human telomeric DNA and RNA G-quadruplexes than their parent structure (i.e., methylated EGC) (14) as well as natural epigallocatechin (EGC, 6). The DNA G-quadruplex binding activity of 16 and 18 is even more potent than strong G-quadruplex binder quercetin, which has a more planar structure. These two synthetic compounds also showed a higher binding strength to human telomeric RNA G-quadruplex than its DNA counterpart. Analysis of the structure-activity relationship revealed that the more basic compound, 16, has a higher binding capacity with DNA and RNA G-quadruplexes than its N-acetyl derivative, 18, suggesting the importance of the basicity of the aminoglycoside for G-quadruplex binding activity. Molecular docking simulation predicted that the aromatic ring of 16 π-stacks with the aromatic ring of guanine nucleotides, with the glucosamine moiety residing in the groove of G-quadruplex. This research indicates that glycosylation of natural products with aminosugar can significantly enhance their G-quadruplex binding activities, thus is an effective way to generate small molecules targeting G-quadruplexes in nucleic acids. In addition, this is the first report that green tea catechin can bind to nucleic acid G-quadruplex structures.
Collapse
Affiliation(s)
- Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Hing-Man Ho
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Hui Yang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Wai-Chung Fu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, and Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
37
|
Thornthwaite JT, Shah HR, Shah P, Peeples WC, Respess H. The formulation for cancer prevention & therapy. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.33040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Pratheeshkumar P, Sreekala C, Zhang Z, Budhraja A, Ding S, Son YO, Wang X, Hitron A, Hyun-Jung K, Wang L, Lee JC, Shi X. Cancer prevention with promising natural products: mechanisms of action and molecular targets. Anticancer Agents Med Chem 2012; 12:1159-84. [PMID: 22583402 PMCID: PMC4983770 DOI: 10.2174/187152012803833035] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 11/22/2022]
Abstract
Cancer is the second leading cause of death worldwide. There is greater need for more effective and less toxic therapeutic and preventive strategies. Natural products are becoming an important research area for novel and bioactive molecules for drug discovery. Phytochemicals and dietary compounds have been used for the treatment of cancer throughout history due to their safety, low toxicity, and general availability. Many active phytochemicals are in human clinical trials. Studies have indicated that daily consumption of dietary phytochemicals have cancer protective effects against carcinogens. They can inhibit, delay, or reverse carcinogenesis by inducing detoxifying and antioxidant enzymes systems, regulating inflammatory and proliferative signaling pathways, and inducing cell cycle arrest and apoptosis. Epidemiological studies have also revealed that high dietary intakes of fruits and vegetables reduce the risk of cancer. This review discusses potential natural cancer preventive compounds, their molecular targets, and their mechanisms of actions.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Amit Budhraja
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Songze Ding
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Young-Ok Son
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Xin Wang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew Hitron
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Kim Hyun-Jung
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Jeong-Chae Lee
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
39
|
Pleiotrophic effects of natural products in ROS-induced carcinogenesis: The role of plant-derived natural products in oral cancer chemoprevention. Cancer Lett 2012; 327:16-25. [DOI: 10.1016/j.canlet.2012.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 12/14/2022]
|
40
|
Wang H, Khor TO, Shu L, Su Z, Fuentes F, Lee JH, Kong ANT. Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 2012; 12:1281-305. [PMID: 22583408 PMCID: PMC4017674 DOI: 10.2174/187152012803833026] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 11/22/2022]
Abstract
Cancer remains to be one of the leading causes of death in the United States and around the world. The advent of modern drug-targeted therapies has undeniably improved cancer patients' cares. However, advanced metastasized cancer remains untreatable. Hence, continued searching for a safer and more effective chemoprevention and treatment is clearly needed for the improvement of the efficiency and to lower the treatment cost for cancer care. Cancer chemoprevention with natural phytochemical compounds is an emerging strategy to prevent, impede, delay, or cure cancer. This review summarizes the latest research in cancer chemoprevention and treatment using the bioactive components from natural plants. Relevant molecular mechanisms involved in the pharmacological effects of these phytochemicals are discussed. Pharmaceutical developmental challenges and opportunities in bringing the phytochemicals into the market are also explored. The authors wish to expand this research area not only for their scientific soundness, but also for their potential druggability.
Collapse
Affiliation(s)
- Hu Wang
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Tin Oo Khor
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Limin Shu
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Zhengyuen Su
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Francisco Fuentes
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Jong-Hun Lee
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Ah-Ng Tony Kong
- Graduate Program in Pharmaceutical Sciences, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
41
|
Shin JA, Kim JS, Hong IS, Cho SD. Bak is a key molecule in apoptosis induced by methanol extracts of Codonopsis lanceolata and Tricholoma matsutake in HSC-2 human oral cancer cells. Oncol Lett 2012. [PMID: 23205139 DOI: 10.3892/ol.2012.898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Since the 5-year survival rate of oral cancer remains low, more effective and non-toxic therapeutic and preventive strategies are required. Certain natural products possess anti-cancer properties. The present study investigated the effects of the methanol extracts of Codonopsis lanceolata (MECI) and Tricholoma matsutake (METM) and identified the molecular target in HSC-2 human oral cancer cells. The results revealed that MECI and METM inhibited growth and induced apoptosis, as demonstrated by poly (ADP-ribose) polymerase (PARP) cleavage and nuclear condensation and fragmentation. The compounds also increased Bak protein expression, while Bax, Bcl-XL and Mcl-1 were not affected. The results of the present study show that MECI and METM induce apoptosis to inhibit tumor growth of HSC-2 cells by modulating the Bak protein and suggest that Codonopsis lanceolata and Tricholoma matsutake are potential anticancer drug candidates for oral cancer.
Collapse
Affiliation(s)
- Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju
| | | | | | | |
Collapse
|
42
|
Maldonado-Rojas W, Olivero-Verbel J. Food-related compounds that modulate expression of inducible nitric oxide synthase may act as its inhibitors. Molecules 2012; 17:8118-35. [PMID: 22766803 PMCID: PMC6268506 DOI: 10.3390/molecules17078118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 02/08/2023] Open
Abstract
Natural compounds commonly found in foods may contribute to protect cells against the deleterious effects of inflammation. These anti-inflammatory properties have been linked to the modulation of transcription factors that control expression of inflammation-related genes, including the inducible nitric oxide synthase (iNOS), rather than a direct inhibitory action on these proteins. In this study, forty two natural dietary compounds, known for their ability to exert an inhibitory effect on the expression of iNOS, have been studied in silico as docking ligands on two available 3D structures for this protein (PDB ID: 3E7G and PDB ID: 1NSI). Natural compounds such as silibinin and cyanidin-3-rutinoside and other flavonoids showed the highest theoretical affinities for iNOS. Docking affinity values calculated for several known iNOS inhibitors significatively correlated with their reported half maximal inhibitory concentrations (R = 0.842, P < 0.0001), suggesting the computational reliability of the predictions made by our docking simulations. Moreover, docking affinity values for potent iNOS inhibitors are of similar magnitude to those obtained for some studied natural products. Results presented here indicate that, in addition to gene expression modulation of proteins involved in inflammation, some chemicals present in food may be acting by direct binding and possible inhibiting actions on iNOS.
Collapse
Affiliation(s)
| | - Jesus Olivero-Verbel
- Author to whom correspondence should be addressed; ; Tel.: +57-5-669-8179; Fax: +57-5-669-8180
| |
Collapse
|
43
|
Hussain AR, Ahmed SO, Ahmed M, Khan OS, Al AbdulMohsen S, Platanias LC, Al-Kuraya KS, Uddin S. Cross-talk between NFkB and the PI3-kinase/AKT pathway can be targeted in primary effusion lymphoma (PEL) cell lines for efficient apoptosis. PLoS One 2012; 7:e39945. [PMID: 22768179 PMCID: PMC3386924 DOI: 10.1371/journal.pone.0039945] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023] Open
Abstract
Background A number of constitutively activated signaling pathways play critical roles in the survival and growth of primary effusion lymphoma cells (PELs) including NFkB and PI3/AKT kinase cascades. NFkBis constitutively activated in a number of malignancies, including multiple myeloma, Burkitt’s lymphoma and diffuse large cell B-cell lymphoma. However, its role in primary effusion lymphoma has not been fully explored. Methodology/Principal Findings We used pharmacological inhibition and gene silencing to define the role of NFkB in growth and survival of PEL cells. Inhibition of NFkB activity by Bay11-7085 resulted in decreased expression of p65 in the nuclear compartment as detected by EMSA assays. In addition, Bay11-7085 treatment caused de-phosphorylation of AKT and its downstream targets suggesting a cross-talk between NFkB and the PI3-kinase/AKT pathway. Importantly, treatment of PEL cells with Bay11-7085 led to inhibition of cell viability and induced apoptosis in a dose dependent manner. Similar apoptotic effects were found when p65 was knocked down using specific small interference RNA. Finally, co-treatment of PEL cells with suboptimal doses of Bay11-7085 and LY294002 led to synergistic apoptotic responses in PEL cells. Conclusion/Significance These data support a strong biological-link between NFkB and the PI3-kinase/AKT pathway in the modulation of anti-apoptotic effects in PEL cells. Synergistic targeting of these pathways using NFKB- and PI3-kinase/AKT- inhibitors may have a therapeutic potential for the treatment of PEL and possibly other malignancies with constitutive activation of these pathways.
Collapse
Affiliation(s)
- Azhar R. Hussain
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saeeda O. Ahmed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maqbool Ahmed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar S. Khan
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sally Al AbdulMohsen
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Leonidas C. Platanias
- Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Shahab Uddin
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
44
|
Chirumbolo S. Plant phytochemicals as new potential drugs for immune disorders and cancer therapy: really a promising path? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:1573-1577. [PMID: 22473298 DOI: 10.1002/jsfa.5670] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 05/31/2023]
Abstract
Plant phytochemicals represent an exciting opportunity to maintain best health conditions through a balanced and properly administered daily nutrition or dietary supplement and have often been considered a good option for obtaining a few promising, expensive new drugs from plants. Several polyphenolic compounds, such as resveratrol, tea catechins and flavonoids, which are commonly found in vegetables, fruits and plant-derived juices or beverages, exert well-evidenced cardioprotective, neuroprotective, chemopreventive and anti-inflammatory properties, but, nevertheless, further clinical and epidemiological research is required. Most of these botanical byproducts are produced as noxious components by plants, in order to prevent pathogen colonization, insect-mediated damage and also to discourage animals from eating them. An evolutionary theory of stress adaptation would explain how these toxic substances from nature act as protective molecules. A future challenge to achieve a rather complete understanding of these chemical phenol derivatives for human health should deal with the complexity of cellular signalling networks, the epigenetic machinery endowment of the cell and the nonlinear relationship between dose and effectiveness.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Medicine-Section Geriatry, University of Verona, Policlinico GB Rossi piazzale AL Scuro 10, 37134 Verona, Italy.
| |
Collapse
|
45
|
Baumeister P, Reiter M, Harréus U. Curcumin and other polyphenolic compounds in head and neck cancer chemoprevention. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:902716. [PMID: 22690273 PMCID: PMC3368521 DOI: 10.1155/2012/902716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/17/2012] [Accepted: 03/05/2012] [Indexed: 11/17/2022]
Abstract
Despite clear results of observational studies linking a diet rich in fruits and vegetables to a decreased cancer risk, large interventional trials evaluating the impact of dietary micronutrient supplementation, mostly vitamins, could not show any beneficial effects. Today it has become clear that a single micronutrient, given in supernutritional doses, cannot match cancer preventive effects of whole fruits and vegetables. In this regard polyphenols came into focus, not only because of their antioxidant potential but also because of their ability to interact with molecular targets within the cells. Because polyphenols occur in many foods and beverages in high concentration and evidence for their anticancer activity is best for tissues they can come into direct contact with, field cancerization predestines upper aerodigestive tract epithelium for cancer chemoprevention by polyphenols. In this paper, we summarize cancer chemopreventive attempts with emphasis on head and neck carcinogenesis and discuss some methodological issues. We present data regarding antimutagenic effects of curcumin and epigallocatechin-3-gallate in human oropharyngeal mucosa cultures exposed to cigarette smoke condensate.
Collapse
Affiliation(s)
- Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | | | | |
Collapse
|
46
|
Kim JY, An JM, Chung WY, Park KK, Hwang JK, Kim DS, Seo SR, Seo JT. Xanthorrhizol Induces Apoptosis Through ROS-Mediated MAPK Activation in Human Oral Squamous Cell Carcinoma Cells and Inhibits DMBA-Induced Oral Carcinogenesis in Hamsters. Phytother Res 2012; 27:493-8. [DOI: 10.1002/ptr.4746] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 04/30/2012] [Indexed: 01/30/2023]
Affiliation(s)
- Ju Yeon Kim
- Department of Oral Biology, Brain Korea 21 Project; Yonsei University College of Dentistry; Seoul Korea
| | - Jeong Mi An
- Department of Oral Biology, Brain Korea 21 Project; Yonsei University College of Dentistry; Seoul Korea
| | - Won-Yoon Chung
- Department of Oral Biology, Brain Korea 21 Project; Yonsei University College of Dentistry; Seoul Korea
- Oral Cancer Research Institute; Yonsei University College of Dentistry; Seoul Korea
| | - Kwang-Kyun Park
- Department of Oral Biology, Brain Korea 21 Project; Yonsei University College of Dentistry; Seoul Korea
- Oral Cancer Research Institute; Yonsei University College of Dentistry; Seoul Korea
| | - Jae Kwan Hwang
- Department of Biotechnology and Bioproducts Research Center; Yonsei University; Seoul 120-749 Korea
| | - Du Sik Kim
- Department of Oral Biology, Brain Korea 21 Project; Yonsei University College of Dentistry; Seoul Korea
| | - Su Ryeon Seo
- Department of Molecular Bioscience, School of Bioscience and Biotechnology; Kangwon National University; Chuncheon Korea
| | - Jeong Taeg Seo
- Department of Oral Biology, Brain Korea 21 Project; Yonsei University College of Dentistry; Seoul Korea
| |
Collapse
|
47
|
Naghshvar F, Abianeh SM, Ahmadashrafi S, Hosseinimehr SJ. Chemoprotective effects of carnosine against genotoxicity induced by cyclophosphamide in mice bone marrow cells. Cell Biochem Funct 2012; 30:569-73. [PMID: 22535690 DOI: 10.1002/cbf.2834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/10/2012] [Accepted: 03/27/2012] [Indexed: 12/20/2022]
Abstract
The protective effects of carnosine as a natural dipeptide were investigated in mouse bone marrow cells against genotoxicity induced by cyclophosphamide. Mice were injected with solutions of carnosine at three different doses (10, 50 and 100 mg kg(-1) bw) for five consecutive days. On the fifth day of treatment, mice were injected cyclophosphamide and killed after 24 h. The frequency of micronuclei in polychromatic erythrocytes and the ratio of polychromatic erythrocyte/polychromatic erythrocyte + normochromatic erythrocyte [PCE/(PCE + NCE)] were evaluated by May-Grunwald/Giemsa staining. Histopathology of bone marrow was examined in mice treated with cyclophosphamide and carnosine. Carnosine significantly reduced micronucleated polychromatic erythrocytes (MnPCEs) induced by cyclophosphamide at all three doses. Carnosine at dose of 100 mg kg(-1) bw reduced MnPCEs 3.76-fold and completely normalized the PCE/(PCE + NCE) ratio. Administration of carnosine inhibited bone marrow toxicity induced by cyclophosphamide. It appeared that carnosine with protective activity reduced the oxidative stress and genotoxicity induced by cyclophosphamide in bone marrow cells of mice.
Collapse
Affiliation(s)
- Farshad Naghshvar
- Department of Pathology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | | |
Collapse
|
48
|
Abstract
Mounting evidence continues to point to dietary habits as a modifier of cancer risk and tumor behavior; although it is clear that considerable variability occurs across studies. While genetic public health messages can be developed, the use of mean values may result in underexposure to some essential and nonessential food components, yet precipitate overexposure to nutrients. Undeniably, inconsistencies in the literature may reflect variation in timing of exposures to specific dietary constituents, interactions with the food matrix, processing technologies, or the genomic variation among individuals, which can influence absorption, metabolism, and/or the molecular target. Inter-individual variability in genetics, epigenetics, transcriptomics, proteomics, metabolomics, or microbiomics can influence the magnitude and direction of response to bioactive food components, as briefly reviewed in this article. Unquestionably, understanding nutrigenomics holds promise to reveal those who will benefit most from dietary interventions plus identify any who might be placed at risk due to overexposures.
Collapse
|
49
|
Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol 2011; 49:331-6. [PMID: 21624396 DOI: 10.1016/j.ijbiomac.2011.05.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 04/21/2011] [Accepted: 05/14/2011] [Indexed: 11/13/2022]
Abstract
Fucoidan is known to exhibit crucial biological activities, including anti-tumor activity. In this study, we examined the influence of crude fucoidan extracted from Sargassum sp. (MTA) and Fucus vesiculosus (SIG) on Lewis lung carcinoma cells (LCC) and melanoma B16 cells (MC). In vitro studies were performed using cell viability analysis and showed that SIG and MTA fucoidans significantly decreased the viable number of LCC and MC cells in a dose-response fashion. Histochemical staining showed morphological changes of melanoma B16 cells after exposure to fucoidan. The observed changes were indicative of crude fucoidan induced apoptosis. Male C57BL/6JJCL mice were subjected to daily i.p. injections over 4 days with either SIG or MTA fucoidan (50mg/kg body wt.). The cytolytic activity of natural killer (NK) cells was enhanced by crude fucoidan in a dose-dependent manner as indicated by (51)Cr labeled YAC-1 target cell release. This study provides substantial indications that crude fucoidan exerts bioactive effects on lung and skin cancer model cells in vitro and induces enhanced natural killer cell activity in mice in vivo.
Collapse
Affiliation(s)
- Marcel Tutor Ale
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
50
|
Enhancing photodynamyc therapy efficacy by combination therapy: dated, current and oncoming strategies. Cancers (Basel) 2011; 3:2597-629. [PMID: 24212824 PMCID: PMC3757433 DOI: 10.3390/cancers3022597] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/02/2011] [Accepted: 05/31/2011] [Indexed: 11/17/2022] Open
Abstract
Combination therapy is a common practice in many medical disciplines. It is defined as the use of more than one drug to treat the same disease. Sometimes this expression describes the simultaneous use of therapeutic approaches that target different cellular/molecular pathways, increasing the chances of killing the diseased cell. This short review is concerned with therapeutic combinations in which PDT (Photodynamyc Therapy) is the core therapeutic partner. Besides the description of the principal methods used to assess the efficacy attained by combinations in respect to monotherapy, this review describes experimental results in which PDT was combined with conventional drugs in different experimental conditions. This inventory is far from exhaustive, as the number of photosensitizers used in combination with different drugs is very large. Reports cited in this work have been selected because considered representative. The combinations we have reviewed include the association of PDT with anti-oxidants, chemotherapeutics, drugs targeting topoisomerases I and II, antimetabolites and others. Some paragraphs are dedicated to PDT and immuno-modulation, others to associations of PDT with angiogenesis inhibitors, receptor inhibitors, radiotherapy and more. Finally, a look is dedicated to combinations involving the use of natural compounds and, as new entries, drugs that act as proteasome inhibitors.
Collapse
|