1
|
Zhao L, Li Z, Jiang S, Xia C, Deng K, Liu B, Wang Z, Liu Q, He M, Zou M, Xia Z. The Telomere-to-Telomere Genome of Jaboticaba Reveals the Genetic Basis of Fruit Color and Citric Acid Content. Int J Mol Sci 2024; 25:11951. [PMID: 39596019 PMCID: PMC11593881 DOI: 10.3390/ijms252211951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Jaboticaba is a typical tropical plant that blossoms and bears fruit on the tree trunks and branches. The fruits resemble grapes in appearance and texture and are also known as "treegrapes". Currently, research on the genomics of jaboticaba is lacking. In this study, we constructed an integrated, telomere-to-telomere (T2T) gap-free reference genome and two nearly complete haploid genomes, thereby providing a high-quality genomic resource. Furthermore, we unveiled the evolutionary history of several species within the Myrtaceae family, highlighting significant expansions in metabolic pathways such as the citric acid cycle, glycolysis/gluconeogenesis, and phenylpropanoid biosynthesis throughout their evolutionary process. Transcriptome analysis of jaboticaba fruits of different colors revealed that the development of fruit skin color in jaboticaba is associated with the phenylpropanoid and flavonoid biosynthesis pathways, with the flavanone 3-hydroxylase (F3H) gene potentially regulating fruit skin color. Additionally, by constructing the regulatory pathway of the citric acid cycle, we found that low citric acid content is correlated with high expression levels of genes such as thiamin diphosphate (ThDP) and low expression of phosphoenolpyruvate carboxykinase (PEPCK), indicating that PEPCK positively regulates citric acid content. These T2T genomic resources will accelerate jaboticaba pepper genetic improvement and help to understand jaboticaba genome evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Meiling Zou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| | - Zhiqiang Xia
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (L.Z.); (Z.L.); (S.J.); (C.X.); (K.D.); (B.L.); (Z.W.); (Q.L.); (M.H.)
| |
Collapse
|
2
|
do Nascimento RDP, Rizzato JS, Polezi G, Boughanem H, Williams NG, Borguini RG, Santiago MCPDA, Marostica Junior MR, Parry L. Myrciaria jaboticaba Fruit Peel: Bioactive Composition as Determined by Distinct Harvest Seasons and In Vitro Anti-Cancer Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2907. [PMID: 39458854 PMCID: PMC11510877 DOI: 10.3390/plants13202907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Jaboticaba (Myrciaria jaboticaba) is a recognizable and unique crop from Brazil. The fruit's byproducts are currently being studied, given their bioactive composition and promising anti-cancer potential. It is not evident, however, if different harvesting seasons can modify the chemical profile and antioxidant capacity of jaboticaba fruit fractions. Furthermore, as there is limited data for jaboticaba's anti-proliferative effects, additional assessments are required to improve the robustness of these findings. Therefore, this study aimed to determine the composition of the peel of jaboticaba collected in two periods (May-off-season, sample 1-and August-October-peak season, sample 2) and test the peel's richest anthocyanin sample against colorectal cancer (CRC) cell lines. To accomplish this, proximate, spectrophotometric, and chromatographic analyses were performed in two freeze-dried samples; and anti-proliferative and/or colony-forming assays were carried out in Caco-2, HT29, and HT29-MTX cells. As a result, sample 2 showed the highest levels of polyphenols overall, including flavonoids and anthocyanins. This sample displayed significative higher contents of cyanidin-3-O-glucoside (48%) and delphinidin-3-O-glucoside (105%), in addition to a superior antioxidant capacity (23% higher). Sample 1 showed higher amounts of total protein, gallic acid (20% higher), and specific carotenoids. An aqueous extract from sample 2 was tested against CRC, showing anti-proliferative effects for Caco-2 cells at 1 and 2 mg/mL concentrations, with IC50 values of 1.2-1.3 mg/mL. Additionally, the extract was able to inhibit cell colony formation when tested at both low and high concentrations. In conclusion, jaboticaba collected in the main season stands out regarding its polyphenol composition and holds potential against cancer cell growth.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
| | - Julia Soto Rizzato
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
| | - Gabriele Polezi
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
| | - Hatim Boughanem
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Non Gwenllian Williams
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
| | - Renata Galhardo Borguini
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Agroindustria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil; (R.G.B.); (M.C.P.d.A.S.)
| | | | - Mario Roberto Marostica Junior
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
| | - Lee Parry
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
| |
Collapse
|
3
|
Coelho VS, Aguiar LL, Grancieri M, Lourenço JMP, Braga DP, Saraiva SH, Costa AGV, Silva PI. Incorporation of microencapsulated polyphenols from jabuticaba peel (Plinia spp.) into a dairy drink: stability, in vitro bioaccessibility, and glycemic response. Food Res Int 2024; 189:114567. [PMID: 38876609 DOI: 10.1016/j.foodres.2024.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
This work incorporated bioactives extracted from jabuticaba peel in the form of concentrated extract (JBE) and microencapsulated powders with maltodextrin (MDP) and gum arabic (GAP) in a dairy drink, evaluating its stability, in vitro bioaccessibility, and glycemic response. We evaluated the pH, acidity, colorimetry, total phenolics and anthocyanins, antioxidant capacity, degradation kinetics and half-life of anthocyanins, bioaccessibility, and postprandial glycemic physicochemical characteristics response in healthy individuals. The drinks incorporated with polyphenols (JBE, GAP, and MDP) and the control dairy drink (CDD) maintained stable pH and acidity over 28 days. In color, the parameter a*, the most relevant to the study, was reduced for all formulations due to degradation of anthocyanins. Phenolic and antioxidant content remained constant. In bioaccessibility, we found that after the gastrointestinal simulation, there was a decrease in phenolics and anthocyanins in all formulations. In the glycemic response, we observed that the smallest incremental areas of glucose were obtained for GAP and JBE compared to CDD, demonstrating that polyphenols reduced glucose absorption. Then, the bioactives from jabuticaba peel, incorporated into a dairy drink, showed good storage stability and improved the product's functional aspects.
Collapse
Affiliation(s)
- Vinicius Serafim Coelho
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | - Lara Louzada Aguiar
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | - Mariana Grancieri
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | | | | | - Sergio Henriques Saraiva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Food Engineering Department, UFES, zip code: 29500-000, Alegre-ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Pharmacy and Nutrition Department, UFES, zip code: 29500-000, Alegre-ES, Brazil
| | - Pollyanna Ibrahim Silva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Food Engineering Department, UFES, zip code: 29500-000, Alegre-ES, Brazil.
| |
Collapse
|
4
|
Kozak T, Lykhova O, Serhiichuk T, Bezdieniezhnykh N, Chekhun V. OPTIMIZATION OF EXPERIMENTAL MODEL SYSTEMS FOR EVALUATING RECIPROCAL INFLUENCE OF BIFIDOBACTERIUM ANIMALIS AND HUMAN BREAST CANCER CELLS IN VITRO. Exp Oncol 2024; 45:504-514. [PMID: 38328839 DOI: 10.15407/exp-oncology.2023.04.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND The development of human breast cancer (BC) is known to be closely related to disturbances in the mammary gland microbiota. Bacteria of the genus Bifidobacterium are an important component of normal breast microbiota and exert antitumor activity. The molecular-biological mechanisms of interaction between BC cells and microbiota members remain poorly studied yet. The aim of this study was to develop and optimize an experimental model system for the co-cultivation of BC cells with Bifidobacterium animalis in vitro. MATERIALS AND METHODS Human ВС cells of the MCF-7, T47D, and MDA-MB-231 lines, as well as live and heat-inactivated bacteria of Bifidobacterium animalis subsp. lactis (B. animalis) were used as research objects. The growth kinetics and viability of B. animalis in the presence of different ВС cell lines and without them were determined by both the turbidimetry method and seeding on an elective nutrient medium. Glucose consumption and lactate production by bifidobacteria were assessed by biochemical methods. The viability of BC cells was determined by a standard colorimetric method. RESULTS The growth kinetics of B. animalis in the complete DMEM nutrient medium showed standard patterns. The indicators of glucose consumption and lactate production of B. animalis confirm its physiological metabolic activity under the growth conditions. The presence of BC cells in the model system did not affect the duration of the growth phases of the B. animalis cells' population but contributed to the increase in their counts. A significant decrease in the number of live BC cells of all studied lines was observed only after 48 h of co-cultivation with live B. animalis. To achieve similar suppression of the BC cell viability, 10-30-fold higher counts of heatinactivated bacteria were required compared to live ones. CONCLUSIONS The optimal conditions for co-cultivation of human BC cells and living B. animalis cells in vitro have been identified.
Collapse
Affiliation(s)
- T Kozak
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - O Lykhova
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - T Serhiichuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - N Bezdieniezhnykh
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| | - V Chekhun
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
5
|
Kopystecka A, Kozioł I, Radomska D, Bielawski K, Bielawska A, Wujec M. Vaccinium uliginosum and Vaccinium myrtillus-Two Species-One Used as a Functional Food. Nutrients 2023; 15:4119. [PMID: 37836403 PMCID: PMC10574057 DOI: 10.3390/nu15194119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Vaccinium uliginosum L. (commonly known as bog bilberry) and Vaccinium myrtillus L. (commonly known as bilberry) are species of the genus Vaccinium (family Ericaceae). The red-purple-blue coloration of blueberries is attributed largely to the anthocyanins found in bilberries. Anthocyanins, known for their potent biological activity as antioxidants, have a significant involvement in the prophylaxis of cancer or other diseases, including those of metabolic origin. Bilberry is the most important economically wild berry in Northern Europe, and it is also extensively used in juice and food production. A review of the latest literature was performed to assess the composition and biological activity of V. uliginosum and V. myrtillus. Clinical studies confirm the benefits of V. uliginosum and V. myrtillus supplementation as part of a healthy diet. Because of their antioxidant, anti-inflammatory, anti-cancer, and apoptosis-reducing activity, both bog bilberries and bilberries can be used interchangeably as a dietary supplement with anti-free radical actions in the prevention of cancer diseases and cataracts, or as a component of sunscreen preparations.
Collapse
Affiliation(s)
- Agnieszka Kopystecka
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Ilona Kozioł
- Students’ Scientific Circle on Medical Law at the Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (I.K.)
| | - Dominika Radomska
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Kilinskiego 1 Street, 15-089 Bialystok, Poland;
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| |
Collapse
|
6
|
Nascimento RDPD, Machado APDF. The preventive and therapeutic effects of anthocyanins on colorectal cancer: A comprehensive review based on up-to-date experimental studies. Food Res Int 2023; 170:113028. [PMID: 37316089 DOI: 10.1016/j.foodres.2023.113028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratory of Nutrition and Metabolism (LANUM), Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, 13083-862, Campinas, São Paulo, Brazil; European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| | - Ana Paula da Fonseca Machado
- Study and Research Group on Agroindustrial Products from the Cerrado (GEPPAC), Faculty of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
7
|
Maroldi WV, Maciel GM, Rossetto R, Bortolini DG, de Andrade Arruda Fernandes I, Haminiuk CWI. Biosorption of phenolic compounds from
Plinia cauliflora
seeds in residual yeast: kinetic, equilibrium and bioaccessibility studies. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wédisley Volpato Maroldi
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, CEP 81531‐980 PR Brazil
| | - Giselle Maria Maciel
- Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, CEP 81280‐340 PR Brazil
| | - Raquel Rossetto
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, CEP 81531‐980 PR Brazil
| | - Débora Gonçalves Bortolini
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL), Universidade Federal do Paraná (UFPR), Curitiba, CEP 81531‐980 PR Brazil
| | | | - Charles Windson Isidoro Haminiuk
- Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba, CEP 81280‐340 PR Brazil
| |
Collapse
|
8
|
|
9
|
Scuto M, Ontario ML, Salinaro AT, Caligiuri I, Rampulla F, Zimbone V, Modafferi S, Rizzolio F, Canzonieri V, Calabrese EJ, Calabrese V. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radic Biol Med 2022; 179:59-75. [PMID: 34929315 DOI: 10.1016/j.freeradbiomed.2021.12.267] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
The scientific community, recently, has focused notable attention on the chemopreventive and therapeutic effects of dietary polyphenols for human health. Emerging evidence demonstrates that polyphenols, flavonoids and vitamins counteract and neutralize genetic and environmental stressors, particularly oxidative stress and inflammatory process closely connected to cancer initiation, promotion and progression. Interestingly, polyphenols can exert antioxidant or pro-oxidant cytotoxic effects depending on their endogenous concentration. Notably, polyphenols at high dose act as pro-oxidants in a wide type of cancer cells by inhibiting Nrf2 pathway and the expression of antioxidant vitagenes, such as NAD(P)H-quinone oxidoreductase (NQO1), glutathione transferase (GT), GPx, heme oxygenase-1 (HO-1), sirtuin-1 (Sirt1) and thioredoxin (Trx) system which play an essential role in the metabolism of reactive oxygen species (ROS), detoxification of xenobiotics and inhibition of cancer progression, by inducing apoptosis and cell cycle arrest according to the hormesis approach. Importantly, mutagenesis of Nrf2 pathway can exacerbate its "dark side" role, representing a crucial event in the initiation stage of carcinogenesis. Herein, we review the hormetic effects of polyphenols and nanoincapsulated-polyphenols in chemoprevention and treatment of brain tumors via activation or inhibition of Nrf2/vitagenes to suppress carcinogenesis in the early stages, and thus inhibit its progression. Lastly, we discuss innovative preclinical approaches through mini-brain tumor organoids to study human carcinogenesis, from basic cancer research to clinical practice, as promising tools to recapitulate the arrangement of structural neuronal tissues and biological functions of the human brain, as well as test drug toxicity and drive personalized and precision medicine in brain cancer.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123, Venezia, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124, Catania, Italy.
| |
Collapse
|
10
|
Scuto M, Trovato Salinaro A, Caligiuri I, Ontario ML, Greco V, Sciuto N, Crea R, Calabrese EJ, Rizzolio F, Canzonieri V, Calabrese V. Redox modulation of vitagenes via plant polyphenols and vitamin D: Novel insights for chemoprevention and therapeutic interventions based on organoid technology. Mech Ageing Dev 2021; 199:111551. [PMID: 34358533 DOI: 10.1016/j.mad.2021.111551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022]
Abstract
Polyphenols are chemopreventive through the induction of nuclear factor erythroid 2 related factor 2 (Nrf2)-mediated proteins and anti-inflammatory pathways. These pathways, encoding cytoprotective vitagenes, include heat shock proteins, such as heat shock protein 70 (Hsp70) and heme oxygenase-1 (HO-1), as well as glutathione redox system to protect against cancer initiation and progression. Phytochemicals exhibit biphasic dose responses on cancer cells, activating at low dose, signaling pathways resulting in upregulation of vitagenes, as in the case of the Nrf2 pathway upregulated by hydroxytyrosol (HT) or curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Here, the importance of vitagenes in redox stress response and autophagy mechanisms, as well as the potential use of dietary antioxidants in the prevention and treatment of multiple types of cancer are discussed. We also discuss the possible relationship between SARS-CoV-2, inflammation and cancer, exploiting innovative therapeutic approaches with HT-rich aqueous olive pulp extract (Hidrox®), a natural polyphenolic formulation, as well as the rationale of Vitamin D supplementation. Finally, we describe innovative approaches with organoids technology to study human carcinogenesis in preclinical models from basic cancer research to clinical practice, suggesting patient-derived organoids as an innovative tool to test drug toxicity and drive personalized therapy.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Nello Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Suite C, Hayward, CA 94545, USA.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca'Foscari University of Venice, 30123 Venezia, Italy.
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy.
| |
Collapse
|
11
|
Antiproliferative Effect of Colonic Fermented Phenolic Compounds from Jaboticaba ( Myrciaria trunciflora) Fruit Peel in a 3D Cell Model of Colorectal Cancer. Molecules 2021; 26:molecules26154469. [PMID: 34361622 PMCID: PMC8347777 DOI: 10.3390/molecules26154469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023] Open
Abstract
Jaboticaba is a Brazilian native berry described as a rich source of phenolic compounds (PC) with health promoting effects. PC from jaboticaba peel powder (JPP) have low intestinal bio-accessibility and are catabolized by gut microbiota. However, the biological implication of PC-derived metabolites produced during JPP digestion remains unclear. This study aimed to evaluate the antiproliferative effects of colonic fermented JPP (FJPP) in a 3D model of colorectal cancer (CRC) composed by HT29 spheroids. JPP samples fermented with human feces during 0, 2, 8, 24 or 48 h were incubated (10,000 µg mL−1) with spheroids, and cell viability was assessed after 72 h. Chemometric analyses (cluster and principal component analyses) were used to identify the main compounds responsible for the bioactive effect. The antiproliferative effect of FJPP in the CRC 3D model was increased between 8 h and 24 h of incubation, and this effect was associated with HHDP-digalloylglucose isomer and dihydroxyphenyl-γ-valerolactone. At 48 h of fermentation, the antiproliferative effect of FJPP was negligible, indicating that the presence of urolithins did not improve the bioactivity of JPP. These findings provide relevant knowledge on the role of colonic microbiota fermentation to generate active phenolic metabolites from JPP with positive impact on CRC.
Collapse
|
12
|
Onali T, Kivimäki A, Mauramo M, Salo T, Korpela R. Anticancer Effects of Lingonberry and Bilberry on Digestive Tract Cancers. Antioxidants (Basel) 2021; 10:antiox10060850. [PMID: 34073356 PMCID: PMC8228488 DOI: 10.3390/antiox10060850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
Wild berries are part of traditional Nordic diets and are a rich source of phytochemicals, such as polyphenols. Various berry treatments have shown to interfere with cancer progression in vitro and in vivo. Here, we systematically reviewed the anticancer effects of two Nordic wild berries of the Vaccinium genus, lingonberry (Vaccinium vitis-idaea) and bilberry (Vaccinium myrtillus), on digestive tract cancers. The review was conducted according to the PRISMA 2020 guidelines. Searches included four databases: PubMed, Scopus, Web of Science, and CAB abstracts. Publications not written in English, case-reports, reviews, and conference abstracts were excluded. Moreover, studies with only indirect markers of cancer risk or studies with single compounds not derived from lingonberry or bilberry were not included. Meta-analysis was not performed. The majority (21/26) of studies investigated bilberry and colorectal cancer. Experimental studies on colorectal cancer indicated that bilberry inhibited intestinal tumor formation and cancer cell growth. One uncontrolled pilot human study supported the inhibitory potential of bilberry on colorectal cancer cell proliferation. Data from all 10 lingonberry studies suggests potent inhibition of cancer cell growth and tumor formation. In conclusion, in vitro and animal models support the antiproliferative and antitumor effects of various bilberry and lingonberry preparations on digestive tract cancers.
Collapse
Affiliation(s)
- Tuulia Onali
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (T.O.); (A.K.); (T.S.)
- Medical Nutrition Physiology, Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00014 Helsinki, Finland
| | - Anne Kivimäki
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (T.O.); (A.K.); (T.S.)
- Medical Nutrition Physiology, Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Matti Mauramo
- Department of Pathology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland;
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (T.O.); (A.K.); (T.S.)
- Translational Immunology Research Program (TRIMM), University of Helsinki, 00014 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Medical Research Centre, Oulu University Hospital, 90014 Oulu, Finland
| | - Riitta Korpela
- Medical Nutrition Physiology, Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Human Microbiome Research Program, University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|