1
|
Shaban YA, Orif MI, Ghandourah MA, Turki AJ, Alorfi HS, Al-Boqami M, Althagbi HI, Alarif WM. Green synthesis of Ag/V 2O 5 and Ag/V 2O 5-curdlan nanocomposites from Sargassum latifolium extract for enhanced antimicrobial and antioxidant activities. Int J Biol Macromol 2025; 301:140472. [PMID: 39892540 DOI: 10.1016/j.ijbiomac.2025.140472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
The emergence of clinic-isolated bacteria and their ability to develop resistance mechanisms against conventional antimicrobials highlights the urgent need for novel, sustainable antimicrobial agents. This study explores the synthesis of Ag/V2O5 nanocomposites (NCs) using Sargassum latifolium extract, which is incorporated into a curdlan biocompatible matrix. The developed nanocomposites are evaluated for their antioxidant and antimicrobial activities, with a particular focus on their effectiveness against pathogenic bacteria. The applied method in this work combines green synthesis with the process of uniform distribution of nanoparticles to a biocompatible polymer, which is a way forward towards the design of efficient biocompatible antimicrobial systems. The Ag/V2O5 nanoparticles prepared with green synthesis were characterized by UV-Vis absorption, FTIR, XRD, SEM, EDX, zeta potential, DLS, and TEM. It has also been established that the antimicrobial property of the curdlan matrix has been enhanced with the addition of Ag/V2O5 nanoparticles in the incorporated curdlan composites. Ag/V2O5-curdlan also showed significantly enhanced antimicrobial activity against Gram-negative bacteria and Gram-positive bacteria thus implying enhanced antimicrobial action of the prepared nanocomposite by increasing the size of the bacterial zone of inhibition from 14.0 to 18.0 mm. Besides, the curdlan NC in the presence of Ag/V2O5 demonstrated an even lower value of MIC against Rhizoctonia solani (140.156 μg/mL) in comparison with Ag/V2O5 NC (226.413 μg/mL) thus predicting Augmented antifungal activity. Through performing TEM analysis, we have observed significant morphological changes in R. solani strain when the Ag/V2O5-curdlan NC was used. However, the Ag/V2O5-curdlan NC had a notably high antioxidant activity with IC50 of 0.302 mg/mL to DPPH radical scavenging assay. These results reaffirm the enhancement in antimicrobial properties when Ag/V2O5 and curdlan work together and agree with the objective of this work to propose novel and worthwhile nanomaterials for potentially applicable areas like food packaging or agriculture with insignificant harm to the environment.
Collapse
Affiliation(s)
- Yasser A Shaban
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed I Orif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A Ghandourah
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adnan J Turki
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hajer S Alorfi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Modi Al-Boqami
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hanan I Althagbi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Walied M Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
Pan B, Wang T, Zheng L, Dong Z, Liu L, Liu X, Feng T, Zhou Y, Shi Y. Synthesis of Novel Benzofuran Spiro-2-Pyrrolidine Derivatives via [3+2] Azomethine Ylide Cycloadditions and Their Antitumor Activity. Int J Mol Sci 2024; 25:13580. [PMID: 39769342 PMCID: PMC11676841 DOI: 10.3390/ijms252413580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
A synthetic strategy of a three-component spiro-pyrrolidine compound based on benzofuran via an [3+2] azomethine ylide cycloaddition reaction is reported herein. Under mild optimal conditions, this reaction can quickly produce potentially bioactive compounds with a wide range of substrates, high yield, and simple operation. The desired products were obtained with a yield of 74-99% and a diastereomeric ratio (dr) of >20:1. Subsequently, the inhibitory effects of the compounds on the cell viability of the human cancer cell line HeLa and mouse cancer cell line CT26 were evaluated. Compounds 4b (IC50 = 15.14 ± 1.33 µM) and 4c (IC50 = 10.26 ± 0.87 µM) showed higher antiproliferative activities against HeLa cells than cisplatin (IC50 = 15.91 ± 1.09 µM); compounds 4e (IC50 = 8.31 ± 0.64 µM) and 4s (IC50 = 5.28 ± 0.72 µM) exhibited better inhibitory activities against CT26 cells than cisplatin (IC50 = 10.27 ± 0.71 µM). The introduction of electron-donating substituents was beneficial to the inhibitory activities against cancer cells. Molecular docking simulations revealed that 4e and 4s may exert corresponding bioactivities by binding to antitumor targets through hydrogen bonds, providing a new approach for discovering spiro-heterocyclic antitumor drugs.
Collapse
Affiliation(s)
- Bowen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.P.); (T.W.); (L.Z.); (Z.D.); (L.L.); (X.L.); (T.F.)
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tao Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.P.); (T.W.); (L.Z.); (Z.D.); (L.L.); (X.L.); (T.F.)
| | - Liangliang Zheng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.P.); (T.W.); (L.Z.); (Z.D.); (L.L.); (X.L.); (T.F.)
| | - Zhangchao Dong
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.P.); (T.W.); (L.Z.); (Z.D.); (L.L.); (X.L.); (T.F.)
| | - Lijuan Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.P.); (T.W.); (L.Z.); (Z.D.); (L.L.); (X.L.); (T.F.)
| | - Xiongwei Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.P.); (T.W.); (L.Z.); (Z.D.); (L.L.); (X.L.); (T.F.)
| | - Tingting Feng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.P.); (T.W.); (L.Z.); (Z.D.); (L.L.); (X.L.); (T.F.)
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.P.); (T.W.); (L.Z.); (Z.D.); (L.L.); (X.L.); (T.F.)
| | - Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (B.P.); (T.W.); (L.Z.); (Z.D.); (L.L.); (X.L.); (T.F.)
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Aly SH, Elissawy AM, El Hassab MA, Majrashi TA, Hassan FE, Elkaeed EB, Eldehna WM, Singab ANB. Comparative metabolic study of the chloroform fraction of three Cystoseira species based on UPLC/ESI/MS analysis and biological activities. J Enzyme Inhib Med Chem 2024; 39:2292482. [PMID: 38086785 PMCID: PMC11721769 DOI: 10.1080/14756366.2023.2292482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
This study aims to investigate the phytoconstituents of the chloroform fraction of three Cystoseira spp. namely C. myrica, C. trinodis, and C. tamariscifolia using UPLC/ESI/MS technique. The results revealed the identification of 19, 20 and 11 metabolites in C. myrica, C. trinodis, and C. tamariscifolia, respectively mainly terpenoids, flavonoids, phenolic acids and fatty acids. Also, an in vitro antioxidant study using FRAP and DPPH assays was conducted where the chloroform fraction of C. trinodis displayed the highest antioxidant activity in both assays, which would be attributed to its highest total phenolics and total flavonoids. Besides, the investigation of COX-1, α-glucosidase and α-amylase inhibitory activities were performed. Regarding C. trinodis, it showed the strongest inhibitory activity towards COX-1. Moreover, it showed potent inhibitory activity towards α-glucosidase and α-amylase enzymes. According to the molecular docking studies, the major compounds characterised showed efficient binding to the active sites of the target enzymes.
Collapse
Affiliation(s)
- Shaza H. Aly
- Department of Pharmacognosy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Ahmed M. Elissawy
- Department of Pharmacognosy, Ain-Shams University, Cairo, Egypt
- Centre of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, King Salman International University (KSIU), South Sinai, Egypt
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Fatma E. Hassan
- Department of Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Medical Physiology Department, Kasr Alainy, Cairo University, Giza, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdel Nasser B. Singab
- Department of Pharmacognosy, Ain-Shams University, Cairo, Egypt
- Centre of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Zhang J, Gao W, Jahan I, Zhai R, Yao K, Yan J, Li P. The Cytotoxic Activity and Metabolic Profiling of Hyptis rhomboidea Mart. et Gal. Molecules 2024; 29:4216. [PMID: 39275063 PMCID: PMC11396782 DOI: 10.3390/molecules29174216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Many naturally occurring chemical metabolites with significant cytotoxic activities have been isolated from medicinal plants and have become the leading hotspot of anti-cancer research in recent years. Hyptis rhomboidea Mart. et Gal is used as a folk medicine in South China to treat or assist in the treatment of liver disease, ulcers, and edema. But its chemical constituents have not been fully investigated yet. This study aimed to assess the cytotoxicity of H. rhomboidea, which was chemically characterized by chromatography-mass spectrometry methods. The results showed that the 95% ethanol extract of H. rhomboidea has marked inhibitory effects on five human cancer cell lines (HL-60, A549, SMMC-7721, MDA-MB-231, and SW480), with IC50 values ranging from 15.8 to 40.0 μg/mL. A total of 64 compounds were identified by ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and gas chromatograph-mass spectroscopy (GC-MS) analysis of H. rhomboidea crude extract. Among them, kaempferol, quercetin, rosmarinic acid, squalene, and campesterol were found to be abundant and might be the major metabolites involved to its bioactivity. The cytotoxic characterization and metabolite profiling of H. rhomboidea displayed in this research provides scientific evidence to support its use as medicinal properties.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Agro-Environment in the Tropics, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Gao
- Key Laboratory of Agro-Environment in the Tropics, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Israt Jahan
- Key Laboratory of Agro-Environment in the Tropics, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Run Zhai
- Key Laboratory of Agro-Environment in the Tropics, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Kaiwei Yao
- Key Laboratory of Agro-Environment in the Tropics, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ping Li
- Key Laboratory of Agro-Environment in the Tropics, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Komisarska P, Pinyosinwat A, Saleem M, Szczuko M. Carrageenan as a Potential Factor of Inflammatory Bowel Diseases. Nutrients 2024; 16:1367. [PMID: 38732613 PMCID: PMC11085445 DOI: 10.3390/nu16091367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Carrageenan is a widely used food additive and is seen as a potential candidate in the pharmaceutical industry. However, there are two faces to carrageenan that allows it to be used positively for therapeutic purposes. Carrageenan can be used to create edible films and for encapsulating drugs, and there is also interest in the use of carrageenan for food printing. Carrageenan is a naturally occurring polysaccharide gum. Depending on the type of carrageenan, it is used in regulating the composition of intestinal microflora, including the increase in the population of Bifidobacterium bacteria. On the other hand, the studies have demonstrated the harmfulness of carrageenan in animal and human models, indicating a direct link between diet and intestinal inflammatory states. Carrageenan changes the intestinal microflora, especially Akkermansia muciniphilia, degrades the mucous barrier and breaks down the mucous barrier, causing an inflammatory reaction. It directly affects epithelial cells by activating the pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. The mechanism is based on activation of the TLR4 receptor, alterations in macrophage activity, production of proinflammatory cytokines and activation of innate immune pathways. Carrageenan increases the content of Bacteroidetes bacteria, also causing a reduction in the number of short chain fatty acid (SCFA)-producing bacteria. The result is damage to the integrity of the intestinal membrane and reduction of the mucin layer. The group most exposed to the harmful effects of carrageenan are people suffering from intestinal inflammation, including Crohn disease (CD) and ulcerative colitis (UC).
Collapse
Affiliation(s)
| | | | | | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland (M.S.)
| |
Collapse
|
6
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
7
|
Liyanage NM, Nagahawatta DP, Jayawardena TU, Jeon YJ. The Role of Seaweed Polysaccharides in Gastrointestinal Health: Protective Effect against Inflammatory Bowel Disease. Life (Basel) 2023; 13:life13041026. [PMID: 37109555 PMCID: PMC10143107 DOI: 10.3390/life13041026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a prominent global public health issue. Anti-inflammatory medications, immunosuppressants, and biological therapies are currently used as treatments. However, they are often unsuccessful and have negative consequences on human health. Thus, there is a tremendous demand for using natural substances, such as seaweed polysaccharides, to treat IBD's main pathologic treatment targets. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae, and fucoidan in brown algae. These are effective candidates for drug development and functional nutrition products. Algal polysaccharides treat IBD through therapeutic targets, including inflammatory cytokines, adhesion molecules, intestinal epithelial cells, and intestinal microflora. This study aimed to systematically review the potential therapeutic effects of algal polysaccharides on IBD while providing the theoretical basis for a nutritional preventive mechanism for IBD and the restoration of intestinal health. The results suggest that algal polysaccharides have significant potential in complementary IBD therapy and further research is needed for fully understanding their mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- N M Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - D P Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
8
|
Catarino MD, Silva-Reis R, Chouh A, Silva S, Braga SS, Silva AMS, Cardoso SM. Applications of Antioxidant Secondary Metabolites of Sargassum spp. Mar Drugs 2023; 21:172. [PMID: 36976221 PMCID: PMC10052768 DOI: 10.3390/md21030172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Sargassum is one of the largest and most diverse genus of brown seaweeds, comprising of around 400 taxonomically accepted species. Many species of this genus have long been a part of human culture with applications as food, feed, and remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of natural antioxidant compounds of great interest, including polyphenols, carotenoids, meroterpenoids, phytosterols, and several others. Such compounds provide a valuable contribution to innovation that can translate, for instance, into the development of new ingredients for preventing product deterioration, particularly in food products, cosmetics or biostimulants to boost crops production and tolerance to abiotic stress. This manuscript revises the chemical composition of Sargassum seaweeds, highlighting their antioxidant secondary metabolites, their mechanism of action, and multiple applications in fields, including agriculture, food, and health.
Collapse
Affiliation(s)
- Marcelo D. Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amina Chouh
- Laboratory of Microbiological Engineering and Application, Department of Biochemistry and Molecular and Cellular Biology, Faculty of Nature and Life Sciences, University of Mentouri Brothers Constantine 1, Constantine 25017, Algeria
- Biotechnology Research Center CRBT, Constantine 25016, Algeria
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S. Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Premarathna AD, Tuvikene R, Somasiri M, De Silva M, Adhikari R, Ranahewa TH, Wijesundara R, Wijesekera SK, Dissanayake I, Wangchuk P, Rjabovs V, Jayasooriya AP, Rajapakse R. A novel therapeutic effect of mannitol-rich extract from the brown seaweed Sargassum ilicifolium using in vitro and in vivo models. BMC Complement Med Ther 2023; 23:26. [PMID: 36721189 PMCID: PMC9887804 DOI: 10.1186/s12906-023-03840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Wound healing is an active, complex, integrated series of cellular, physiological, and biochemical changes initiated by the stimulus of injury in a tissue. The present study was performed to investigate the potential wound healing abilities of Sargassum ilicifolium crude extracts (CE) that were characterized by 1H NMR and FTIR Spectrometric measurements. MATERIALS AND METHODS Seaweed samples were collected from southern coastal sites of Sri Lanka. To determine the cytotoxicity and proliferation of S. ilicifolium CE were used for the MTT and alamarBlue assays respectively. The scratch and exclusion wound models were used to HaCaT and HDF cells to assess the cell proliferation and migration. RAW 264.7 cells (macrophages) were used to evaluate Nitric Oxide (NO) production and phagocytosis activities. Moreover, Fifteen, 8-week-old, female, New Zealand rabbits were selected and divided into five groups: excision skin wounds (10.40 ± 0.60 mm) were induced in groups I, II, and III. Rabbits in groups I and IV were given S. ilicifolium CE (orally, 100 mg/kg day, two weeks), whereas groups II and V were given equal amounts of distilled water. Wound healing properties were measured and wound tissue samples were collated, formalin-fixed, wax-embedded, stained (Hematoxylin and Eosin; Van Gieson) and examined for the healing process. RESULTS Anti-inflammatory and wound healing activities were observed in RAW 264.7, HDF and HaCaT cells treated with S. ilicifolium aqueous extracts when compared to the control groups. S. ilicifolium extracts concentration 8 - 4 μg/μL, (P<0.05) had remarkable the highest proliferative and migratory effects on RAW 264.7, HDF and HaCaT cells when compared with the control. RAW 264.7 cell proliferation and/or migration were higher in S. ilicifolium extracts (4 μg/μL, 232.8 ± 10.07%) compared with the control (100 %). Scratch wound healing were remarkably enhanced in 24 h, 48 h (P<0.05) when treated with S. ilicifolium on HaCaT cells. Rabbits treated with the CE of S. ilicifolium showed a significantly increased wound healing activities (P<0.05) within three days with a close wound area of 57.21 ± 0.77 % compared with control group (26.63 ± 1.09 %). Histopathology, aspartate aminotransferase and alanine aminotransferase levels evidenced no toxic effects on seaweed treated groups. Histopathological results also revealed that the healing process was significantly faster in the rabbit groups which were as treated with CE of S. ilicifolium orally with the evidence of enhanced early granulation tissue (connective tissue and angiogenesis) and significant epithelization compared to the control. CONCLUSIONS Cell proliferation and migration are significantly faster when treated with S. ilicifolium aqueous extracts. Moreover, there are no toxic effect of S. ilicifolium aqueous extracts on RAW 264.7, HDF and HaCaT cell lines. In this study, it is revealed that S. ilicifolium has potential remedial agent; D-Mannitol for skin wound healing properties that by promote keratinocyte and fibroblast proliferation and migration. These findings show that S. ilicifolium have promising wound healing properties.
Collapse
Affiliation(s)
- Amal D Premarathna
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120, Tallinn, Estonia.
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120, Tallinn, Estonia.
| | - Mnr Somasiri
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mlwp De Silva
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Ranjith Adhikari
- South Asian Clinical Toxicology Research Collaboration. Faculty of Medicine, National Serpentarium, University of Peradeniya, Peradeniya, Sri Lanka
| | - T H Ranahewa
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Rrmkk Wijesundara
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - S K Wijesekera
- Department of Zoology, Faculty of Natural Sciences, Open University, Kandy Regional Center, Polgolla, Sri Lanka
| | - Ipghu Dissanayake
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Phurpa Wangchuk
- Centre for Molecular Therapeutics, Australian Institute of Tropical health and Medicine, James Cook University, Smithfield, QLD, 4878, Australia
| | - Vitalijs Rjabovs
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Anura P Jayasooriya
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Rpvj Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka.
| |
Collapse
|
10
|
Alreshidi M, Badraoui R, Adnan M, Patel M, Alotaibi A, Saeed M, Ghandourah M, Al-Motair KA, Arif IA, Albulaihed Y, Snoussi M. Phytochemical profiling, antibacterial, and antibiofilm activities of Sargassum sp. (brown algae) from the Red Sea: ADMET prediction and molecular docking analysis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Noser A, Shehadi IA, Abdelmonsef AH, Salem MM. Newly Synthesized Pyrazolinone Chalcones as Anticancer Agents via Inhibiting the PI3K/Akt/ERK1/2 Signaling Pathway. ACS OMEGA 2022; 7:25265-25277. [PMID: 35910116 PMCID: PMC9330109 DOI: 10.1021/acsomega.2c02181] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A series of novel pyrazolinone chalcones 3-9 have been synthesized through the condensation of azo pyrazolinone derivatives with various aromatic aldehydes. Spectroscopic techniques and elemental analysis have both corroborated this. Furthermore, all compounds were screened in silico for their ability to inhibit cancer proliferation and metastasis by targeting the PI3K/Akt signaling pathway. This inhibitory pathway might be an efficient approach for the death of cancer cells, angiogenesis, and metastasis prevention. Our results indicated that only compound 6b was the top-ranked. It demonstrated the highest binding energies of -11.1 and -10.7 kcal/mol against the target proteins PI3K and Akt, respectively; thus, it was chosen for in vitro studies. Compound 6b exhibited the most effective cytotoxic impact against the Caco cell line with IC50 of 23.34 ± 0.14 μM. Furthermore, it showed significant inhibition of PI3K/Akt proteins and oxidative stress, leading to elevated Bax and p53 expression, reduced Bcl-2 expression, and triggered cell cycle arrest at the sub-G0/G1 phase. Additionally, it showed significant downregulation of the Raf-1 gene, leading to ERK1/2 protein inhibition. These findings demonstrate that compound 6b obeyed Lipinski's rule of five and might be used as a favored scaffold for cancer treatment by inhibiting proliferation and metastasis via inhibition of the PI3K/Akt and Raf-1/ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Ahmed
A. Noser
- Organic
Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ihsan A. Shehadi
- Department
of Chemistry, Pure and Applied Chemistry Research Group, College of
Sciences, University of Sharjah, Sharjah 27272, UAE
| | | | - Maha M. Salem
- Biochemistry
Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
12
|
Bio-Based Products from Mediterranean Seaweeds: Italian Opportunities and Challenges for a Sustainable Blue Economy. SUSTAINABILITY 2022. [DOI: 10.3390/su14095634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seaweeds are attracting increasing attention as an alternative healthy food and renewable drugs source and as agents of climate change mitigation that provide essential ecosystem services. In this context, seaweeds represent marine resources capable of supporting and pursuing the objectives of the Sustainable Blue Economy and the Bio-Based Circular Economy. In this review, we analyze the state of seaweed bio-based products and research on the Mediterranean Sea from the last 20 years. Results of this analysis show a large number of investigations focusing on antimicrobial, antioxidant and anti-inflammatory activities compared to on biofuels and bioplastics. Attempts at seaweed farming, although generally very limited, are present in Israel and some North African countries. Lastly, we focus on the Italian situation—including research, companies and legislation on seaweed production—and we discuss gaps, perspectives and challenges for the potential development of a sustainable seaweed industry according to the Sustainable Blue Economy.
Collapse
|
13
|
Matulja D, Vranješević F, Kolympadi Markovic M, Pavelić SK, Marković D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022; 27:molecules27041449. [PMID: 35209235 PMCID: PMC8879422 DOI: 10.3390/molecules27041449] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Since the middle of the last century, marine organisms have been identified as producers of chemically and biologically diverse secondary metabolites which have exerted various biological activities including anticancer, anti-inflammatory, antioxidant, antimicrobial, antifouling and others. This review primarily focuses on the marine phenolic compounds and their derivatives with potent anticancer activity, isolated and/or modified in the last decade. Reports on the elucidation of their structures as well as biosynthetic studies and total synthesis are also covered. Presented phenolic compounds inhibited cancer cells proliferation or migration, at sub-micromolar or nanomolar concentrations (lamellarins D (37), M (38), K (39), aspergiolide B (41), fradimycin B (62), makulavamine J (66), mayamycin (69), N-acetyl-N-demethylmayamycin (70) or norhierridin B (75)). In addition, they exhibited anticancer properties by a diverse biological mechanism including induction of apoptosis or inhibition of cell migration and invasive potential. Finally, phlorotannins 1–7 and bromophenols 12–29 represent the most researched phenolic compounds, of which the former are recognized as protective agents against UVB or gamma radiation-induced skin damages. Finally, phenolic metabolites were assorted into six main classes: phlorotannins, bromophenols, flavonoids, coumarins, terpenophenolics, quinones and hydroquinones. The derivatives that could not be attributed to any of the above-mentioned classes were grouped in a separate class named miscellaneous compounds.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Filip Vranješević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Maria Kolympadi Markovic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| |
Collapse
|
14
|
Variations in the Composition, Antioxidant and Antimicrobial Activities of Cystoseira compressa during Seasonal Growth. Mar Drugs 2022; 20:md20010064. [PMID: 35049919 PMCID: PMC8779577 DOI: 10.3390/md20010064] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
The underexplored biodiversity of seaweeds has recently drawn great attention from researchers to find the bioactive compounds that might contribute to the growth of the blue economy. In this study, we aimed to explore the effect of seasonal growth (from May to September) on the in vitro antioxidant (FRAP, DPPH, and ORAC) and antimicrobial effects (MIC and MBC) of Cystoseira compressa collected in the Central Adriatic Sea. Algal compounds were analyzed by UPLC-PDA-ESI-QTOF, and TPC and TTC were determined. Fatty acids, among which oleic acid, palmitoleic acid, and palmitic acid were the dominant compounds in samples. The highest TPC, TTC and FRAP were obtained for June extract, 83.4 ± 4.0 mg GAE/g, 8.8 ± 0.8 mg CE/g and 2.7 ± 0.1 mM TE, respectively. The highest ORAC value of 72.1 ± 1.2 µM TE was obtained for the August samples, and all samples showed extremely high free radical scavenging activity and DPPH inhibition (>80%). The MIC and MBC results showed the best antibacterial activity for the June, July and August samples, when sea temperature was the highest, against Listeria monocytogenes, Staphylococcus aureus, and Salmonella enteritidis. The results show C. compressa as a potential species for the industrial production of nutraceuticals or functional food ingredients.
Collapse
|
15
|
Generalić Mekinić I, Čagalj M, Tabanelli G, Montanari C, Barbieri F, Skroza D, Šimat V. Seasonal Changes in Essential Oil Constituents of Cystoseira compressa: First Report. Molecules 2021; 26:6649. [PMID: 34771056 PMCID: PMC8587406 DOI: 10.3390/molecules26216649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
Marine macroalgae are well known to release a wide spectrum of volatile organic components, the release of which is affected by environmental factors. This paper aimed to identify the essential oil (EO) compounds of the brown algae Cystoseira compressa collected in the Adriatic Sea monthly, from May until August. EOs were isolated by hydrodistillation using a Clavenger-type apparatus and analyzed by gas chromatography coupled with mass spectrometry (GC-MS). One hundred four compounds were identified in the volatile fraction of C. compressa, accounting for 84.37-89.43% of the total oil. Samples from May, June, and July were characterized by a high share of fatty acids (56, 69, and 34% respectively) with palmitic acid being the dominant one, while in the August sample, a high content of alcohols (mainly phytol and oleyl alcohol) was found. Changes in the other minor components, which could be important for the overall aroma and biological activities of the algal samples, have also been noted during the vegetation periods. The results of this paper contribute to studies of algal EOs and present the first report on C. compressa EOs.
Collapse
Affiliation(s)
- Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia; (I.G.M.); (D.S.)
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia;
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy;
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich, 47521 Cesena, Italy; (C.M.); (F.B.)
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich, 47521 Cesena, Italy; (C.M.); (F.B.)
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia; (I.G.M.); (D.S.)
| | - Vida Šimat
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia;
| |
Collapse
|
16
|
Secondary Metabolites from Marine Sources with Potential Use as Leads for Anticancer Applications. Molecules 2021; 26:molecules26144292. [PMID: 34299567 PMCID: PMC8305022 DOI: 10.3390/molecules26144292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 01/11/2023] Open
Abstract
The development of novel anticancer agents is essential to finding new ways to treat this disease, one of the deadliest diseases. Some marine organisms have proved to be important producers of chemically active compounds with valuable bioactive properties, including anticancer. Thus, the ocean has proved to be a huge source of bioactive compounds, making the discovery and study of these compounds a growing area. In the last few years, several compounds of marine origin, which include algae, corals, and sea urchins, have been isolated, studied, and demonstrated to possess anticancer properties. These compounds, mainly from securamines and sterols families, have been tested for cytotoxic/antiproliferative activity in different cell lines. Bioactive compounds isolated from marine organisms in the past 5 years that have shown anticancer activity, emphasizing the ones that showed the highest cytotoxic activity, such as securamines H and I, cholest-3β,5α,6β-triol, (E)-24-methylcholest-22-ene-3β,5α,6β-triol, 24-methylenecholesta-3β,5α,6β-triol, and 24-methylcholesta-3β,5α,6β-triol, will be discussed in this review. These studies reveal the possibility of new compounds of marine origin being used as new therapeutic agents or as a source of inspiration to develop new therapeutic agents.
Collapse
|
17
|
Mateos R, Pérez-Correa JR, Domínguez H. Bioactive Properties of Marine Phenolics. Mar Drugs 2020; 18:E501. [PMID: 33007997 PMCID: PMC7601137 DOI: 10.3390/md18100501] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds from marine organisms are far less studied than those from terrestrial sources since their structural diversity and variability require powerful analytical tools. However, both their biological relevance and potential properties make them an attractive group deserving increasing scientific interest. The use of efficient extraction and, in some cases, purification techniques can provide novel bioactives useful for food, nutraceutical, cosmeceutical and pharmaceutical applications. The bioactivity of marine phenolics is the consequence of their enzyme inhibitory effect and antimicrobial, antiviral, anticancer, antidiabetic, antioxidant, or anti-inflammatory activities. This review presents a survey of the major types of phenolic compounds found in marine sources, as well as their reputed effect in relation to the occurrence of dietary and lifestyle-related diseases, notably type 2 diabetes mellitus, obesity, metabolic syndrome, cancer and Alzheimer's disease. In addition, the influence of marine phenolics on gut microbiota and other pathologies is also addressed.
Collapse
Affiliation(s)
- Raquel Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain;
| | - José Ricardo Pérez-Correa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Macul, Santiago 7810000, Chile;
| | - Herminia Domínguez
- CINBIO, Department of Chemical Engineering, Faculty of Sciences, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
18
|
Ismail MM, Alotaibi BS, EL-Sheekh MM. Therapeutic Uses of Red Macroalgae. Molecules 2020; 25:molecules25194411. [PMID: 32992919 PMCID: PMC7583832 DOI: 10.3390/molecules25194411] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Red Seaweed “Rhodophyta” are an important group of macroalgae that include approximately 7000 species. They are a rich source of structurally diverse bioactive constituents, including protein, sulfated polysaccharides, pigments, polyunsaturated fatty acids, vitamins, minerals, and phenolic compounds with nutritional, medical, and industrial importance. Polysaccharides are the main components in the cell wall of red algae and represent about 40–50% of the dry weight, which are extensively utilized in industry and pharmaceutical compounds, due to their thickening and gelling properties. The hydrocolloids galactans carrageenans and agars are the main red seaweed cell wall polysaccharides, which had broad-spectrum therapeutic characters. Generally, the chemical contents of seaweed are different according to the algal species, growth stage, environment, and external conditions, e.g., the temperature of the water, light intensity, nutrient concentrations in the ecosystem. Economically, they can be recommended as a substitute source for natural ingredients that contribute to a broad range of bioactivities like cancer therapy, anti-inflammatory agents, and acetylcholinesterase inhibitory. This review touches on the main points of the pharmaceutical applications of red seaweed, as well as the exploitation of their specific compounds and secondary metabolites with vital roles.
Collapse
Affiliation(s)
- Mona M. Ismail
- National Institute of Oceanography and Fisheries, NIOF, Alexandria 21556, Egypt;
| | - Badriyah S. Alotaibi
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mostafa M. EL-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: ; Tel.: +20-1224106666; Fax: +20-403350804
| |
Collapse
|
19
|
|