1
|
Koochaki R, Amini E, Zarehossini S, Zareh D, Haftcheshmeh SM, Jha SK, Kesharwani P, Shakeri A, Sahebkar A. Alkaloids in Cancer therapy: Targeting the tumor microenvironment and metastasis signaling pathways. Fitoterapia 2024; 179:106222. [PMID: 39343104 DOI: 10.1016/j.fitote.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The use of phytomedicine in cancer therapy is a growing field of research that takes use of the medicinal properties of plant-derived compounds. Under the domain of cancer therapy and management, alkaloids, a prominent group of natural compounds, have showed significant potential. Alkaloids often affect a wide range of essential cellular mechanisms involved in cancer progression. These multi-targeting capabilities, can give significant advantages to alkaloids in overcoming resistance mechanisms. For example, berberine, an alkaloid found in Berberis species, is widely reported to induce apoptosis by activating caspases and regulating apoptotic pathways. Notably, alkaloids like as quinine have showed promise in inhibiting the formation of new blood vessels required for tumor growth. In addition, alkaloids have shown anti-proliferative and anticancer properties mostly via modulating key signaling pathways involved in metastasis, including those regulating epithelial-mesenchymal transition. This work provides a comprehensive overview of naturally occurring alkaloids that exhibit anticancer properties, with a specific emphasis on their underlying molecular mechanisms of action. Furthermore, many methods to modify previously reported difficult physicochemical properties using nanocarriers in order to enhance its systemic bioavailability have been discussed as well. This study also includes information on newly discovered alkaloids that are now being studied in clinical trials for their potential use in cancer treatment. Further, we have also briefly mentioned on the application of high-throughput screening and molecular dynamics simulation for acceleration on the identification of potent alkaloids based compounds to target and treat cancer.
Collapse
Affiliation(s)
- Raoufeh Koochaki
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sara Zarehossini
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Zareh
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
2
|
Zasheva D, Mladenov P, Zapryanova S, Gospodinova Z, Georgieva M, Alexandar I, Velinov V, Djilianov D, Moyankova D, Simova-Stoilova L. Cytotoxic Effects of Plant Secondary Metabolites and Naturally Occurring Bioactive Peptides on Breast Cancer Model Systems: Molecular Mechanisms. Molecules 2024; 29:5275. [PMID: 39598664 PMCID: PMC11596968 DOI: 10.3390/molecules29225275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Breast cancer is the second leading cause of death among women, and the number of mortal cases in diagnosed patients is constantly increasing. The search for new plant compounds with antitumor effects is very important because of the side effects of conventional therapy and the development of drug resistance in cancer cells. The use of plant substances in medicine has been well known for centuries, but the exact mechanism of their action is far from being elucidated. The molecular mechanisms of cytotoxicity exerted by secondary metabolites and bioactive peptides of plant origin on breast cancer cell lines are the subject of this review.
Collapse
Affiliation(s)
- Diana Zasheva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria; (D.Z.); (S.Z.)
| | - Petko Mladenov
- Agrobioinstitute, Agricultural Academy, bul. “Dragan Tsankov” 8, 1164 Sofia, Bulgaria; (P.M.); (D.D.); (D.M.)
| | - Silvina Zapryanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria; (D.Z.); (S.Z.)
| | - Zlatina Gospodinova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| | - Mariyana Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| | - Irina Alexandar
- Institute of Molecular Biology “Rumen Tzanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Valentin Velinov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| | - Dimitar Djilianov
- Agrobioinstitute, Agricultural Academy, bul. “Dragan Tsankov” 8, 1164 Sofia, Bulgaria; (P.M.); (D.D.); (D.M.)
| | - Daniela Moyankova
- Agrobioinstitute, Agricultural Academy, bul. “Dragan Tsankov” 8, 1164 Sofia, Bulgaria; (P.M.); (D.D.); (D.M.)
| | - Lyudmila Simova-Stoilova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Science, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.G.); (V.V.)
| |
Collapse
|
3
|
Ahmadi-Hadad A, de Queiroz PCC, Schettini F, Giuliano M. Reawakening the master switches in triple-negative breast cancer: A strategic blueprint for confronting metastasis and chemoresistance via microRNA-200/205: A systematic review. Crit Rev Oncol Hematol 2024; 204:104516. [PMID: 39306311 DOI: 10.1016/j.critrevonc.2024.104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits a proclivity for early recurrence and development of metastasis. Moreover, drug resistance tends to arise few months following chemotherapeutic regimen with agents such as Doxorubicin, Paclitaxel, Docetaxel, and Cisplatin. miR-200 family and miR-205 are considered key regulators of metastasis by regulating the Epithelial-to-mesenchymal transition (EMT) via inhibiting ZEB1. Therefore, these microRNAs may offer therapeutic applications. Moreover, they hold potential for inhibiting chemoresistance and increasing chemosensitivity. These microRNAs are suppressed in TNBC cells. Increasing their levels, however, can inhibit EMT and improve progression-free survival (PFS). Besides using direct miRNA therapy via viral vectors, some drugs like Acetaminophen, or Tamoxifen are deemed useful for TNBC due to their ability to upregulate these miRNAs. In this review, by conducting an advanced search on PubMed, Embase, and Medline and selecting pertinent studies, we aimed to explore the potential applications of these microRNAs in controlling EMT and overcoming chemoresistance.
Collapse
Affiliation(s)
- Armia Ahmadi-Hadad
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | | | - Francesco Schettini
- Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain, University of Barcelona, Barcelona, Spain.
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
4
|
Mitra S, Biswas P, Bandyopadhyay A, Gadekar VS, Gopalakrishnan AV, Kumar M, Radha, Nandy S. Piperlongumine: the amazing amide alkaloid from Piper in the treatment of breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2637-2650. [PMID: 37955690 DOI: 10.1007/s00210-023-02673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/12/2023] [Indexed: 11/14/2023]
Abstract
Piperlongumine (PL), an alkaloid found primarily in the fruits and roots of the plant Piper longum L. (Piperaceae), is a natural compound that exhibits potent activity against various cancer cell proliferation. The most frequently caused malignancy in women globally, breast cancer (BC), has been demonstrated to be significantly inhibited by PL. Apoptosis, cell cycle arrest, increased ROS generation, and changes in the signalling protein's expression are all caused by the numerous signalling pathways that PL impacts. Since BC cells resist conventional chemotherapeutic drugs (doxorubicin, docetaxel etc.), researchers have shown that the drugs in combination with PL can exhibit a synergistic effect, greater than the effects of the drug or PL alone. Recently, techniques for drug packaging based on nanotechnology have been employed to improve PL release. The review has presented an outline of the chemistry of PL, its molecular basis in BC, its bioavailability, toxicity, and nanotechnological applications. An attempt to understand the future prospects and direction of research about the compound has also been discussed.
Collapse
Affiliation(s)
- Shatakshi Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | | | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research On Cotton Technology, Mumbai, 400019, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Samapika Nandy
- Department of Botany, Vedanta College, 33A, Shiv Krishna Daw Lane, Phool Bagan, Kolkata, 700054, West Bengal, India.
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.
| |
Collapse
|
5
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
6
|
Duarte ABS, Gomes RC, Nunes VRV, Gonçalves JCR, Correia CA, dos Santos AZG, de Sousa DP. The Antitumor Activity of Piplartine: A Review. Pharmaceuticals (Basel) 2023; 16:1246. [PMID: 37765054 PMCID: PMC10535094 DOI: 10.3390/ph16091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a worldwide health problem with high mortality in children and adults, making searching for novel bioactive compounds with potential use in cancer treatment essential. Piplartine, also known as piperlongumine, is an alkamide isolated from Piper longum Linn, with relevant therapeutic potential. Therefore, this review covered research on the antitumor activity of piplartine, and the studies reported herein confirm the antitumor properties of piplartine and highlight its possible application as an anticancer agent against various types of tumors. The evidence found serves as a reference for advancing mechanistic research on this metabolite and preparing synthetic derivatives or analogs with better antitumor activity in order to develop new drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Damião P. de Sousa
- Departament of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil; (A.B.S.D.); (R.C.G.); (V.R.V.N.); (J.C.R.G.); (C.A.C.); (A.Z.G.d.S.)
| |
Collapse
|
7
|
Shi C, Huang K, Soto J, Sankaran R, Kalia V, Onwumere O, Young M, Einbond L, Redenti S. Piperlongumine inhibits proliferation and oncogenic MYCN expression in chemoresistant metastatic retinoblastoma cells directly and through extracellular vesicles. Biomed Pharmacother 2023; 161:114554. [PMID: 36940616 PMCID: PMC10157982 DOI: 10.1016/j.biopha.2023.114554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
Ocular retinoblastoma malignancies, which develop into metastatic phenotypes, result in poor prognosis and survival for infant and child patients. To improve the prognosis of metastatic retinoblastoma, it is important to identify novel compounds with less toxic side effects and higher therapeutic efficacy compared to existing chemotherapeutics. Piperlongumine (PL), a neuroprotective, plant-derived compound has been explored for its anticancer activities both in vitro and in vivo. Here, we analyze the potential efficacy of PL for metastatic retinoblastoma cell treatment. Our data reveal that PL treatment significantly inhibits cell proliferation in metastatic retinoblastoma Y79 cells compared to the commonly used retinoblastoma chemotherapeutic drugs carboplatin, etoposide, and vincristine. PL treatment also significantly increases cell death compared to treatment with other chemotherapeutic drugs. PL-induced cell-death signaling was associated with significantly higher caspase 3/7 activities and greater loss of mitochondrial membrane potential. PL was also internalized into Y79 cells with an estimated concentration of 0.310pM and expression analysis revealed reduced MYCN oncogene levels. We next examined extracellular vesicles derived from PL-treated Y79 cells. Extracellular vesicles in other cancers are pro-oncogenic, mediating systemic toxicities via the encapsulation of chemotherapeutic drugs. Within metastatic Y79 EV samples, an estimated PL concentration of 0.026pM was detected. PL treatment significantly downregulated Y79 EV cargo of the oncogene MYCN transcript. Interestingly, non-PL-treated Y79 cells incubated with EVs from PL-treated cells exhibited significantly reduced cell growth. These findings indicate that in metastatic Y79 cells, PL exhibits potent anti-proliferation effects and oncogene downregulation. Importantly, PL is also incorporated into extracellular vesicles released from treated metastatic cells with measurable anti-cancer effects on target cells at a distance from the site of primary treatment. The use of PL in the treatment of metastatic retinoblastoma may reduce primary tumor proliferation and inhibit metastatic cancer activity systemically via extracellular vesicle circulation.
Collapse
Affiliation(s)
- Cui Shi
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Kunhui Huang
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - John Soto
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | - Renuka Sankaran
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Onyekwere Onwumere
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biology Doctoral Program, The Graduate School of the City University of New York, 365 5th Avenue, New York, NY 10016, USA
| | - Michael Young
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA
| | - Linda Einbond
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA
| | - Stephen Redenti
- Lehman College, the City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, The Graduate School, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA; Biology Doctoral Program, The Graduate School of the City University of New York, 365 5th Avenue, New York, NY 10016, USA.
| |
Collapse
|
8
|
Thilagavathi R, Priyankha S, Kannan M, Prakash M, Selvam C. Compounds from diverse natural origin against triple-negative breast cancer: A comprehensive review. Chem Biol Drug Des 2023; 101:218-243. [PMID: 36323650 DOI: 10.1111/cbdd.14172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Triple-negative breast cancer (TNBC) is caused due to the lack of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor 2 (HER2) expression. Triple-negative breast cancer is the most aggressive heterogeneous disease that is capable of producing different clones and mutations. Tumorigenesis in TNBC is caused due to the mutation or overexpression of tumor suppressor genes. It is also associated with mutations in the BRCA gene which is linked to hereditary breast cancer. In addition, PARP proteins and checkpoint proteins also play a crucial function in causing TNBC. Many cell signaling pathways are dysregulated in TNBC. Even though chemotherapy and immunotherapy are good options for TNBC treatment, the response rates are still low in general. Many phytochemicals that are derived from natural compounds have shown very good inhibitions for TNBC. Natural compounds have the great advantage of being less toxic, having lesser side effects, and being easily available. The secondary metabolites such as alkaloids, terpenoids, steroids, and flavonoids in natural products make them promising inhibitors of TNBC. Their compositions also offer vital insights into inhibitory action, which could lead to new cancer-fighting strategies. This review can help in understanding how naturally occurring substances and medicinal herbs decrease specific tumors and pave the way for the development of novel and extremely efficient antitumor therapies.
Collapse
Affiliation(s)
- Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Sridhar Priyankha
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, India
| | - Manivel Kannan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, India
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
9
|
Parama D, Rana V, Girisa S, Verma E, Daimary UD, Thakur KK, Kumar A, Kunnumakkara AB. The promising potential of piperlongumine as an emerging therapeutics for cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:323-354. [PMID: 36046754 PMCID: PMC9400693 DOI: 10.37349/etat.2021.00049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the immense advancement in the diagnostic and treatment modalities, cancer continues to be one of the leading causes of mortality across the globe, responsible for the death of around 10 million patients every year. The foremost challenges faced in the treatment of this disease are chemoresistance, adverse effects of the drugs, and the high cost of treatment. Though scientific studies over the past few decades have foreseen and are focusing on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action, many more of these agents are not still explored. Piperlongumine (PL), or piplartine, is one such alkaloid isolated from Piper longum Linn. which is shown to be safe and has significant potential in the prevention and therapy of cancer. Numerous shreds of evidence have established the ability of this alkaloid and its analogs and nanoformulations in modulating various complex molecular pathways such as phosphatidylinositol-3-kinase/protein kinase B /mammalian target of rapamycin, nuclear factor kappa-B, Janus kinases/signal transducer and activator of transcription 3, etc. and inhibit different hallmarks of cancer such as cell survival, proliferation, invasion, angiogenesis, epithelial-mesenchymal-transition, metastases, etc. In addition, PL was also shown to inhibit radioresistance and chemoresistance and sensitize the cancer cells to the standard chemotherapeutic agents. Therefore, this compound has high potential as a drug candidate for the prevention and treatment of different cancers. The current review briefly reiterates the anti-cancer properties of PL against different types of cancer, which permits further investigation by conducting clinical studies.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
10
|
Kumar S, Agnihotri N. Piperlongumine targets NF-κB and its downstream signaling pathways to suppress tumor growth and metastatic potential in experimental colon cancer. Mol Cell Biochem 2021; 476:1765-1781. [PMID: 33433833 DOI: 10.1007/s11010-020-04044-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
NF-κB is the principle transcription factor and plays the central role in orchestrating chronic inflammation by regulating levels of cytokines, chemokines and growth factors. Piperlongumine (PL), a major alkaloid in the fruit of Piper longum Linn. has gained worldwide attention for its anticancer properties, however, its mechanism of action in the chemoprevention of colon cancer has not been investigated yet. Therefore, the present study was designed to elucidate the underlying molecular mechanism of PL in preventing DMH/DSS induced experimental colon cancer in mice. In the current study well established DMH/DSS induced experimental colon cancer mouse model was used to demonstrate the chemopreventive potential of PL. The expression of NF-κB and its downstream target proteins was evaluated mainly through western blotting. In addition, CAM assay, immunohistochemical staining and gelatin zymography was used to show anti-angiogenic and anti-invasive potential of PL. Additionally, important tumor biomarkers such as TSA, LASA, LDH and IL-6 levels were also estimated. The results of current study showed that PL was capable to inhibit NF-κB activation as well as its nuclear translocation. PL administration to DMH/DSS treated mice also inhibited the NF-κB downstream signaling cascades such as including COX-2 pathway, JAK/STAT pathway, β-catenin, Notch signaling pathway, angiogenesis and epithelial to mesenchymal transition pathway. The findings of the present study have claimed PL as promising chemopreventive agent for colon cancer with pleiotropic action. The current study emphasizes that regular consumption of PL can be an effective approach in the prevention of colon cancer in humans.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry, Basic Medical Science, Block-II, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India
- Pharmacology and Toxicology Lab, Block J, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India
| | - Navneet Agnihotri
- Department of Biochemistry, Basic Medical Science, Block-II, Sector-25, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|