1
|
Ren F, Li Y, Luo H, Gao S, Jiang S, Yang J, Rao C, Chen Y, Peng C. Extraction, detection, bioactivity, and product development of luteolin: A review. Heliyon 2024; 10:e41068. [PMID: 39759280 PMCID: PMC11700251 DOI: 10.1016/j.heliyon.2024.e41068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Luteolin is a kind of natural flavonoid, widely existing in a variety of plants, has been revealed to have a wide range of biological activities. In recent years, the research results of luteolin are abundant. Here we review the latest research results of luteolin in order to provide new ideas for further research and development of luteolin. In this paper, the focus of the search was published between 2010 and 2024 on the extraction and determination of luteolin, biological activities, and the development and application of luteolin products. A comprehensive search using the keyword "luteolin" was conducted in the PubMed, Web of Science and WIPO databases. Through the collection of related literature, this paper summarized a variety of extraction techniques of luteolin, including immersion extraction, solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction and so on. The determination methods include: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), electrochemical method (ED) and so on. In addition, the biological activities of luteolin, including antioxidant, anti-inflammatory, anti-tumor, antibacterial, analgesic and so on, were described. And luteolin as the main component of the product is being gradually developed, and has been used in the field of food, medicine and cosmetics. This paper provides a reference for further study of luteolin.
Collapse
Affiliation(s)
- Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ying Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jian Yang
- Chuan-chu UNITED INTERNATIONAL Engineering Co., LTD, Chengdu, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 611137, China
| |
Collapse
|
2
|
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, Ramadan WS, Chelakkot AL. Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology 2024:10.1007/s10787-024-01581-1. [PMID: 39580755 DOI: 10.1007/s10787-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Despite the recent advancements in developing bioactive nutraceuticals as anticancer modalities, their pharmacodynamics, safety profiles, and tolerability remain elusive, limiting their success in clinical trials. The failure of anticancer drugs in clinical trials can be attributed to the changes in drug clearance, absorption, and cellular responses, which alter the dose-response efficacy, causing adverse health effects. Flavonoids demonstrate a biphasic dose-response phenomenon exerting a stimulatory or inhibitory effect and often follow a U-shaped curve in different preclinical cancer models. A double-edged sword, bioflavonoids' antioxidant or prooxidant properties contribute to their hormetic behavior and facilitate redox homeostasis by regulating the levels of reactive oxygen species (ROS) in cells. Emerging reports suggest a need to discuss the pharmacodynamic broad-spectrum of plant flavonoids to improve their therapeutic efficacy, primarily to determine the ideal dose for treating cancer. This review discusses the dose-response effects of a few common plant flavonoids against some types of cancers and assesses their safety and tolerability when administered to patients. Moreover, we have emphasized the role of dietary-rich plant flavonoids as nutraceuticals in cancer treatment and prevention.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE.
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Shimy Mathew
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, UAE
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Noor Mustapha Cherkaoui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Mohammed Ayyub
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Serin Yaser Alsaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Joshua George Thomas
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Asha Caroline Cyril
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
3
|
Li Q, Tong Y, Chen J, Xie T. Targeting programmed cell death via active ingredients from natural plants: a promising approach to cancer therapy. Front Pharmacol 2024; 15:1491802. [PMID: 39584140 PMCID: PMC11582395 DOI: 10.3389/fphar.2024.1491802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Cancer is a serious public health problem in humans, and prevention and control strategies are still necessary. Therefore, the development of new therapeutic drugs is urgently needed. Targeting programmed cell death, particularly via the induction of cancer cell apoptosis, is one of the cancer treatment approaches employed. Recently, an increasing number of studies have shown that compounds from natural plants can target programmed cell death and kill cancer cells, laying the groundwork for use in future anticancer treatments. In this review, we focus on the latest research progress on the role and mechanism of natural plant active ingredients in different forms of programmed cell death, such as apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis, to provide a strong theoretical basis for the clinical development of antitumor drugs.
Collapse
Affiliation(s)
- Qian Li
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Tong
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- School of Pharmacy and Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Al Azzani M, Nizami ZN, Magramane R, Sekkal MN, Eid AH, Al Dhaheri Y, Iratni R. Phytochemical-mediated modulation of autophagy and endoplasmic reticulum stress as a cancer therapeutic approach. Phytother Res 2024; 38:4353-4385. [PMID: 38961675 DOI: 10.1002/ptr.8283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Autophagy and endoplasmic reticulum (ER) stress are conserved processes that generally promote survival, but can induce cell death when physiological thresholds are crossed. The pro-survival aspects of these processes are exploited by cancer cells for tumor development and progression. Therefore, anticancer drugs targeting autophagy or ER stress to induce cell death and/or block the pro-survival aspects are being investigated extensively. Consistently, several phytochemicals have been reported to exert their anticancer effects by modulating autophagy and/or ER stress. Various phytochemicals (e.g., celastrol, curcumin, emodin, resveratrol, among others) activate the unfolded protein response to induce ER stress-mediated apoptosis through different pathways. Similarly, various phytochemicals induce autophagy through different mechanisms (namely mechanistic target of Rapamycin [mTOR] inhibition). However, phytochemical-induced autophagy can function either as a cytoprotective mechanism or as programmed cell death type II. Interestingly, at times, the same phytochemical (e.g., 6-gingerol, emodin, shikonin, among others) can induce cytoprotective autophagy or programmed cell death type II depending on cellular contexts, such as cancer type. Although there is well-documented mechanistic interplay between autophagy and ER stress, only a one-way modulation was noted with some phytochemicals (carnosol, capsaicin, cryptotanshinone, guangsangon E, kaempferol, and δ-tocotrienol): ER stress-dependent autophagy. Plant extracts are sources of potent phytochemicals and while numerous phytochemicals have been investigated in preclinical and clinical studies, the search for novel phytochemicals with anticancer effects is ongoing from plant extracts used in traditional medicine (e.g., Origanum majorana). Nonetheless, the clinical translation of phytochemicals, a promising avenue for cancer therapeutics, is hindered by several limitations that need to be addressed in future studies.
Collapse
Affiliation(s)
- Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rym Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed N Sekkal
- Department of Surgery, Specialty Orthopedic, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Wang R, Li X, Xu Y, Li Y, Zhang W, Guo R, Song J. Progress, pharmacokinetics and future perspectives of luteolin modulating signaling pathways to exert anticancer effects: A review. Medicine (Baltimore) 2024; 103:e39398. [PMID: 39183411 PMCID: PMC11346905 DOI: 10.1097/md.0000000000039398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Luteolin (3, 4, 5, 7-tetrahydroxyflavone) are natural flavonoids widely found in vegetables, fruits and herbs, with anti-tumor, anti-inflammatory and antioxidant effects, and also play an anti-cancer effect in various cancers such as lung, breast, prostate, and liver cancer, etc. Specifically, the anti-cancer mechanism includes regulation of various signaling pathways to induce apoptosis of tumor cells, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, regulation of immune function, synergistic anti-cancer drugs and regulation of reactive oxygen species levels of tumor cells. Specific anti-cancer mechanisms include regulation of various signaling pathways to induce apoptosis, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, reversal of epithelial-mesenchymal transition, regulation of immune function, synergism with anti-cancer drugs and regulation of reactive oxygen species levels in tumor cells. This paper integrates the latest cutting-edge research on luteolin and combines it with the prospect of future clinical applications, aiming to explore the mechanism of luteolin exerting different anticancer effects through the regulation of different signaling pathways, so as to provide a practical theoretical basis for the use of luteolin in clinical treatment and hopefully provide some reference for the future research direction of luteolin.
Collapse
Affiliation(s)
- Rui Wang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
- Medical School of Nantong University, Nantong, PR China
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yanhan Xu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yangyang Li
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Weisong Zhang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Rongqi Guo
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Jianxiang Song
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| |
Collapse
|
6
|
Peng Z, Zhang W, Hong H, Liu L. Effect of luteolin on oxidative stress and inflammation in the human osteoblast cell line hFOB1.19 in an inflammatory microenvironment. BMC Pharmacol Toxicol 2024; 25:40. [PMID: 38997762 PMCID: PMC11241847 DOI: 10.1186/s40360-024-00764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Periapical lesions are characterized by periapical inflammation and damage to periapical tissues and eventually lead to bone resorption and even tooth loss. H2O2 is widely used in root canal therapy for patients with periapical inflammation. Luteolin possesses high anti-inflammatory, antioxidant, and anticancer potential. However, the underlying mechanism of the efficacy of H2O2 and luteolin on oxidative stress and inflammatory tissue has not been previously addressed. We aimed to investigate the anti-inflammatory and antioxidative effects of luteolin on H2O2-induced cellular oxidative inflammation. METHODS After human osteoblasts (hFOB1.19) were treated with lipopolysaccharide (LPS), luteolin, or H2O2, cell proliferation was analysed by using a cell counting kit-8 (CCK-8), cell apoptosis was measured by using flow cytometry, the production of reactive oxygen species (ROS) was evaluated by using an oxidation-sensitive probe DCFH-DA ROS assay kit, and the expression of genes and proteins was detected by using reverse transcription quantitative polymerase chain reaction (RT‒qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). RESULTS We demonstrated that inflammation is closely related to oxidative stress and that the oxidative stress level in the inflammatory environment is increased. Luteolin inhibited the H2O2-induced increase in the expression of interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor α (TNF-α) and significantly repressed the H2O2-induced increase in ROS, as well as markedly strengthened superoxide dismutase (SOD) activity in hFOB1.19 cells. Moreover, we detected that luteolin may inhibit H2O2-induced hFOB1.19 cell injury by suppressing the NF-κB pathway. CONCLUSION We elucidated that luteolin protected human osteoblasts (hFOB1.19) from H2O2-induced cell injury and inhibited the production of proinflammatory cytokines by suppressing the NF-κB signalling pathway. Our findings provide a potential drug for treating H2O2-induced periodontitis and cell injury.
Collapse
Affiliation(s)
- Zhengjun Peng
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China
| | - Wenyu Zhang
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China
| | - Hong Hong
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China
| | - Lu Liu
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Province Key Laboratory of Stomatology, Affiliated Stomatological Hospital, Sun Yat-Sen University, 56 Lingyuan Xi Rd, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
7
|
Nasrabadi NS, Vedad A, Asadi K, Poorbagher MRM, Tabrizi NA, Dorooki K, Sabouni RS, Moghadam MB, Shafaei N, Karimi E, Oskoueian E. Nanoliposome-loaded phenolics from Salvia leriifolia Benth and its anticancer effects against induced colorectal cancer in mice. Biotechnol Appl Biochem 2024; 71:641-650. [PMID: 38326022 DOI: 10.1002/bab.2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Colon cancer is one of the leading causes of death among various types of cancer. Despite the significant progress made in cancer treatment, chemotherapy resistance and various side effects are still prevalent. The objective of this study is to assess the therapeutic potential of phenolic-rich fraction encapsulated nanoliposome (PRF-NLs) of Salvia leriifolia Benth in the treatment of colon cancer in mice. Initially, the phenolic-rich fraction (PRF) was extracted and then encapsulated into nanoliposomes. The physicochemical properties of the nanoliposomes were evaluated using dynamic light scattering, zeta potential, and field emission scanning electron microscopy. Subsequently, 24 mice with HT-29 colon cancer cells were divided into three groups, and the anticancer effects of PRF-NLs were measured. The results showed that the ethyl acetate fraction of S. leriifolia was the highest PRF containing 14.27 ± 2.39 mg (gallic acid) GA/g DW (dry weight), and the PRF successfully loaded into the nanoliposome structure resulted in the synthesis of nanoliposomes with a nanometer size and spherical shape and homogenous dispersion. Some of the abundant bioactive phenolic compounds in the nanoliposome-loaded PRF are salicylic acid and naringin. The average daily weight gain and food intake, and changes in the expression of caspase 3, Bax (Bcl-2 associated X-protein), and Bcl2 (B-cell lymphoma 2), inducible nitric oxide synthase genes, were observed in the mice group induced colorectal cancer cells. At a dose of 100 mg TPC (total phenolic content)/kg BW/day, the nonencapsulated PRF dietary addition improved these parameters; however, the potential shown by nanoliposome-encapsulated PRF than the nonencapsulated PRF in enhancing health parameters in mice was higher. The developed intestinal absorption and bioavailability of nanoliposome-encapsulated PRF contribute to its increased health-promoting activity. Thereby, the synthesized nanoliposome may be a potential natural anticancer drug to prevent colorectal cancer.
Collapse
Affiliation(s)
| | - Arezoo Vedad
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Kimia Asadi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Kiyana Dorooki
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Negin Shafaei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Oskoueian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Industrial & Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
8
|
Rauf A, Wilairatana P, Joshi PB, Ahmad Z, Olatunde A, Hafeez N, Hemeg HA, Mubarak MS. Revisiting luteolin: An updated review on its anticancer potential. Heliyon 2024; 10:e26701. [PMID: 38455556 PMCID: PMC10918152 DOI: 10.1016/j.heliyon.2024.e26701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Numerous natural products found in our diet, such as polyphenols and flavonoids, can prevent the progression of cancer. Luteolin, a natural flavone, present in significant amounts in various fruits and vegetables plays a key role as a chemopreventive agent in treating various types of cancer. By inducing apoptosis, initiating cell cycle arrest, and decreasing angiogenesis, metastasis, and cell proliferation, luteolin is used to treat cancer. Its anticancer properties are attributed to its capability to engage with multiple molecular targeted sites and modify various signaling pathways in tumor cells. Luteolin has been shown to slow the spread of cancer in breast, colorectal, lung, prostate, liver, skin, pancreatic, oral, and gastric cancer models. It exhibits antioxidant properties and can be given to patients receiving Doxorubicin (DOX) chemotherapy to prevent the development of unexpected adverse reactions in the lungs and hematopoietic system subjected to DOX. Furthermore, it could be an excellent candidate for synergistic studies to overcome drug resistance in cancer cells. Accordingly, this review covers the recent literature related to the use of luteolin against different types of cancer, along with the mechanisms of action. In addition, the review highlights luteolin as a complementary medicine for preventing and treating cancer.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Payal B. Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, (East)-421501, Maharashtra, India
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, KPK, Pakistan
| | - Hassan A. Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Medinah, Al-Monawara Postcode, Saudi Arabia
| | | |
Collapse
|
9
|
Basha NJ, Mohan RM. Insight on Heterocycles as p53‐MDM2 Protein‐Protein Interaction Inhibitors: Molecular Mechanism for p53 Activation. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/20/2024] [Indexed: 01/03/2025]
Abstract
AbstractTranscription factor p53, also known as tumor suppressor protein. Encoded by the TP53 gene, the guardian of genome p53 regulates many gene pathways. Nevertheless, the molecular mechanisms of p53 functioning have been known for a few decades, and the exact role of p53 in cancer therapy is unclear. Also, comprehensive literature on heterocycles as p53‐MDM2 protein‐protein interaction inhibitors is limited. This review covers the molecular mechanism for the p53‐MDM2 interaction and its inhibition by the heterocyclic small molecules. We hope the present comprehensive study will help to develop heterocycles as anticancer drugs that induce apoptosis in tumor cells.
Collapse
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| | - R. M. Mohan
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| |
Collapse
|
10
|
Fu W, Xu L, Chen Y, Zhang Z, Chen S, Li Q, You X. Luteolin induces ferroptosis in prostate cancer cells by promoting TFEB nuclear translocation and increasing ferritinophagy. Prostate 2024; 84:223-236. [PMID: 37904332 DOI: 10.1002/pros.24642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND As the second most common cancer in men and the leading cause of cancer-related death, prostate cancer (PCa) could potentially be treated by inducing ferroptosis. In this study, we aimed to investigate whether luteolin could induce ferroptosis in PCa cells through the transcription Factor EB (TFEB). METHODS Different concentrations of luteolin were applied to treat normal prostate epithelial cells RWPE-1 and PCa cell lines DU145, PC-3, VCaP, and LNcaP. Ferrostatin-1 (Fer-1), Necrostain-1 (Nec-1), 3-methyladenine (3-MA), chloroquine (CQ), and the apoptosis inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (Z-VAD-FMK) were added to treat DU145 and PC-3 cells. Additionally, we knocked down TFEB and performed in vitro cell experiments. Finally, tumor-forming experiments in nude mice were conducted to verify luteolin mechanism in PCa after knocking down TFEB. RESULTS There was no significant difference in RWPE-1 at 12, 24, and 48 h after treatment with 60 μM luteolin. However, a significant difference was observed between DU145 and PC-3 cells. Luteolin exhibited a promoting effect on PCa cell death. After treatment with luteolin, cell viability, and Ki67 expression were decreased, and AnV-PI-positive dead cells were increased. Fer-1, Nec-1, 3-MA, and Z-VAD-FMK reversed luteolin effects on DU145 and PC-3 cell viability, proliferation, and AnV-PI-positive dead cells. Among them, Fer-1 and 3-MA were more effective. Luteolin-induced increased autophagy and ferroptosis in DU145 and PC-3 cells. Moreover, luteolin promoted ferroptosis by inducing increased autophagy in DU145 and PC-3 cells. However, knockdown of TFEB reversed the ability of luteolin to induce lysosome degradation of ferritin. In addition, luteolin promoted PCa ferroptosis by inducing ferritinophagy in vivo. CONCLUSIONS Luteolin-induced ferroptosis in PCa cells by promoting TFEB nuclear translocation and increasing ferritinophagy.
Collapse
Affiliation(s)
- Wei Fu
- Department of Andrology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lei Xu
- Department of Andrology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Yingwen Chen
- Department of Andrology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zezheng Zhang
- Department of Andrology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shuchao Chen
- Department of Andrology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Qixin Li
- Department of Andrology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xujun You
- Department of Andrology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
11
|
Shi M, Chen Z, Gong H, Peng Z, Sun Q, Luo K, Wu B, Wen C, Lin W. Luteolin, a flavone ingredient: Anticancer mechanisms, combined medication strategy, pharmacokinetics, clinical trials, and pharmaceutical researches. Phytother Res 2024; 38:880-911. [PMID: 38088265 DOI: 10.1002/ptr.8066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Current pharmaceutical research is energetically excavating the pharmacotherapeutic role of herb-derived ingredients in multiple malignancies' targeting. Luteolin is one of the major phytochemical components that exist in various traditional Chinese medicine or medical herbs. Mounting evidence reveals that this phytoconstituent endows prominent therapeutic actions on diverse malignancies, with the underlying mechanisms, combined medication strategy, and pharmacokinetics elusive. Additionally, the clinical trial and pharmaceutical investigation of luteolin remain to be systematically delineated. The present review aimed to comprehensively summarize the updated information with regard to the anticancer mechanism, combined medication strategies, pharmacokinetics, clinical trials, and pharmaceutical researches of luteolin. The survey corroborates that luteolin executes multiple anticancer effects mainly by dampening proliferation and invasion, spurring apoptosis, intercepting cell cycle, regulating autophagy and immune, inhibiting inflammatory response, inducing ferroptosis, and pyroptosis, as well as epigenetic modification, and so on. Luteolin can be applied in combination with numerous clinical anticarcinogens and natural ingredients to synergistically enhance the therapeutic efficacy of malignancies while reducing adverse reactions. For pharmacokinetics, luteolin has an unfavorable oral bioavailability, it mainly persists in plasma as glucuronides and sulfate-conjugates after being metabolized, and is regarded as potent inhibitors of OATP1B1 and OATP2B1, which may be messed with the pharmacokinetic interactions of miscellaneous bioactive substances in vivo. Besides, pharmaceutical innovation of luteolin with leading-edge drug delivery systems such as host-guest complexes, nanoparticles, liposomes, nanoemulsion, microspheres, and hydrogels are beneficial to the exploitation of luteolin-based products. Moreover, some registered clinical trials on luteolin are being carried out, yet clinical research on anticancer effects should be continuously promoted.
Collapse
Affiliation(s)
- Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixian Chen
- College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Gong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Sun
- Sichuan Provincial Key Laboratory of Individualized Drug Therapy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baoyu Wu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanbiao Wen
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Lin
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Wu Y, Fang Y, Li Y, Au R, Cheng C, Li W, Xu F, Cui Y, Zhu L, Shen H. A network pharmacology approach and experimental validation to investigate the anticancer mechanism of Qi-Qin-Hu-Chang formula against colitis-associated colorectal cancer through induction of apoptosis via JNK/p38 MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117323. [PMID: 37852337 DOI: 10.1016/j.jep.2023.117323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Qi-Qin-Hu-Chang Formula (QQHCF) is a traditional Chinese medicine prescription that is clinically used at the Affiliated Hospital of Nanjing University of Chinese Medicine for the treatment of colitis-associated colorectal cancer (CAC). AIM OF THE STUDY To evaluate the potential therapeutic effects of QQHCF on a CAC mouse model and investigate its underlying mechanisms using network pharmacology and experimental validation. MATERIALS AND METHODS The active components and potential targets of QQHCF were obtained from Traditional Chinese Medicine Systems Pharmacology (TCMSP) and herb-ingredient-targets gene network were constructed by Cytoscape 3.9.2. Target genes of CAC were obtained from GeneCards, Online Mendelian Inheritance in Man, and DrugBank database. The drug disease target protein-protein interaction (PPI) network was constructed and the core targets were visualized and identified using Cytoscape. The Metascape database was used for GO and KEGG enrichment analysis. UHPLC-MS/MS was used to further identify the active compounds in QQHCF. Subsequently, the therapeutic effects and potential mechanism of QQHCF against CAC were investigated in AOM/DSS-induced CAC mouse in vivo, and HT-29 and HCT116 cells in vitro. Finally, interactions between JNK, p38, and active ingredients were assessed by molecular docking. RESULTS A total of 176 active compounds, 273 potential therapeutic targets, and 2460 CAC-related target genes were obtained. The number of common targets between QQHCF and CAC were 165. KEGG pathway analysis indicated that the MAPK signaling pathway was closely associated with CAC, which may be the potential mechanism of QQHCF against CAC. Network pharmacology and UHPLC-MS/MS analyses showed that the active compounds of QQHCF included quercetin, kaempferol, luteolin, wogonin, oxymatrine, lupanine, and baicalin. Animal experiments demonstrated that QQHCF reduced tumor load, number, and size in AOM/DSS-treated mice, and induced apoptosis in colon tissue. In vitro experiments further showed that QQHCF induced apoptosis and inhibited cell viability, migration, and invasion in HCT116 and HT-29 cells. Notably, QQHCF activated the JNK/p38 MAPK signaling pathway both in vivo and in vitro. Molecular docking analysis revealed an ability for the main components of QQHCF and JNK/p38 to bind. CONCLUSION The present study demonstrated that QQHCF could ameliorate AOM/DSS-induced CAC in mice by activating the JNK/p38 MAPK signaling pathway. These results have important implications for the development of effective treatment strategies for CAC.
Collapse
Affiliation(s)
- Yuguang Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yulai Fang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yanan Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ryan Au
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Academy of Chinese Culture and Health Sciences, Oakland, CA, 94612, USA
| | - Cheng Cheng
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, China
| | - Weiyang Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Cui
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
13
|
Shang J, Yang J, Deng Q, Zhou M. Nano-scale drug delivery systems for luteolin: advancements and applications. J Mater Chem B 2023; 11:11198-11216. [PMID: 37986608 DOI: 10.1039/d3tb01753b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Luteolin (Lu) is a naturally occurring flavonoid compound with a diverse array of pharmacological activities, including anti-tumor, anti-inflammatory, antibacterial, and neuroprotective properties. However, the therapeutic efficacy and clinical application of Lu are significantly hindered by inherent limitations, such as poor water solubility, short half-life, low bioavailability, and potential off-target toxicity. Recent studies have demonstrated that the utilization of nanocarriers presents a promising strategy to enhance the solubility of Lu, prolong its circulation time, and improve its targeting ability. Despite numerous reviews over the past few decades having focused on the source, pharmacological activities, and molecular mechanisms of Lu, there exists a conspicuous gap in the literature regarding a comprehensive review of Lu-loaded nanoformulations and their applications. To address this gap, we present an exhaustive overview of the advancements and applications of nano-scale drug delivery systems specifically designed for Lu. These platforms encompass micelles, nanocarrier-based systems, emulsified drug delivery systems, and vesicular drug delivery systems. We provide detailed insights into the synthetic materials, preparation methods, physicochemical properties, and significant outcomes associated with these nanoformulations. This systematic review will be particularly valuable to researchers seeking novel avenues in the field of nano-delivery strategies and exploring the potential clinical applications of Lu.
Collapse
Affiliation(s)
- Jinlu Shang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qinmin Deng
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
14
|
Niu C, Zhang J, Okolo P. Greasing the Wheels of Pharmacotherapy for Colorectal Cancer: the Role of Natural Polyphenols. Curr Nutr Rep 2023; 12:662-678. [PMID: 38041707 DOI: 10.1007/s13668-023-00512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE OF REVIEW The main purpose of this review, mainly based on preclinical studies, is to summarize the pharmacological and biochemical evidence regarding natural polyphenols against colorectal cancer and highlight areas that require future research. RECENT FINDINGS Typically, colorectal cancer is a potentially preventable and curable cancer arising from benign precancerous polyps found in the colon's inner lining. Colorectal cancer is the third most common cancer, with a lifetime risk of approximately 4 to 5%. Genetic background and environmental factors play major roles in the pathogenesis of colorectal cancer. Theoretically, a multistep process of colorectal carcinogenesis provides enough time for anti-tumor pharmacotherapy of colorectal cancer. Chronic colonic inflammation, oxidative stress, and gut microbiota imbalance have been found to increase the risk for colorectal cancer development by creating genotoxic stress within the intestinal environment to generate genetic mutations and epigenetic modifications. Currently, numerous natural polyphenols have shown anti-tumor properties against colorectal cancer in preclinical research, especially in colorectal cancer cell lines. In this review, the current literature regarding the etiology and epidemiology of colorectal cancer is briefly outlined. We highlight the findings of natural polyphenols in colorectal cancer from in vitro and in vivo studies. The scarcity of human trials data undermines the clinical use of natural polyphenols as anti-colorectal cancer agents, which should be undertaken in the future.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, Vancouver, 98686, USA
| | - Patrick Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
15
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
16
|
Rakoczy K, Kaczor J, Sołtyk A, Szymańska N, Stecko J, Sleziak J, Kulbacka J, Baczyńska D. Application of Luteolin in Neoplasms and Nonneoplastic Diseases. Int J Mol Sci 2023; 24:15995. [PMID: 37958980 PMCID: PMC10650338 DOI: 10.3390/ijms242115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Researchers are amazed at the multitude of biological effects of 3',4',5,7-tetrahydroxyflavone, more commonly known as luteolin, as it simultaneously has antioxidant and pro-oxidant, as well as antimicrobial, anti-inflammatory, and cancer-preventive, properties. The anticancer properties of luteolin constitute a mosaic of pathways due to which this flavonoid influences cancer cells. Not only is it able to induce apoptosis and inhibit cancer cell proliferation, but it also suppresses angiogenesis and metastasis. Moreover, luteolin succeeds in cancer cell sensitization to therapeutically induced cytotoxicity. Nevertheless, apart from its promising role in chemoprevention, luteolin exhibits numerous potential utilizations in patients with conditions other than neoplasms, which include inflammatory skin diseases, diabetes mellitus, and COVID-19. This review aims to present the multidimensionality of the luteolin's impact on both neoplastic and nonneoplastic diseases. When it comes to neoplasms, we intend to describe the complexity of the molecular mechanisms that underlay luteolin's anticancer effectiveness, as well as to prove the usefulness of integrating this flavonoid in cancer therapy via the analysis of recent research on breast, colon, and lung cancer. Regarding nonneoplastic diseases, this review aims to emphasize the importance of researching the potential of luteolin in areas such as diabetology, virology, and dermatology as it summarizes the most important discoveries in those fields regarding its application.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Justyna Kaczor
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Adam Sołtyk
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (K.R.); (J.K.); (A.S.); (N.S.); (J.S.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
17
|
Gupta M, Ahmad J, Ahamad J, Kundu S, Goel A, Mishra A. Flavonoids as promising anticancer therapeutics: Contemporary research, nanoantioxidant potential, and future scope. Phytother Res 2023; 37:5159-5192. [PMID: 37668281 DOI: 10.1002/ptr.7975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 09/06/2023]
Abstract
Flavonoids are natural polyphenolic compounds considered safe, pleiotropic, and readily available molecules. It is widely distributed in various food products such as fruits and vegetables and beverages such as green tea, wine, and coca-based products. Many studies have reported the anticancer potential of flavonoids against different types of cancers, including solid tumors. The chemopreventive effect of flavonoids is attributed to various mechanisms, including modulation of autophagy, induction of cell cycle arrest, apoptosis, and antioxidant defense. Despite of significant anticancer activity of flavonoids, their clinical translation is limited due to their poor biopharmaceutical attributes (such as low aqueous solubility, limited permeability across the biological membranes (intestinal and blood-brain barrier), and stability issue in biological systems). A nanoparticulate system is an approach that is widely utilized to improve the biopharmaceutical performance and therapeutic efficacy of phytopharmaceuticals. The present review discusses the significant anticancer potential of promising flavonoids in different cancers and the utilization of nanoparticulate systems to improve their nanoantioxidant activity further to enhance the anticancer activity of loaded promising flavonoids. Although, various plant-derived secondary metabolites including flavonoids have been recommended for treating cancer, further vigilant research is warranted to prove their translational values.
Collapse
Affiliation(s)
- Mukta Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Archit Goel
- All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
18
|
Geng Z, Chen M, Yu Q, Guo S, Chen T, Liu D. Histone Modification of Colorectal Cancer by Natural Products. Pharmaceuticals (Basel) 2023; 16:1095. [PMID: 37631010 PMCID: PMC10458348 DOI: 10.3390/ph16081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Natural products play important roles in the pathogenesis of many human malignancies, including colorectal cancer, and can act as a gene regulator in many cancers. They regulate malignant cell growth through many cellular signal pathways, including Rac family small GTPase 1 (RAC1)/PI3K/AKT (α-serine/threonine-protein kinase), mitogen-activated protein kinase (MAPK), Wnt/β-catenin pathway, transforming growth factor-β (TGF-β), Janus kinase and signal transducer and activator of transcription (JAK-STAT), nuclear factor kappa-B (NF-κB), the Notch pathway, Hippo pathway, and Hedgehog pathway. In this review, we describe the epigenetic roles of several natural products, e.g., platycodin D (PD), ginsenoside Rd, tretinoin, Rutin, curcumin, clove extract, betulinic acid, resveratrol, and curcumin, in colorectal cancer, including their impact on colorectal cancer cell proliferation, apoptosis, invasion, migration, and anti-chemotherapeutic resistance. The aim is to illustrate the epigenetic mechanisms of action of natural products in cancer prevention and treatment, and to provide (1) a theoretical basis for the study of the role of epigenetics in influencing colorectal cancer; (2) new directions for studying the occurrence, development, and prognosis of colorectal cancer; and (3) new targets for treating and preventing colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | - Tianli Chen
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Z.G.); (M.C.); (Q.Y.); (S.G.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (Z.G.); (M.C.); (Q.Y.); (S.G.)
| |
Collapse
|
19
|
Hashemi M, Gholami S, Raesi R, Sarhangi S, Mahmoodieh B, Koohpar ZK, Goharrizi MASB, Behroozaghdam M, Entezari M, Salimimoghadam S, Zha W, Rashidi M, Abdi S, Taheriazam A, Nabavi N. Biological and therapeutic viewpoints towards role of miR-218 in human cancers: Revisiting molecular interactions and future clinical translations. Cell Signal 2023:110786. [PMID: 37380085 DOI: 10.1016/j.cellsig.2023.110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Understanding the exact pathogenesis of cancer is difficult due to heterogenous nature of tumor cells and multiple factors that cause its initiation and development. Treatment of cancer is mainly based on surgical resection, chemotherapy, radiotherapy and their combination, while gene therapy has been emerged as a new kind of therapy for cancer. Post-transcriptional regulation of genes has been of interest in recent years and among various types of epigenetic factors that can modulate gene expression, short non-coding RNAs known as microRNAs (miRNAs) have obtained much attention. The stability of mRNA decreases by miRNAs to repress gene expression. miRNAs can regulate tumor malignancy and biological behavior of cancer cells and understanding their function in tumorigenesis can pave the way towards developing new therapeutics in future. One of the new emerging miRNAs in cancer therapy is miR-218 that increasing evidence highlights its anti-cancer activity, while a few studies demonstrate its oncogenic function. The miR-218 transfection is promising in reducing progression of tumor cells. miR-218 shows interactions with molecular mechanisms including apoptosis, autophagy, glycolysis and EMT, and the interaction is different. miR-218 induces apoptosis, while it suppresses glycolysis, cytoprotective autophagy and EMT. Low expression of miR-218 can result in development of chemoresistance and radio-resistance in tumor cells and direct targeting of miR-218 as a key player is promising in cancer therapy. LncRNAs and circRNAs are nonprotein coding transcripts that can regulate miR-218 expression in human cancers. Moreover, low expression level of miR-218 can be observed in human cancers such as brain, gastrointestinal and urological cancers that mediate poor prognosis and low survival rate.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sareh Sarhangi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | | | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Soheila Abdi
- Department of Physics, Safadasht Branch, Islamic Azad university, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| |
Collapse
|
20
|
Therapeutic Potential of Luteolin on Cancer. Vaccines (Basel) 2023; 11:vaccines11030554. [PMID: 36992138 DOI: 10.3390/vaccines11030554] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Cancer is a global concern, as the rate of incidence is increasing each year. The challenges related to the current chemotherapy drugs, such as the concerns related to toxicity, turn to cancer therapeutic research to discover alternative therapy strategies that are less toxic to normal cells. Among those studies, the use of flavonoids—natural compounds produced by plants as secondary metabolites for cancer therapy—has been a hot topic in cancer treatment. Luteolin, a flavonoid that has been present in many fruits, vegetables, and herbs, has been identified to exhibit numerous biological activities, including anti-inflammatory, antidiabetic, and anticancer properties. The anticancer property of Luteolin has been extensively researched in many cancer types and has been related to its ability to inhibit tumor growth by targeting cellular processes such as apoptosis, angiogenesis, migration, and cell cycle progression. It achieves this by interacting with various signaling pathways and proteins. In the current review, the molecular targets of Luteolin as it exerts its anticancer properties, the combination therapy that includes Luteolin with other flavonoids or chemotherapeutic drugs, and the nanodelivery strategies for Luteolin are described for several cancer types.
Collapse
|
21
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Huang L, Kim MY, Cho JY. Immunopharmacological Activities of Luteolin in Chronic Diseases. Int J Mol Sci 2023; 24:ijms24032136. [PMID: 36768462 PMCID: PMC9917216 DOI: 10.3390/ijms24032136] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Flavonoids have been shown to have anti-oxidative effects, as well as other health benefits (e.g., anti-inflammatory and anti-tumor functions). Luteolin (3', 4', 5,7-tetrahydroxyflavone) is a flavonoid found in vegetables, fruits, flowers, and herbs, including celery, broccoli, green pepper, navel oranges, dandelion, peppermint, and rosemary. Luteolin has multiple useful effects, especially in regulating inflammation-related symptoms and diseases. In this paper, we summarize the studies about the immunopharmacological activity of luteolin on anti-inflammatory, anti-cardiovascular, anti-cancerous, and anti-neurodegenerative diseases published since 2018 and available in PubMed or Google Scholar. In this review, we also introduce some additional formulations of luteolin to improve its solubility and bioavailability.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
23
|
Emerging Role of Plant-Based Dietary Components in Post-Translational Modifications Associated with Colorectal Cancer. Life (Basel) 2023; 13:life13020264. [PMID: 36836621 PMCID: PMC9962725 DOI: 10.3390/life13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Its main modifiable risk factors are diet, alcohol consumption, and smoking. Thus, the right approach through lifestyle changes may lead to its prevention. In fact, some natural dietary components have exhibited chemopreventive activity through modulation of cellular processes involved in CRC development. Although cancer is a multi-factorial process, the study of post-translational modifications (PTMs) of proteins associated with CRC has recently gained interest, as inappropriate modification is closely related to the activation of cell signalling pathways involved in carcinogenesis. Therefore, this review aimed to collect the main PTMs associated with CRC, analyse the relationship between different proteins that are susceptible to inappropriate PTMs, and review the available scientific literature on the role of plant-based dietary compounds in modulating CRC-associated PTMs. In summary, this review suggested that some plant-based dietary components such as phenols, flavonoids, lignans, terpenoids, and alkaloids may be able to correct the inappropriate PTMs associated with CRC and promote apoptosis in tumour cells.
Collapse
|
24
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
25
|
Zhang Y, Liu K, Yan C, Yin Y, He S, Qiu L, Li G. Natural Polyphenols for Treatment of Colorectal Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248810. [PMID: 36557939 PMCID: PMC9787795 DOI: 10.3390/molecules27248810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) is a prevalent and serious gastrointestinal malignancy with high mortality and morbidity. Chemoprevention refers to a newly emerged strategy that uses drugs with chemopreventive properties to promote antioxidation, regulate cancer cell cycle, suppress proliferation, and induce cellular apoptosis, so as to improve cancer treatment outcomes. Natural polyphenols are currently recognized as a class of chemopreventive agents that have shown remarkable anticarcinogenic properties. Numerous in vitro and in vivo studies have elucidated the anti-CRC mechanisms of natural polyphenols, such as regulation of various molecular and signaling pathways. Natural polyphenols are also reportedly capable of modulating the gut microbiota and cancer stem cells (CSCs) to suppress tumor formation and progression. Combined use of different natural polyphenols is recommended due to their low bioavailability and instability, and combination treatment can exert synergistical effects, reduce side effects, and avoid drug resistance in CRC treatment. In summary, the application of polyphenols in the chemoprevention and treatment of CRC is promising. Further clinical evaluation of their effectiveness is warranted and anticipated.
Collapse
Affiliation(s)
- Yiwen Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Kunjian Liu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chengqiu Yan
- Anorectal Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Yu Yin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuangyan He
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Li Qiu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Guofeng Li
- Anorectal Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
- Correspondence:
| |
Collapse
|
26
|
Prasher P, Sharma M, Singh SK, Gulati M, Chellappan DK, Zacconi F, De Rubis G, Gupta G, Sharifi-Rad J, Cho WC, Dua K. Luteolin: a flavonoid with a multifaceted anticancer potential. Cancer Cell Int 2022; 22:386. [PMID: 36482329 PMCID: PMC9730645 DOI: 10.1186/s12935-022-02808-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Therapeutic effect of phytochemicals has been emphasized in the traditional medicine owing to the presence of bioactive molecules, such as polyphenols. Luteolin is a flavone belonging to the flavonoid class of polyphenolic phytochemicals with healing effect on hypertension, inflammatory disorders, and cancer due to its action as pro-oxidants and antioxidants. The anticancer profile of luteolin is of interest due to the toxic effect of contemporary chemotherapy paradigm, leading to the pressing need for the development and identification of physiologically benevolent anticancer agents and molecules. Luteolin exerts anticancer activity by downregulation of key regulatory pathways associated with oncogenesis, in addition to the induction of oxidative stress, cell cycle arrest, upregulation of apoptotic genes, and inhibition of cell proliferation and angiogenesis in cancer cells. In this review, we discuss about the anticancer profile of luteolin.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007 India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007 India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, Phagwara, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Monica Gulati
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, Phagwara, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Flavia Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuna Mackenna 4860, Macul, 7820436 Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
27
|
Tuli HS, Garg VK, Bhushan S, Uttam V, Sharma U, Jain A, Sak K, Yadav V, Lorenzo JM, Dhama K, Behl T, Sethi G. Natural flavonoids exhibit potent anticancer activity by targeting microRNAs in cancer: A signature step hinting towards clinical perfection. Transl Oncol 2022; 27:101596. [PMID: 36473401 PMCID: PMC9727168 DOI: 10.1016/j.tranon.2022.101596] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer prevalence and its rate of incidence are constantly rising since the past few decades. Owing to the toxicity of present-day antineoplastic drugs, it is imperative to explore safer and more effective molecules to combat and/or prevent this dreaded disease. Flavonoids, a class of polyphenols, have exhibited multifaceted implications against several diseases including cancer, without showing significant toxicity towards the normal cells. Shredded pieces of evidence suggest that flavonoids can enhance drug sensitivity and suppress proliferation, metastasis, and angiogenesis of cancer cells by modulating several oncogenic or oncosuppressor microRNAs (miRNAs, miRs). They play pivotal roles in regulation of various biological and pathological processes, including various cancers. In the present review, the structure, chemistry and miR targeting efficacy of quercetin, luteolin, silibinin, genistein, epigallocatechin gallate, and cyanidin against several cancer types are comprehensively discussed. miRs are considered as next-generation medicine of recent times, and their targeting by naturally occurring flavonoids in cancer cells could be deemed as a signature step. We anticipate that our compilations related to miRNA-mediated regulation of cancer cells by flavonoids might catapult the clinical investigations and affirmation in the future.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Sakshi Bhushan
- Department of Botany, Central University Jammu, Jammu and Kashmir 181143, India
| | - Vivek Uttam
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda, Punjab 151401, India
| | | | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE-20213 Malmö, Sweden
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense 32900, Spain,Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh 243122, India
| | - Tapan Behl
- Department of Pharmacology, School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand 248007, India,Corresponding authors.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore,Corresponding authors.
| |
Collapse
|
28
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother 2022; 156:113860. [DOI: 10.1016/j.biopha.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022] Open
|
29
|
Effects of Natural Polyphenols on Skin and Hair Health: A Review. Molecules 2022; 27:molecules27227832. [PMID: 36431932 PMCID: PMC9695112 DOI: 10.3390/molecules27227832] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
The skin is the largest organ of the body and plays multiple essential roles, ranging from regulating temperature, preventing infections, to ultimately affecting human health. A hair follicle is a complex cutaneous appendage. Skin diseases and hair loss have a significant effect on the quality of life and psychosocial adjustment of individuals. However, the available traditional drugs for treating skin and hair diseases may have some insufficiencies; therefore, a growing number of researchers are interested in natural materials that could achieve satisfactory results and minimize adverse effects. Natural polyphenols, named for the multiple phenolic hydroxyl groups in their structures, are promising candidates and continue to be of scientific interest due to their multifunctional biological properties and safety. Polyphenols have a wide range of pharmacological effects. In addition to the most common effect, antioxidation, polyphenols have anti-inflammatory, bacteriostatic, antitumor, and other biological effects associated with reduced risk of a number of chronic diseases. Various polyphenols have also shown efficacy against different types of skin and hair diseases, both in vitro and in vivo, via different mechanisms. Thus, this paper reviews the research progress in natural polyphenols for the protection of skin and hair health, especially focusing on their potential therapeutic mechanisms against skin and hair disorders. A deep understanding of natural polyphenols provides a new perspective for the safe treatment of skin diseases and hair loss.
Collapse
|
30
|
Singh Tuli H, Rath P, Chauhan A, Sak K, Aggarwal D, Choudhary R, Sharma U, Vashishth K, Sharma S, Kumar M, Yadav V, Singh T, Yerer MB, Haque S. Luteolin, a Potent Anticancer Compound: From Chemistry to Cellular Interactions and Synergetic Perspectives. Cancers (Basel) 2022; 14:5373. [PMID: 36358791 PMCID: PMC9658186 DOI: 10.3390/cancers14215373] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/03/2023] Open
Abstract
Increasing rates of cancer incidence and the toxicity concerns of existing chemotherapeutic agents have intensified the research to explore more alternative routes to combat tumor. Luteolin, a flavone found in numerous fruits, vegetables, and herbs, has exhibited a number of biological activities, such as anticancer and anti-inflammatory. Luteolin inhibits tumor growth by targeting cellular processes such as apoptosis, cell-cycle progression, angiogenesis and migration. Mechanistically, luteolin causes cell death by downregulating Akt, PLK-1, cyclin-B1, cyclin-A, CDC-2, CDK-2, Bcl-2, and Bcl-xL, while upregulating BAX, caspase-3, and p21. It has also been reported to inhibit STAT3 signaling by the suppression of STAT3 activation and enhanced STAT3 protein degradation in various cancer cells. Therefore, extensive studies on the anticancer properties of luteolin reveal its promising role in chemoprevention. The present review describes all the possible cellular interactions of luteolin in cancer, along with its synergistic mode of action and nanodelivery insight.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida 201303, India
| | | | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Renuka Choudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda 151001, India
| | - Kanupriya Vashishth
- Department of Cardiology, Advance Cardiac Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Sheetu Sharma
- Department of Pharmacovigilace and Clinical Research, Chitkara University, Rajpura 140401, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala 133001, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, SE-20213 Malmö, Sweden
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, Delhi 110007, India
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
31
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Islam F, Mitra S, Emran TB, Khan Z, Nath N, Das R, Sharma R, Awadh AAA, Park MN, Kim B. Natural Small Molecules in Gastrointestinal Tract and Associated Cancers: Molecular Insights and Targeted Therapies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175686. [PMID: 36080453 PMCID: PMC9457641 DOI: 10.3390/molecules27175686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/22/2022]
Abstract
Gastric cancer is one of the most common cancers of the gastrointestinal tract. Although surgery is the primary treatment, serious maladies that dissipate to other parts of the body may require chemotherapy. As there is no effective procedure to treat stomach cancer, natural small molecules are a current focus of research interest for the development of better therapeutics. Chemotherapy is usually used as a last resort for people with advanced stomach cancer. Anti-colon cancer chemotherapy has become increasingly effective due to drug resistance and sensitivity across a wide spectrum of drugs. Naturally-occurring substances have been widely acknowledged as an important project for discovering innovative medications, and many therapeutic pharmaceuticals are made from natural small molecules. Although the beneficial effects of natural products are as yet unknown, emerging data suggest that several natural small molecules could suppress the progression of stomach cancer. Therefore, the underlying mechanism of natural small molecules for pathways that are directly involved in the pathogenesis of cancerous diseases is reviewed in this article. Chemotherapy and molecularly-targeted drugs can provide hope to colon cancer patients. New discoveries could help in the fight against cancer, and future stomach cancer therapies will probably include molecularly formulated drugs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Correspondence: (T.B.E.); (B.K.)
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
| | - Bonglee Kim
- Department of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 05254, Korea
- Correspondence: (T.B.E.); (B.K.)
| |
Collapse
|
33
|
Chen Y, Ma S, Pi D, Wu Y, Zuo Q, Li C, Ouyang M. Luteolin induces pyroptosis in HT-29 cells by activating the Caspase1/Gasdermin D signalling pathway. Front Pharmacol 2022; 13:952587. [PMID: 36105214 PMCID: PMC9464948 DOI: 10.3389/fphar.2022.952587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 01/31/2023] Open
Abstract
Luteolin, which is a natural flavonoid, has anti-inflammatory, antioxidant, and anticancer properties. Numerous studies have proven that luteolin inhibits the growth of many types of cancer cells by promoting apoptosis, autophagy, and cell cycle arrest in tumour cells. However, in vivo research on this topic has been limited. In addition, other studies have shown that luteolin exerts a good inhibitory effect on apoptosis-resistant cancer cells. While existing studies have not completely elucidated the mechanism underlying this phenomenon, we assume that luteolin, which is a natural compound that exerts its effects through various mechanisms, may have the potential to inhibit tumour growth. In our study, we proved that luteolin exerted a good inhibitory effect on the proliferation of colon cancer cells according to CCK8 and EdU fluorescence assays, and the same conclusion was drawn in animal experiments. In addition, we found that luteolin, which is an antioxidant, unexpectedly promoted oxidative stress as shown by measuring the levels of oxidative balance-related indicators, such as reactive oxygen species (ROS), SOD, H2O2 and GSH. However, the decreased oxidation of luteolin-treated HT-29 cells after treatment with the active oxygen scavenger NAC did not reverse the inhibition of cell growth. However, the Caspase1 inhibitor VX765 did reverse the inhibition of cell growth. Western blotting analysis showed that luteolin treatment increased the expression of Caspase1, Gasdermin D and IL-1β, which are members of the pyroptosis signalling pathway, in colon cancer cells. We further intuitively observed NLRP3/Gasdermin D colocalization in luteolin-treated HT-29 cells and mouse tumour tissues by immunofluorescence. These results suggest that luteolin inhibits the proliferation of colon cancer cells through a novel pathway called pyroptosis. This study provides a new direction for the development of natural products that inhibit tumour growth by inducing pyroptosis.
Collapse
|
34
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
35
|
Basha NJ, Basavarajaiah SM. Anticancer Potential of Bioactive Molecule Luteolin and Its Analogs: An Update. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2080728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry, Indian Academy Degree College-Autonomous, Bengaluru, Karnataka, India
| | - S. M. Basavarajaiah
- P.G. Department of Chemistry, R.V. Road Vijaya College, Bengaluru, Karnataka, India
| |
Collapse
|
36
|
Rahman MA, Park MN, Rahman MDH, Rashid MM, Islam R, Uddin MJ, Hannan MA, Kim B. p53 Modulation of Autophagy Signaling in Cancer Therapies: Perspectives Mechanism and Therapeutic Targets. Front Cell Dev Biol 2022; 10:761080. [PMID: 35155422 PMCID: PMC8827382 DOI: 10.3389/fcell.2022.761080] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
The key tumor suppressor protein p53, additionally known as p53, represents an attractive target for the development and management of anti-cancer therapies. p53 has been implicated as a tumor suppressor protein that has multiple aspects of biological function comprising energy metabolism, cell cycle arrest, apoptosis, growth and differentiation, senescence, oxidative stress, angiogenesis, and cancer biology. Autophagy, a cellular self-defense system, is an evolutionarily conserved catabolic process involved in various physiological processes that maintain cellular homeostasis. Numerous studies have found that p53 modulates autophagy, although the relationship between p53 and autophagy is relatively complex and not well understood. Recently, several experimental studies have been reported that p53 can act both an inhibitor and an activator of autophagy which depend on its cellular localization as well as its mode of action. Emerging evidences have been suggested that the dual role of p53 which suppresses and stimulates autophagy in various cencer cells. It has been found that p53 suppression and activation are important to modulate autophagy for tumor promotion and cancer treatment. On the other hand, activation of autophagy by p53 has been recommended as a protective function of p53. Therefore, elucidation of the new functions of p53 and autophagy could contribute to the development of novel therapeutic approaches in cancer biology. However, the underlying molecular mechanisms of p53 and autophagy shows reciprocal functional interaction that is a major importance for cancer treatment and manegement. Additionally, several synthetic drugs and phytochemicals have been targeted to modulate p53 signaling via regulation of autophagy pathway in cancer cells. This review emphasizes the current perspectives and the role of p53 as the main regulator of autophagy-mediated novel therapeutic approaches against cancer treatment and managements.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- *Correspondence: Md Ataur Rahman, ; Bonglee Kim,
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - MD Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- ABEx Bio-Research Center, Dhaka, Bangladesh
| | - Md Mamunur Rashid
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Rokibul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md Ataur Rahman, ; Bonglee Kim,
| |
Collapse
|
37
|
Brimson JM, Prasanth MI, Malar DS, Thitilertdecha P, Kabra A, Tencomnao T, Prasansuklab A. Plant Polyphenols for Aging Health: Implication from Their Autophagy Modulating Properties in Age-Associated Diseases. Pharmaceuticals (Basel) 2021; 14:ph14100982. [PMID: 34681206 PMCID: PMC8538309 DOI: 10.3390/ph14100982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are a family of naturally occurring organic compounds, majorly present in fruits, vegetables, and cereals, characterised by multiple phenol units, including flavonoids, tannic acid, and ellagitannin. Some well-known polyphenols include resveratrol, quercetin, curcumin, epigallocatechin gallate, catechin, hesperetin, cyanidin, procyanidin, caffeic acid, and genistein. They can modulate different pathways inside the host, thereby inducing various health benefits. Autophagy is a conserved process that maintains cellular homeostasis by clearing the damaged cellular components and balancing cellular survival and overall health. Polyphenols could maintain autophagic equilibrium, thereby providing various health benefits in mediating neuroprotection and exhibiting anticancer and antidiabetic properties. They could limit brain damage by dismantling misfolded proteins and dysfunctional mitochondria, thereby activating autophagy and eliciting neuroprotection. An anticarcinogenic mechanism is stimulated by modulating canonical and non-canonical signalling pathways. Polyphenols could also decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function from inducing antidiabetic activity. Polyphenols are usually included in the diet and may not cause significant side effects that could be effectively used to prevent and treat major diseases and ailments.
Collapse
Affiliation(s)
- James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10330, Thailand;
| | - Atul Kabra
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Sahibzad Ajit Singh Nagar 140413, Punjab, India;
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| |
Collapse
|