1
|
Ran X, Müller S, Brunssen C, Huhle R, Scharffenberg M, Schnabel C, Koch T, Gama de Abreu M, Morawietz H, Ferreira JMC, Wittenstein J. Modulation of the hippo-YAP pathway by cyclic stretch in rat type 2 alveolar epithelial cells-a proof-of-concept study. Front Physiol 2023; 14:1253810. [PMID: 37877098 PMCID: PMC10591329 DOI: 10.3389/fphys.2023.1253810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Background: Mechanical ventilation (MV) is a life supporting therapy but may also cause lung damage. This phenomenon is known as ventilator-induced lung injury (VILI). A potential pathomechanisms of ventilator-induced lung injury may be the stretch-induced production and release of cytokines and pro-inflammatory molecules from the alveolar epithelium. Yes-associated protein (YAP) might be regulated by mechanical forces and involved in the inflammation cascade. However, its role in stretch-induced damage of alveolar cells remains poorly understood. In this study, we explored the role of YAP in the response of alveolar epithelial type II cells (AEC II) to elevated cyclic stretch in vitro. We hypothesize that Yes-associated protein activates its downstream targets and regulates the interleukin-6 (IL-6) expression in response to 30% cyclic stretch in AEC II. Methods: The rat lung L2 cell line was exposed to 30% cyclic equibiaxial stretch for 1 or 4 h. Non-stretched conditions served as controls. The cytoskeleton remodeling and cell junction integrity were evaluated by F-actin and Pan-cadherin immunofluorescence, respectively. The gene expression and protein levels of IL-6, Yes-associated protein, Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1), and connective tissue growth factor (CTGF/CCN2) were studied by real-time polymerase chain reaction (RT-qPCR) and Western blot, respectively. Verteporfin (VP) was used to inhibit Yes-associated protein activation. The effects of 30% cyclic stretch were assessed by two-way ANOVA. Statistical significance as accepted at p < 0.05. Results: Cyclic stretch of 30% induced YAP nuclear accumulation, activated the transcription of Yes-associated protein downstream targets Cyr61/CCN1 and CTGF/CCN2 and elevated IL-6 expression in AEC II after 1 hour, compared to static control. VP (2 µM) inhibited Yes-associated protein activation in response to 30% cyclic stretch and reduced IL-6 protein levels. Conclusion: In rat lung L2 AEC II, 30% cyclic stretch activated YAP, and its downstream targets Cyr61/CCN1 and CTGF/CCN2 and proinflammatory IL-6 expression. Target activation was blocked by a Yes-associated protein inhibitor. This novel YAP-dependent pathway could be involved in stretch-induced damage of alveolar cells.
Collapse
Affiliation(s)
- Xi Ran
- Department of Intensive Care Medicine, Chongqing General Hospital, Changqing, China
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Sabine Müller
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Christian Schnabel
- Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jorge M. C. Ferreira
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Jakob Wittenstein
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
2
|
Shi L, Li Y, Xu X, Cheng Y, Meng B, Xu J, Xiang L, Zhang J, He K, Tong J, Zhang J, Xiang L, Xiang G. Brown adipose tissue-derived Nrg4 alleviates endothelial inflammation and atherosclerosis in male mice. Nat Metab 2022; 4:1573-1590. [PMID: 36400933 PMCID: PMC9684073 DOI: 10.1038/s42255-022-00671-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022]
Abstract
Brown adipose tissue (BAT) activity contributes to cardiovascular health by its energy-dissipating capacity but how BAT modulates vascular function and atherosclerosis through endocrine mechanisms remains poorly understood. Here we show that BAT-derived neuregulin-4 (Nrg4) ameliorates atherosclerosis in mice. BAT-specific Nrg4 deficiency accelerates vascular inflammation and adhesion responses, endothelial dysfunction and apoptosis and atherosclerosis in male mice. BAT-specific Nrg4 restoration alleviates vascular inflammation and adhesion responses, attenuates leukocyte homing and reduces endothelial injury and atherosclerosis in male mice. In endothelial cells, Nrg4 decreases apoptosis, inflammation and adhesion responses induced by oxidized low-density lipoprotein. Mechanistically, protein kinase B (Akt)-nuclear factor-κB signaling is involved in the beneficial effects of Nrg4 on the endothelium. Taken together, the results reveal Nrg4 as a potential cross-talk factor between BAT and arteries that may serve as a target for atherosclerosis.
Collapse
Affiliation(s)
- Lingfeng Shi
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Endocrinology Department, The First Affiliated Hospital of the Army Medical University (Third Military Medical University), Chongqing, China
| | - Yixiang Li
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Xiaoli Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
| | - Yangyang Cheng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
| | - Biying Meng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
| | - Jinling Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lin Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
| | - Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China
| | - Kaiyue He
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiayue Tong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junxia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China.
| | - Lingwei Xiang
- Centers for Surgery and Public Health, Brigham and Women's Hospital, Boston, MA, USA.
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China.
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Lung injury in axolotl salamanders induces an organ‐wide proliferation response. Dev Dyn 2021; 250:866-879. [DOI: 10.1002/dvdy.315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 01/09/2023] Open
|
4
|
Cadiz L, Jonz MG. A comparative perspective on lung and gill regeneration. ACTA ACUST UNITED AC 2020; 223:223/19/jeb226076. [PMID: 33037099 DOI: 10.1242/jeb.226076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability to continuously grow and regenerate the gills throughout life is a remarkable property of fish and amphibians. Considering that gill regeneration was first described over one century ago, it is surprising that the underlying mechanisms of cell and tissue replacement in the gills remain poorly understood. By contrast, the mammalian lung is a largely quiescent organ in adults but is capable of facultative regeneration following injury. In the course of the past decade, it has been recognized that lungs contain a population of stem or progenitor cells with an extensive ability to restore tissue; however, despite recent advances in regenerative biology of the lung, the signaling pathways that underlie regeneration are poorly understood. In this Review, we discuss the common evolutionary and embryological origins shared by gills and mammalian lungs. These are evident in homologies in tissue structure, cell populations, cellular function and genetic pathways. An integration of the literature on gill and lung regeneration in vertebrates is presented using a comparative approach in order to outline the challenges that remain in these areas, and to highlight the importance of using aquatic vertebrates as model organisms. The study of gill regeneration in fish and amphibians, which have a high regenerative potential and for which genetic tools are widely available, represents a unique opportunity to uncover common signaling mechanisms that may be important for regeneration of respiratory organs in all vertebrates. This may lead to new advances in tissue repair following lung disease.
Collapse
Affiliation(s)
- Laura Cadiz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| | - Michael G Jonz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
5
|
King G, Smith ME, Cake MH, Nielsen HC. What is the identity of fibroblast-pneumocyte factor? Pediatr Res 2016; 80:768-776. [PMID: 27500537 PMCID: PMC5112109 DOI: 10.1038/pr.2016.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/03/2016] [Indexed: 01/27/2023]
Abstract
Glucocorticoid induction of pulmonary surfactant involves a mesenchyme-derived protein first characterized in 1978 by Smith and termed fibroblast-pneumocyte factor (FPF). Despite a number of agents having been postulated as being FPF, its identity has remained obscure. In the past decade, three strong candidates for FPF have arisen. This review examines the evidence that keratinocyte growth factor (KGF), leptin or neuregulin-1β (NRG-1β) act as FPF or components of it. As with FPF production, glucocorticoids enhance the concentration of each of these agents in fibroblast-conditioned media. Moreover, each stimulates the synthesis of surfactant-associated phospholipids and proteins in type II pneumocytes. Further, some have unique activities, for example, KGF also minimizes lung injury through enhanced epithelial cell proliferation and NRG-1β enhances surfactant phospholipid secretion and β-adrenergic receptor activity in type II cells. However, even though these agents have attributes in common with FPF, it is inappropriate to specify any one of these agents as FPF. Rather, it appears that each contributes to separate mesenchymal-epithelial signaling mechanisms involved in different aspects of lung development. Given that the production of pulmonary surfactant is essential for postnatal survival, it is reasonable to suggest that several mechanisms independently regulate surfactant synthesis.
Collapse
Affiliation(s)
- George King
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Megan E. Smith
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| | - Max H. Cake
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia
| | - Heber C. Nielsen
- Graduate Program in Cell, Molecular and Developmental Biology, Department of Pediatrics, Sackler School of Graduate Biomedical Studies, Tufts University, Boston, MA, USA
| |
Collapse
|
6
|
Alan E, Lİman N, Sağsöz H. Immunohistochemical localization of epidermal growth factor system in the lung of the Japanese quail (Coturnix coturnix japonica) during the post-hatching period. Microsc Res Tech 2015; 78:807-22. [PMID: 26179370 DOI: 10.1002/jemt.22544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 11/09/2022]
Abstract
The purpose of this study is to determine the possible changes in the localization of the four Epidermal Growth Factor Receptors and three ligands in quail lungs from the first day of hatching until the 125th after hatching using immunohistochemical methods. Immunohistochemical results demonstrated that four EGFRs and their ligands are chiefly located in the cytoplasm of cells. Additionally, ErbB4, AREG, and NRG1 are localized to the nucleus and nucleolus, but EGF is present in the nucleolus. ErbB2 was also found in the cell membrane. In the epithelium of secondary bronchi, the goblet cells only exhibited ErbB1 and ErbB2, whereas the basal and ciliated cells exhibited EGFRs and ligands immunoreactivity. The atrial granular cells displayed moderate levels of ErbB1-ErbB3 and EGF and strong levels of ErbB4, AREG, and NRG1 immunoreactivity. While the squamous atrial cells and squamous respiratory cells of air capillaries and endothelial cells of blood capillaries exhibited moderate to strong ErbB2, ErbB4, AREG, and NRG1 immunoreactivity, they had negative or weak ErbB1, ErbB3, and EGF immunoreactivity. The expression levels of ErbB2-ErbB4, EGF, AREG, and NRG1 were also detected in fibroblasts. Although ErbB2 was highly expressed in the bronchial and vascular smooth muscle cells, weak expression of ErbB1, ErbB3, AREG and EGF and moderate expression of ErbB4 and NRG1 were observed. Macrophages were only negative for ErbB1. In conclusion, these data indicate that the EGFR-system is functionally active at hatching, which supports the hypothesis that the members of EGFR-system play several cell-specific roles in quail lung growth after hatching.
Collapse
Affiliation(s)
- Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, Turkey
| | - Narİn Lİman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, Kayseri, Turkey
| | - Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, Diyarbakır, Turkey
| |
Collapse
|
7
|
Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5). PLoS One 2014; 9:e109685. [PMID: 25296036 PMCID: PMC4190364 DOI: 10.1371/journal.pone.0109685] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress, pulmonary and systemic inflammation, endothelial cell dysfunction, atherosclerosis and cardiac autonomic dysfunction have been linked to urban particulate matter exposure. The chemical composition of airborne pollutants in Milano is similar to those of other European cities though with a higher PM2.5 fraction. Milano winter fine particles (PM2.5win) are characterized by the presence of nitrate, organic carbon fraction, with high amount of polycyclic aromatic hydrocarbons and elements such as Pb, Al, Zn, V, Fe, Cr and others, with a negligible endotoxin presence. In BALB/c mice, we examined, at biochemical and transcriptomic levels, the adverse effects of repeated Milano PM2.5win exposure in lung and heart. We found that ET-1, Hsp70, Cyp1A1, Cyp1B1 and Hsp-70, HO-1, MPO respectively increased within lung and heart of PM2.5win-treated mice. The PM2.5win exposure had a strong impact on global gene expression of heart tissue (181 up-regulated and 178 down-regulated genes) but a lesser impact on lung tissue (14 up-regulated genes and 43 down-regulated genes). Focusing on modulated genes, in lung we found two- to three-fold changes of those genes related to polycyclic aromatic hydrocarbons exposure and calcium signalling. Within heart the most striking aspect is the twofold to threefold increase in collagen and laminin related genes as well as in genes involved in calcium signaling. The current study extends our previous findings, showing that repeated instillations of PM2.5win trigger systemic adverse effects. PM2.5win thus likely poses an acute threat primarily to susceptible people, such as the elderly and those with unrecognized coronary artery or structural heart disease. The study of genomic responses will improve understanding of disease mechanisms and enable future clinical testing of interventions against the toxic effects of air pollutant.
Collapse
|
8
|
Fiaturi N, Castellot JJ, Nielsen HC. Neuregulin-ErbB4 signaling in the developing lung alveolus: a brief review. J Cell Commun Signal 2014; 8:105-11. [PMID: 24878836 DOI: 10.1007/s12079-014-0233-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/26/2022] Open
Abstract
Lung immaturity is the major cause of morbidity and mortality in premature infants, especially those born <28 weeks gestation. Proper lung development from 23-28 weeks requires coordinated cell proliferation and differentiation. Infants born at this age are at high risk for respiratory distress syndrome (RDS), a lung disease characterized by insufficient surfactant production due to immaturity of the alveoli and its constituent cells in the lung. The ErbB4 receptor and its stimulation by neuregulin (NRG) plays a critical role in surfactant synthesis by alveolar type II epithelial cells. In this review, we first provide an introduction to normal human alveolar development, followed by a discussion of the neuregulin and ErbB4-mediated mechanisms regulating alveolar development and surfactant production.
Collapse
Affiliation(s)
- Najla Fiaturi
- Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA,
| | | | | |
Collapse
|
9
|
Role of neuregulin-1β in dexamethasone-enhanced surfactant synthesis in fetal type II cells. FEBS Lett 2014; 588:975-80. [PMID: 24530532 DOI: 10.1016/j.febslet.2014.01.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 11/24/2022]
Abstract
It is well established that glucocorticoids elevate the production of fibroblast-pneumocyte factor (FPF), which induces type II cells to synthesize surfactant phospholipids. FPF, however, has not been identified and it is not clear whether it is a single factor or a complex mixture of factors. In this study it has been shown that, when lung fibroblasts are exposed to dexamethasone, the concentration of neuregulin-1β (NRG1β) in conditioned medium is elevated 2-fold (P<0.05), even though NRG1β gene expression is unaffected. This, together with the finding that exposure of type II cells to NRG1β directly stimulates by 3-fold the rate of phospholipid synthesis (P<0.05), suggests that NRG1β is a component of FPF that promotes lung development.
Collapse
|
10
|
Dissociated presenilin-1 and TACE processing of ErbB4 in lung alveolar type II cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:797-805. [PMID: 24462774 DOI: 10.1016/j.bbamcr.2014.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/18/2013] [Accepted: 01/13/2014] [Indexed: 01/25/2023]
Abstract
Neuregulin (NRG) stimulation of ErbB4 signaling is important for type II cell surfactant synthesis. ErbB4 may mediate gene expression via a non-canonical pathway involving enzymatic cleavage releasing its intracellular domain (4ICD) for nuclear trafficking and gene regulation. The accepted model for release of 4ICD is consecutive cleavage by Tumor necrosis factor alpha Converting Enzyme (TACE) and γ-secretase enzymes. Here, we show that 4ICD mediates surfactant synthesis and its release by γ-secretase is not dependent on previous TACE cleavage. We used siRNA to silence Presenilin-1 (PSEN-1) expression in a mouse lung type II epithelial cell line (MLE12 cells), and both siRNA knockdown and chemical inhibition of TACE. Knockdown of PSEN-1 significantly decreased baseline and NRG-stimulated surfactant phospholipid synthesis, expression of the surfactant proteins SP-B and SP-C, as well as 4ICD levels, with no change in ErbB4 ectodomain shedding. Neither siRNA knockdown nor chemical inhibition of TACE inhibited 4ICD release or surfactant synthesis. PSEN-1 cleavage of ErbB4 for non-canonical signaling through 4ICD release does not require prior cleavage by TACE.
Collapse
|
11
|
Vallath S, Hynds RE, Succony L, Janes SM, Giangreco A. Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. Eur Respir J 2014; 44:513-22. [PMID: 24435005 DOI: 10.1183/09031936.00146413] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chronic respiratory diseases, including pulmonary fibrosis, chronic obstructive pulmonary disease (COPD) and lung cancer, are the second leading cause of death among Europeans. Despite this, there have been only a few therapeutic advances in these conditions over the past 20 years. In this review we provide evidence that targeting the epidermal growth factor receptor (EGFR) signalling pathway may represent a novel therapeutic panacea for treating chronic lung disease. Using evidence from human patient samples, transgenic animal models, and cell and molecular biology studies we highlight the roles of this signalling pathway in lung development, homeostasis, repair, and disease ontogeny. We identify mechanisms underlying lung EGFR pathway regulation and suggest how targeting these mechanisms using new and existing therapies has the potential to improve future lung cancer, COPD and pulmonary fibrosis patient outcomes.
Collapse
Affiliation(s)
- Sabari Vallath
- Lungs for Living Research Centre, Division of Medicine, University College London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, Division of Medicine, University College London, UK
| | - Laura Succony
- Lungs for Living Research Centre, Division of Medicine, University College London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, Division of Medicine, University College London, UK
| | - Adam Giangreco
- Lungs for Living Research Centre, Division of Medicine, University College London, UK
| |
Collapse
|
12
|
Dreymueller D, Martin C, Schumacher J, Groth E, Boehm JK, Reiss LK, Uhlig S, Ludwig A. Smooth Muscle Cells Relay Acute Pulmonary Inflammation via Distinct ADAM17/ErbB Axes. THE JOURNAL OF IMMUNOLOGY 2013; 192:722-31. [DOI: 10.4049/jimmunol.1302496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Synergistic effect of caffeine and glucocorticoids on expression of surfactant protein B (SP-B) mRNA. PLoS One 2012; 7:e51575. [PMID: 23272120 PMCID: PMC3522739 DOI: 10.1371/journal.pone.0051575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Administration of glucocorticoids and caffeine is a common therapeutic intervention in the neonatal period, but possible interactions between these substances are still unclear. The present study investigated the effect of caffeine and different glucocorticoids on expression of surfactant protein (SP)-B, crucial for the physiological function of pulmonary surfactant. We measured expression levels of SP-B, various SP-B transcription factors including erythroblastic leukemia viral oncogene homolog 4 (ErbB4) and thyroid transcription factor-1 (TTF-1), as well as the glucocorticoid receptor (GR) after administering different doses of glucocorticoids, caffeine, cAMP, or the phosphodiesterase-4 inhibitor rolipram in the human airway epithelial cell line NCI-H441. Administration of dexamethasone (1 µM) or caffeine (5 mM) stimulated SP-B mRNA expression with a maximal of 38.8±11.1-fold and 5.2±1.4-fold increase, respectively. Synergistic induction was achieved after co-administration of dexamethasone (1 mM) in combination with caffeine (10 mM) (206±59.7-fold increase, p<0.0001) or cAMP (1 mM) (213±111-fold increase, p = 0.0108). SP-B mRNA was synergistically induced also by administration of caffeine with hydrocortisone (87.9±39.0), prednisolone (154±66.8), and betamethasone (123±6.4). Rolipram also induced SP-B mRNA (64.9±21.0-fold increase). We detected a higher expression of ErbB4 and GR mRNA (7.0- and 1.7-fold increase, respectively), whereas TTF-1, Jun B, c-Jun, SP1, SP3, and HNF-3α mRNA expression was predominantly unchanged. In accordance with mRNA data, mature SP-B was induced significantly by dexamethasone with caffeine (13.8±9.0-fold increase, p = 0.0134). We found a synergistic upregulation of SP-B mRNA expression induced by co-administration of various glucocorticoids and caffeine, achieved by accumulation of intracellular cAMP. This effect was mediated by a caffeine-dependent phosphodiesterase inhibition and by upregulation of both ErbB4 and the GR. These results suggested that caffeine is able to induce the expression of SP-transcription factors and affects the signaling pathways of glucocorticoids, amplifying their effects. Co-administration of caffeine and corticosteroids may therefore be of benefit in surfactant homeostasis.
Collapse
|
14
|
At the crossroads: EGFR and PTHrP signaling in cancer-mediated diseases of bone. Odontology 2012; 100:109-29. [PMID: 22684584 DOI: 10.1007/s10266-012-0070-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 01/01/2023]
Abstract
The epidermal growth factor receptor is a well-established cancer therapeutic target due to its stimulation of proliferation, motility, and resistance to apoptosis. Recently, additional roles for the receptor have been identified in growth of metastases. Similar to development, metastatic spread requires signaling interactions between epithelial-derived tumor cells and mesenchymal derivatives of the microenvironment. This necessitates reactivation of developmental signaling molecules, including the hypercalcemia factor parathyroid hormone-related protein. This review covers the variations of epidermal growth factor receptor signaling in cancers that produce bone metastases, regulation of parathyroid hormone-related protein, and evidence that the two molecules drive cancer-mediated diseases of bone.
Collapse
|