1
|
Melo RCN, Silva TP. Eosinophil activation during immune responses: an ultrastructural view with an emphasis on viral diseases. J Leukoc Biol 2024; 116:321-334. [PMID: 38466831 DOI: 10.1093/jleuko/qiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Eosinophils are cells of the innate immune system that orchestrate complex inflammatory responses. The study of the cell biology of eosinophils, particularly associated with cell activation, is of great interest to understand their immune responses. From a morphological perspective, activated eosinophils show ultrastructural signatures that have provided critical insights into the comprehension of their functional capabilities. Application of conventional transmission electron microscopy in combination with quantitative assessments (quantitative transmission electron microscopy), molecular imaging (immunoEM), and 3-dimensional electron tomography have generated important insights into mechanisms of eosinophil activation. This review explores a multitude of ultrastructural events taking place in eosinophils activated in vitro and in vivo as key players in allergic and inflammatory diseases, with an emphasis on viral infections. Recent progress in our understanding of biological processes underlying eosinophil activation, including in vivo mitochondrial remodeling, is discussed, and it can bring new thinking to the field.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| |
Collapse
|
2
|
Gelardi M, Giancaspro R, Cassano M. Charcot-Leyden crystals: An ancient but never so current discovery. Am J Otolaryngol 2023; 44:103844. [PMID: 36948077 DOI: 10.1016/j.amjoto.2023.103844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
From the first description of Charcot-Leyden crystals (CLCs) to the present, many steps have been taken to understand the mechanisms underlying their formation. In particular, to date not only eosinophils but also mast cells are known to be responsible for the production of CLCs, which represent the crystallized form of Galectin-10. Due to their characteristics, CLCs typically induce a crystallopathy and are responsible for an exacerbation of inflammation. Nasal cytology (NC) has allowed to better understand the correlation between the severity of several rhinopaties and the presence of CLCs in NC samples, which is strictly correlated with an eosinophiles and mast cells infiltration. As a matter of fact, rhinopaties with a mixed eosinophilic-mast cell inflammatory infiltrate, characterized by the presence of abundant CLCs, show a worse prognosis and a higher risk of relapse. This could have important therapeutic implications, since the treatments available today could be exploited to target both eosinophils and mast cells, to reduce the damage induced by CLCs.
Collapse
Affiliation(s)
- M Gelardi
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - R Giancaspro
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - M Cassano
- Unit of Otolaryngology, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
3
|
Blood Eosinophils Are Associated with Efficacy of Targeted Therapy in Patients with Advanced Melanoma. Cancers (Basel) 2022; 14:cancers14092294. [PMID: 35565423 PMCID: PMC9104271 DOI: 10.3390/cancers14092294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Eosinophils appear to contribute to the efficacy of immunotherapy and their frequency was suggested as a predictive biomarker. Whether this observation could be transferred to patients treated with targeted therapy remains unknown. Methods: Blood and serum samples of healthy controls and 216 patients with advanced melanoma were prospectively and retrospectively collected. Freshly isolated eosinophils were phenotypically characterized by flow cytometry and co-cultured in vitro with melanoma cells to assess cytotoxicity. Soluble serum markers and peripheral blood counts were used for correlative studies. Results: Eosinophil-mediated cytotoxicity towards melanoma cells, as well as phenotypic characteristics, were similar when comparing healthy donors and patients. However, high relative pre-treatment eosinophil counts were significantly associated with response to MAPKi (p = 0.013). Eosinophil-mediated cytotoxicity towards melanoma cells is dose-dependent and requires proximity of eosinophils and their target in vitro. Treatment with targeted therapy in the presence of eosinophils results in an additive tumoricidal effect. Additionally, melanoma cells affected eosinophil phenotype upon co-culture. Conclusion: High pre-treatment eosinophil counts in advanced melanoma patients were associated with a significantly improved response to MAPKi. Functionally, eosinophils show potent cytotoxicity towards melanoma cells, which can be reinforced by MAPKi. Further studies are needed to unravel the molecular mechanisms of our observations.
Collapse
|
4
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
5
|
Caruso R, Irato E, Rigoli L. Eosinophil exocytosis in a poorly differentiated tubular gastric adenocarcinoma: case report. Ultrastruct Pathol 2022; 46:139-146. [PMID: 35105276 DOI: 10.1080/01913123.2022.2035474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A case of poorly differentiated tubular gastric adenocarcinoma with tumor-associated tissue eosinophilia (TATE) is studied by light and electron microscopy, focusing on membrane interactions between eosinophils and tumor cells. 29.2% of the eosinophils in contact with tumor cells showed intact granules, 28.3% exhibited piecemeal degranulation (PMD), 40% were characterized by coexistence of PMD and compound exocytosis in the same granulocyte, whereas classical exocytosis was found in 2.5% of the eosinophils with PMD. Eosinophil Sombrero Vesicles (EoSVs), important tubulovesicular carriers for delivery of cytotoxic proteins from the specific granules during PMD, were also studied at the ultrastructural level. In activated eosinophils, EoSVs and specific granules with ultrastructural signs of degranulation were polarized toward tumor cells. Ultrastructural changes in paraptosis-like cell death, such as mitochondrial swelling, dilation of the nuclear envelope, cytoplasmic vacuoles, and nuclear chromatin condensation, but without margination of the chromatin, were observed in these tumor cells. Our data support the notion that eosinophils may exert an antitumoral role in gastric cancer. Finally, the case reported provides, for the first time, ultrastructural evidence of classical and compound exocytosis of eosinophils in the tumor stroma of human adenocarcinoma.
Collapse
Affiliation(s)
- Rosario Caruso
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," Section of Pathology, University of Messina, Messina, Italy
| | - Eleonora Irato
- Integrated Cancer Registry of Oriental Sicily, University of Catania, Catania, Italy
| | - Luciana Rigoli
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," Section of Pathology, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Mattei F, Andreone S, Marone G, Gambardella AR, Loffredo S, Varricchi G, Schiavoni G. Eosinophils in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:1-28. [PMID: 33119873 DOI: 10.1007/978-3-030-49270-0_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eosinophils are rare blood-circulating and tissue-infiltrating immune cells studied for decades in the context of allergic diseases and parasitic infections. Eosinophils can secrete a wide array of soluble mediators and effector molecules, with potential immunoregulatory activities in the tumor microenvironment (TME). These findings imply that these cells may play a role in cancer immunity. Despite these cells were known to infiltrate tumors since many years ago, their role in TME is gaining attention only recently. In this chapter, we will review the main biological functions of eosinophils that can be relevant within the TME. We will discuss how these cells may undergo phenotypic changes acquiring pro- or antitumoricidal properties according to the surrounding stimuli. Moreover, we will analyze canonical (i.e., degranulation) and unconventional mechanisms (i.e., DNA traps, exosome secretion) employed by eosinophils in inflammatory contexts, which can be relevant for tumor immune responses. Finally, we will review the available preclinical models that could be employed for the study of the role in vivo of eosinophils in cancer.
Collapse
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli - Monaldi Hospital Pharmacy, Naples, Italy
| | | | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy. .,WAO Center of Excellence, Naples, Italy. .,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy.
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
7
|
Andreone S, Spadaro F, Buccione C, Mancini J, Tinari A, Sestili P, Gambardella AR, Lucarini V, Ziccheddu G, Parolini I, Zanetti C, D’Urso MT, De Ninno A, Businaro L, Afferni C, Mattei F, Schiavoni G. IL-33 Promotes CD11b/CD18-Mediated Adhesion of Eosinophils to Cancer Cells and Synapse-Polarized Degranulation Leading to Tumor Cell Killing. Cancers (Basel) 2019; 11:cancers11111664. [PMID: 31717819 PMCID: PMC6895824 DOI: 10.3390/cancers11111664] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Eosinophils are major effectors of Th2-related pathologies, frequently found infiltrating several human cancers. We recently showed that eosinophils play an essential role in anti-tumor responses mediated by immunotherapy with the ‘alarmin’ intereukin-33 (IL-33) in melanoma mouse models. Here, we analyzed the mechanisms by which IL-33 mediates tumor infiltration and antitumor activities of eosinophils. We show that IL-33 recruits eosinophils indirectly, via stimulation of tumor cell-derived chemokines, while it activates eosinophils directly, up-regulating CD69, the adhesion molecules ICAM-1 and CD11b/CD18, and the degranulation marker CD63. In co-culture experiments with four different tumor cell lines, IL-33-activated eosinophils established large numbers of stable cell conjugates with target tumor cells, with the polarization of eosinophil effector proteins (ECP, EPX, and granzyme-B) and CD11b/CD18 to immune synapses, resulting in efficient contact-dependent degranulation and tumor cell killing. In tumor-bearing mice, IL-33 induced substantial accumulation of degranulating eosinophils within tumor necrotic areas, indicating cytotoxic activity in vivo. Blocking of CD11b/CD18 signaling significantly reduced IL-33-activated eosinophils’ binding and subsequent killing of tumor cells, indicating a crucial role for this integrin in triggering degranulation. Our findings provide novel mechanistic insights for eosinophil-mediated anti-tumoral function driven by IL-33. Treatments enabling tumor infiltration and proper activation of eosinophils may improve therapeutic response in cancer patients.
Collapse
Affiliation(s)
- Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Francesca Spadaro
- Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (P.S.)
| | - Carla Buccione
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Jacopo Mancini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Antonella Tinari
- Center for Gender Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy;
| | - Paola Sestili
- Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (P.S.)
| | - Adriana Rosa Gambardella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Valeria Lucarini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Giovanna Ziccheddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Cristiana Zanetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Maria Teresa D’Urso
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council (CNR), 00156 Rome, Italy; (A.D.N.); (L.B.)
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council (CNR), 00156 Rome, Italy; (A.D.N.); (L.B.)
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
- Correspondence: ; Tel.: +39-0649906099
| |
Collapse
|
8
|
Dias FF, Amaral KB, Malta KK, Silva TP, Rodrigues GSC, Rosa FM, Rodrigues GOL, Costa VV, Chiarini-Garcia H, Weller PF, Melo RCN. Identification of Piecemeal Degranulation and Vesicular Transport of MBP-1 in Liver-Infiltrating Mouse Eosinophils During Acute Experimental Schistosoma mansoni Infection. Front Immunol 2018; 9:3019. [PMID: 30619361 PMCID: PMC6306457 DOI: 10.3389/fimmu.2018.03019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
Eosinophils have been long associated with helminthic infections, although their functions in these diseases remain unclear. During schistosomiasis caused by the trematode Schistosoma mansoni, eosinophils are specifically recruited and migrate to sites of granulomatous responses where they degranulate. However, little is known about the mechanisms of eosinophil secretion during this disease. Here, we investigated the degranulation patterns, including the cellular mechanisms of major basic protein-1 (MBP-1) release, from inflammatory eosinophils in a mouse model of S. mansoni infection (acute phase). Fragments of the liver, a major target organ of this disease, were processed for histologic analyses (whole slide imaging), conventional transmission electron microscopy (TEM), and immunonanogold EM using a pre-embedding approach for precise localization of major basic protein 1 (MBP-1), a typical cationic protein stored pre-synthesized in eosinophil secretory (specific) granules. A well-characterized granulomatous inflammatory response with a high number of infiltrating eosinophils surrounding S. mansoni eggs was observed in the livers of infected mice. Moreover, significant elevations in the levels of plasma Th2 cytokines (IL-4, IL-13, and IL-10) and serum enzymes (alanine aminotransferase and aspartate aminotransferase) reflecting altered liver function were detected in response to the infection. TEM quantitative analyses revealed that while 19.1% of eosinophils were intact, most of them showed distinct degranulation processes: cytolysis (13.0%), classical and/or compound exocytosis identified by granule fusions (1.5%), and mainly piecemeal degranulation (PMD) (66.4%), which is mediated by vesicular trafficking. Immunonanogold EM showed a consistent labeling for MBP-1 associated with secretory granules. Most MBP-1-positive granules had PMD features (79.0 ± 4.8%). MBP-1 was also present extracellularly and on vesicles distributed in the cytoplasm and attached to/surrounding the surface of emptying granules. Our data demonstrated that liver-infiltrating mouse eosinophils are able to degranulate through different secretory processes during acute experimental S. mansoni infections with PMD being the predominant mechanism of eosinophil secretion. This means that a selective secretion of MBP-1 is occurring. Moreover, our study demonstrates, for the first time, a vesicular trafficking of MBP-1 within mouse eosinophils elicited by a helminth infection. Vesicle-mediated secretion of MBP-1 may be relevant for the rapid release of small concentrations of MBP-1 under cell activation.
Collapse
Affiliation(s)
- Felipe F Dias
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Kátia B Amaral
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Kássia K Malta
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Gabriel S C Rodrigues
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Florence M Rosa
- Laboratory of Parasitology, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Gisele O L Rodrigues
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vivian V Costa
- Center for Drug Research and Development of Pharmaceuticals, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Research Group in Arboviral Diseases, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Hélio Chiarini-Garcia
- Laboratory of Reproduction and Structural Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Peter F Weller
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Boston, MA, United States
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Boston, MA, United States
| |
Collapse
|
9
|
Melo RCN, Weller PF. Contemporary understanding of the secretory granules in human eosinophils. J Leukoc Biol 2018; 104:85-93. [PMID: 29749658 DOI: 10.1002/jlb.3mr1217-476r] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Eosinophil secretory (specific) granules have a unique morphology and are both a morphologic hallmark of eosinophils and fundamental to eosinophil-mediated responses. Eosinophil mediators with multiple functional activities are presynthesized and stored within these granules, poised for very rapid, stimulus-induced secretion. The structural organization and changes of eosinophil specific granules are revealing in demonstrating the complex and diverse secretory activities of this cell. Here, we review our current knowledge on the architecture, composition, and function of eosinophil specific granules as highly elaborated organelles able to produce vesiculotubular carriers and to interplay with the intracellular vesicular trafficking. We reconsider prior identifications of eosinophil cytoplasmic granules, including "primary," "secondary," "microgranules," and "small granules"; and consonant with advances, we provide a contemporary recognition that human eosinophils contain a single population of specific granules and their developmental precursors and derived secretory vesicles.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, Brazil.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F Weller
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, Brazil
| |
Collapse
|
10
|
Caruso RA, Angelico G, Irato E, de Sarro R, Tuccari G, Ieni A. Autophagy in advanced low- and high-grade tubular adenocarcinomas of the stomach: An ultrastructural investigation. Ultrastruct Pathol 2017; 42:10-17. [PMID: 29192807 DOI: 10.1080/01913123.2017.1388322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy represents a catabolic process in which cellular protein and organelles are engulfed into autophagosomes, digested in lysosomes and reutilized for the cellular metabolism. In neoplastic conditions, autophagy may act either as a tumour suppressor avoiding the accumulation of damaged proteins and organelles or as a mechanism of cell survival promoting the tumour growth. Although enhanced autophagy has been reported in hypoxic areas of solid tumors, there are only few ultrastructural reports concerning the relationships between autophagy and tumor grade. In the present study, we have performed an ultrastructural investigation aimed to document autophagy in a cohort of advanced gastric carcinomas of tubular type, correlating the observed findings with low and high tumor grade. Among 71 surgically resected cases of advanced gastric carcinomas, we have selected twelve low-grade and thirteen high-grade tubular adenocarcinomas. Autophagic vacuoles (AV) were only occasionally found in low-grade tubular carcinomas, while they constituted a frequent finding in high-grade ones (p < 0.01). Moreover, in high-grade tubular adenocarcinomas, our data revealed a morphologic association between autophagy and nuclear changes, such as multinucleation, micronucleation and nuclear buds, largely considered as ultrastructural aspects of mitotic instability. However, an increased autophagy was associated with organelle-poor cytoplasm or a senescent phenotype, characterized by lipofuscin granules and cytoplasmic vacuoles. In the light of our observations, it may be suggested that autophagy should be considered a phenomenon mainly related to the cellular differentiation and tumor progression.
Collapse
Affiliation(s)
- Rosario Alberto Caruso
- a Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology , University of Messina , Messina , Italy
| | - Giuseppe Angelico
- a Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology , University of Messina , Messina , Italy
| | - Eleonora Irato
- a Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology , University of Messina , Messina , Italy
| | - Rosalba de Sarro
- a Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology , University of Messina , Messina , Italy
| | - Giovanni Tuccari
- a Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology , University of Messina , Messina , Italy
| | - Antonio Ieni
- a Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology , University of Messina , Messina , Italy
| |
Collapse
|
11
|
Carmo LAS, Bonjour K, Ueki S, Neves JS, Liu L, Spencer LA, Dvorak AM, Weller PF, Melo RCN. CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils. J Leukoc Biol 2016; 100:391-401. [PMID: 26965633 PMCID: PMC6608091 DOI: 10.1189/jlb.3a1015-480r] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 12/26/2022] Open
Abstract
Eosinophil activation leads to secretion of presynthesized, granule-stored mediators that determine the course of allergic, inflammatory, and immunoregulatory responses. CD63, a member of the transmembrane-4 glycoprotein superfamily (tetraspanins) and present on the limiting membranes of eosinophil-specific (secretory) granules, is considered a potential surface marker for eosinophil degranulation. However, the intracellular secretory trafficking of CD63 in eosinophils and other leukocytes is not understood. Here, we provide a comprehensive investigation of CD63 trafficking at high resolution within human eosinophils stimulated with inflammatory stimuli, CCL11 and tumor necrosis factor α, which induce distinctly differing secretory processes in eosinophils: piecemeal degranulation and compound exocytosis, respectively. By using different transmission electron microscopy approaches, including an immunonanogold technique, for enhanced detection of CD63 at subcellular compartments, we identified a major intracellular pool of CD63 that is directly linked to eosinophil degranulation events. Transmission electron microscopy quantitative analyses demonstrated that, in response to stimulation, CD63 is concentrated within granules undergoing secretion by piecemeal degranulation or compound exocytosis and that CD63 tracks with the movements of vesicles and granules in the cytoplasm. Although CD63 was observed at the cell surface after stimulation, immunonanogold electron microscopy revealed that a strong CD63 pool remains in the cytoplasm. It is remarkable that CCL11 and tumor necrosis factor α triggered increased formation of CD63(+) large vesiculotubular carriers (eosinophil sombrero vesicles), which fused with granules in the process of secretion, likely acting in the intracellular translocation of CD63. Altogether, we identified active, intracellular CD63 trafficking connected to eosinophil granule-derived secretory pathways. This is important for understanding the complex secretory activities of eosinophils underlying immune responses.
Collapse
Affiliation(s)
- Lívia A S Carmo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil
| | - Kennedy Bonjour
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Linying Liu
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Lisa A Spencer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Ann M Dvorak
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Juiz de Fora, Brazil; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; and
| |
Collapse
|
12
|
Wang S, Li L, Shi R, Liu X, Zhang J, Zou Z, Hao Z, Tao A. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment. Toxins (Basel) 2016; 8:E71. [PMID: 26978404 PMCID: PMC4810216 DOI: 10.3390/toxins8030071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/19/2022] Open
Abstract
The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors.
Collapse
Affiliation(s)
- Shan Wang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Linmei Li
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Renren Shi
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Xueting Liu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Junyan Zhang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Zehong Zou
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| | - Zhuofang Hao
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| | - Ailin Tao
- The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The State Key Laboratory of Respiratory Disease; Guangzhou 510260, China.
| |
Collapse
|
13
|
Caruso RA, Branca G, Fedele F, Parisi A, Finocchiaro G, Ieni A, Rigoli L. Eosinophil-Specific Granules in Tumor Cell Cytoplasm: Unusual Ultrastructural Findings in a Case of Diffuse-Type Gastric Carcinoma. Ultrastruct Pathol 2015; 39:226-30. [PMID: 25569635 DOI: 10.3109/01913123.2014.991886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A case of desmoplastic variant of diffuse-type gastric carcinoma in a 72-year-old woman is reported. Microscopic findings included poorly cohesive tumor cells, resembling mononuclear inflammatory cells, prominent diffuse desmoplasia, and tumor-associated tissue eosinophilia. Electron microscopy confirmed the undifferentiated phenotype of tumor cells and disclosed activated eosinophils in the tumor stroma. Eosinophil-specific granules were found either free in the tumor stroma or within the cytoplasm of some tumor cells. Electron microscopy provided also circumstantial evidence of phagocytosis of apoptotic eosinophils by tumor cells. Extracellular, membrane-bound, eosinophil-specific granules have been long recognized in tissues associated with eosinophilia, including allergic diseases, inflammatory responses to helminths, and in stroma of some neoplasms. Our ultrastructural study now extends these findings and provides additional morphological evidence of eosinophil-specific granules within the cytoplasm of gastric carcinoma cells.
Collapse
|
14
|
Melo RCN, Liu L, Xenakis JJ, Spencer LA. Eosinophil-derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy 2013; 68:274-84. [PMID: 23347072 DOI: 10.1111/all.12103] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2012] [Indexed: 12/13/2022]
Abstract
Over the past two decades, our understanding of eosinophils has evolved from that of categorically destructive effector cells to include active participation in immune modulation, tissue repair processes, and normal organ development, in both health and disease. At the core of their newly appreciated functions is the capacity of eosinophils to synthesize, store within intracellular granules, and very rapidly secrete a highly diverse repertoire of cytokines. Mechanisms governing the selective secretion of preformed cytokines from eosinophils are attractive therapeutic targets and may well be more broadly applicable to other immune cells. Here, we discuss recent advances in deciphering pathways of cytokine secretion, both from intact eosinophils and from tissue-deposited cell-free eosinophil granules, extruded from eosinophils undergoing a lytic cell death.
Collapse
Affiliation(s)
| | - L. Liu
- Division of Allergy and Inflammation; Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston; MA; USA
| | - J. J. Xenakis
- Division of Allergy and Inflammation; Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston; MA; USA
| | - L. A. Spencer
- Division of Allergy and Inflammation; Department of Medicine; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston; MA; USA
| |
Collapse
|
15
|
Caruso RA, Fedele F, Parisi A, Paparo D, Bonanno A, Finocchiaro G, Branca G, Scardigno M, Rigoli L. Chronic Allergic-like Inflammation in the Tumor Stroma of Human Gastric Carcinomas: An Ultrastructural Study. Ultrastruct Pathol 2012; 36:139-44. [DOI: 10.3109/01913123.2012.656883] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Legrand F, Driss V, Delbeke M, Loiseau S, Hermann E, Dombrowicz D, Capron M. Human eosinophils exert TNF-α and granzyme A-mediated tumoricidal activity toward colon carcinoma cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:7443-51. [PMID: 21068403 DOI: 10.4049/jimmunol.1000446] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Peripheral blood and tissue eosinophilia is a prominent feature in allergic diseases and helminth infections. In cancer patients, tumor-associated tissue eosinophilia is frequently observed. Tumor-associated tissue eosinophilia can be associated with a favorable prognosis, notably in colorectal carcinoma. However, underlying mechanisms of eosinophil contribution to antitumor responses are poorly understood. We have in this study investigated the direct interactions of human eosinophils with Colo-205, a colorectal carcinoma cell line, and show that eosinophils induce apoptosis and directly kill tumor cells. Using blocking Abs, we found that CD11a/CD18 complex is involved in the tumoricidal activity. Coculture of eosinophils with Colo-205 led to the release of eosinophil cationic protein and eosinophil-derived neurotoxin as well as TNF-α secretion. Moreover, eosinophils expressed granzyme A, which was released upon interaction with Colo-205, whereas cytotoxicity was partially inhibited by FUT-175, an inhibitor of trypsin-like enzymatic activity. Our data present the first demonstration, to our knowledge, that granzyme A is a cytotoxic mediator of the eosinophil protein arsenal, exerting eosinophil tumoricidal activity toward Colo-205, and provide mechanistic evidence for innate responses of eosinophil against tumor cells.
Collapse
Affiliation(s)
- Fanny Legrand
- INSERM Unité 547, Institut Fédératif de Recherche 142, Lille, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Melo RC, Weller PF. Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histol Histopathol 2010; 25:1341-54. [PMID: 20712018 PMCID: PMC3427618 DOI: 10.14670/hh-25.1341] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Secretion is a fundamental cell process underlying different physiological and pathological events. In cells from the human immune system such as eosinophils, secretion of mediators generally occurs by means of piecemeal degranulation, an unconventional secretory pathway characterized by vesicular transport of small packets of materials from the cytoplasmic secretory granules to the cell surface. During piecemeal degranulation in eosinophils, a distinct transport vesicle system, which includes large, pleiomorphic vesiculo-tubular carriers is mobilized and enables regulated release of granule-stored proteins such as cytokines and major basic protein. Piecemeal degranulation underlies distinct functions of eosinophils as effector and immunoregulatory cells. This review focuses on the structural and functional advances that have been made over the last years concerning the intracellular trafficking and secretion of eosinophil proteins by piecemeal degranulation during inflammatory responses.
Collapse
Affiliation(s)
- Rossana C.N. Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter F. Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
De Re V, Simula MP, Cannizzaro R, Pavan A, De Zorzi MA, Toffoli G, Canzonieri V. Galectin-10, eosinophils, and celiac disease. Ann N Y Acad Sci 2009; 1173:357-64. [PMID: 19758173 DOI: 10.1111/j.1749-6632.2009.04627.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Celiac disease (CD) is a chronic intestinal disease caused by intolerance to dietary wheat gluten in genetically susceptible individuals. There are a number of important open questions that impede the full explanation of the pathogenesis of this disease. We analyzed protein expression pattern in gut biopsies of CD subjects. Patients were selected and grouped according to histological inflammatory degree. Groups consisted of nine individuals with CD: three patients had a Marsh 0, three a Marsh I-II, and three a Marsh III. All CD patients showed a human leukocyte antigen DQ2/8 variant. Controls were three individuals with an excluded CD diagnosis. For the first time, galectin-10 expression was found related to the histological grade (P = 0.0092) and with the number of eosinophils in the lesion (P = 0.0040). Results suggest galectin-10 is a novel marker for evaluating CD tissue damage and eosinophils as a possible target for therapeutic approaches. Moreover, our data provide insights into alterations associated with CD tissue damage and pathogenesis.
Collapse
Affiliation(s)
- Valli De Re
- Experimental and Clinical Pharmacology Unit, Istituto Di Ricovero e Cura a Carattere Scientifico, Aviano, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Curr Opin Immunol 2009; 21:694-9. [PMID: 19709867 DOI: 10.1016/j.coi.2009.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 07/22/2009] [Accepted: 07/22/2009] [Indexed: 12/20/2022]
Abstract
Human eosinophils contain within their cytoplasmic granules multiple preformed proteins, including over three dozen cytokines with nominal Th1, Th2 and immunoregulatory capabilities, and four distinctive cationic proteins. The secretion of these granule-derived proteins within eosinophils occurs principally by a mechanism whereby selected proteins are mobilized into vesicles for transport to and release at the cell surface. In contrast, the enigmatic presence of membrane-bound cell-free granules extruded from eosinophils has been long recognized in tissues associated with eosinophilia, including allergic diseases and responses to helminths. Functional capabilities for extracellular granules have recently been demonstrated. Eosinophil granules express cytokine receptors on their membranes and function, upon extrusion from eosinophils, as independent secretory organelles releasing granule constituents in response to activating cytokines and chemokines. We provide an update on the processes that mediate selective protein secretion from within eosinophil granules both as intracellular organelles and, as novelly demonstrated, as cell-free extracellular structures.
Collapse
|
20
|
Abstract
Major basic protein (MBP), the predominant cationic protein of human eosinophil specific granules, is stored within crystalloid cores of these granules. Secretion of MBP contributes to the immunopathogenesis of varied diseases. Prior electron microscopy (EM) of eosinophils in sites of inflammation noted losses of granule cores in the absence of granule exocytosis and suggested that eosinophil granule proteins might be released through piecemeal degranulation (PMD), a secretory process mediated by transport vesicles. Because release of eosinophil granule-derived MBP through PMD has not been studied, we evaluated secretion of this cationic protein by human eosinophils. Intracellular localizations of MBP were studied within nonstimulated and eotaxin-stimulated human eosinophils by both immunofluorescence and a pre-embedding immunonanogold EM method that enables optimal epitope preservation and antigen access to membrane microdomains. In parallel, quantification of transport vesicles was assessed in eosinophils from a patient with hypereosinophilic syndrome (HES). Our data demonstrate vesicular trafficking of MBP within eotaxin-stimulated eosinophils. Vesicular compartments, previously implicated in transport from granules to the plasma membrane, including large vesiculotubular carriers termed eosinophil sombrero vesicles (EoSVs), were found to contain MBP. These secretory compartments were significantly increased in numbers within HES eosinophils. Moreover, in addition to granule-stored MBP, even unstimulated eosinophils contained appreciable amounts of MBP within secretory vesicles, as evidenced by immunonanogold EM and immunofluorescent colocalizations of MBP and CD63. These data suggest that eosinophil MBP, with its multiple extracellular activities, can be mobilized from granules by PMD into secretory vesicles and both granule- and secretory vesicle-stored pools of MBP are available for agonist-elicited secretion of MBP from human eosinophils. The recognition of PMD as a secretory process to release MBP is important to understand the pathological basis of allergic and other eosinophil-associated inflammatory diseases.
Collapse
|
21
|
Melo RCN, Spencer LA, Dvorak AM, Weller PF. Mechanisms of eosinophil secretion: large vesiculotubular carriers mediate transport and release of granule-derived cytokines and other proteins. J Leukoc Biol 2008; 83:229-36. [PMID: 17875811 PMCID: PMC2734949 DOI: 10.1189/jlb.0707503] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Eosinophils generate and store a battery of proteins, including classical cationic proteins, cytokines, chemokines, and growth factors. Rapid secretion of these active mediators by eosinophils is central to a range of inflammatory and immunoregulatory responses. Eosinophil products are packaged within a dominant population of cytoplasmic specific granules and generally secreted by piecemeal degranulation, a process mediated by transport vesicles. Large, pleiomorphic vesiculotubular carriers were identified recently as key players for moving eosinophil proteins from granules to the plasma membrane for extracellular release. During secretion, these specialized, morphologically distinct carriers, termed eosinophil sombrero vesicles, are actively formed and direct differential and rapid release of eosinophil proteins. This review highlights recent discoveries concerning the organization of the human eosinophil secretory pathway. These discoveries are defining a broader role for large vesiculotubular carriers in the intracellular trafficking and secretion of proteins, including selective receptor-mediated mobilization and transport of cytokines.
Collapse
Affiliation(s)
- Rossana C. N. Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, MG, Brazil
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa A. Spencer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ann M. Dvorak
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F. Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Li HW, McCloskey M, He Y, Yeung ES. Real-time dynamics of label-free single mast cell granules revealed by differential interference contrast microscopy. Anal Bioanal Chem 2006; 387:63-9. [PMID: 16633786 DOI: 10.1007/s00216-006-0403-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/22/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
We demonstrate the capability of differential interference contrast (DIC) microscopy as a simple and useful tool for studying cellular events without fluorescence labeling. By coupling an advanced DIC microscope to a computer-controlled motorized vertical stage and a high-speed, high-resolution CCD camera, real-time three-dimensional monitoring is possible in a high-throughput manner. The performance among three modes of microscopy, bright-field, dark-field and DIC, in terms of horizontal resolving power and vertical sectioning was investigated. As a model, exocytosis of rat peritoneal mast cells was recorded on the subsecond time scale. Three-dimensional tracking of granules during degranulation was achieved and granule-granule fusion before plasma membrane fusion was recorded.
Collapse
Affiliation(s)
- Hung-Wing Li
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|