1
|
Sigel A, Sigel H, Sigel RKO. Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations. Molecules 2022; 27:2625. [PMID: 35565975 PMCID: PMC9103026 DOI: 10.3390/molecules27092625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered-that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon-phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain-i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3'-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2- = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4-)] as a representative of the ANPs. Why is PMEApp4- a better substrate for polymerases than ATP4-? There are three reasons: (i) PMEA2- with its anti-like conformation (like AMP2-) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,β)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(β,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4-), the M(α)-M(β,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH)- stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure-i.e., acts as the "enzyme" by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2- to the [Cu2(ATP)]2(OH)- solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH)- species, in which AMP2- takes over the structuring role, while the other "half" of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH)- is even a more reactive species than Cu3(ATP)(AMP)(OH)-. - The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp-), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3- complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights.
Collapse
Affiliation(s)
- Astrid Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Helmut Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Roland K. O. Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
2
|
Blindauer CA, Griesser R, Holý A, Operschall BP, Sigel A, Song B, Sigel H. Intramolecular π-stacks in mixed-ligand copper(II) complexes formed by heteroaromatic amines and antivirally active acyclic nucleotide analogs carrying a hydroxy-2-(phosphonomethoxy)propyl residue ‡. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1490019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Rolf Griesser
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Centre of Novel Antivirals and Antineoplastics, Academy of Sciences, Prague, Czech Republic
| | - Bert P. Operschall
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Astrid Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Bin Song
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
- Vertex Pharmaceuticals Inc., Boston, MA, USA
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H. Metal-ion binding properties of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC, Cidofovir). A nucleotide analogue with activity against DNA viruses. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Sigel A, Operschall BP, Matera-Witkiewicz A, Świątek-Kozłowska J, Sigel H. Acid–base and metal ion-binding properties of thiopyrimidine derivatives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Blindauer CA, Sigel A, Operschall BP, Griesser R, Holý A, Sigel H. Extent of intramolecular π stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and the anticancer and antivirally active 9-[2-(phosphonomethoxy)ethyl]guanine (PMEG). A comparison with related acyclic nucleotide analogues. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Gómez-Coca RB, Sigel A, Operschall BP, Holý A, Sigel H. Solution properties of metal ion complexes formed with the antiviral and cytostatic nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (PME2A6DMAP). CAN J CHEM 2014. [DOI: 10.1139/cjc-2014-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The acidity constants of protonated 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (H3(PME2A6DMAP)+) are considered, and the stability constants of the M(H;PME2A6DMAP)+ and M(PME2A6DMAP) complexes (M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+) were measured by potentiometric pH titrations in aqueous solution (25 °C; I = 0.1 mol/L, NaNO3). In the M(H;PME2A6DMAP)+ species, H+ and M2+ (mainly outersphere) are at the phosphonate group; this is relevant for phosphoryl-diester bridges in nucleic acids because, in the present system, there is no indication for a M2+–purine binding. This contrasts, for example, with the complexes formed by 9-[2-(phosphonomethoxy)ethyl]adenine, M(H;PMEA)+, where M2+ is mainly situated at the adenine residue. Application of log [Formula: see text] vs. [Formula: see text] plots for simple phosph(on)ate ligands, R–PO32− (R being a residue that does not affect M2+ binding), proves that all M(PME2A6DMAP) complexes have larger stabilities than what would be expected for a M2+–phosphonate coordination. Comparisons with M(PME–R) complexes, where R is a noncoordinating residue of the (phosphonomethoxy)ethane chain, allow one to conclude that the increased stability is due to the formation of five-membered chelates involving the ether–oxygen of the –CH2–O–CH2–PO32− residue: the percentages of formation of these M(PME2A6DMAP)cl/O chelates, which occur in intramolecular equilibria, vary between 20% (Sr2+, Ba2+) and 50% (Zn2+, Cd2+), up to a maximum of 67% (Cu2+). Any M2+ interaction with N3 or N7 of the purine moiety, as in the parent M(PMEA) complexes, is suppressed by the (C2)NH2 and (C6)N(CH3)2 substituents. This observation, together with the previously determined stacking properties, offers an explanation why PME2A6DMAP2– has remarkable therapeutic effects.
Collapse
Affiliation(s)
- Raquel B. Gómez-Coca
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
- Department of Food Characterization and Analysis, Instituto de la Grasa, Spanish National Research Council (CSIC), Avda. Padre García Tejero 4, E-41012 Seville, Spain
| | - Astrid Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Bert P. Operschall
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Centre of Novel Antivirals and Antineoplastics, Academy of Sciences, CZ-16610 Prague, Czech Republic
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
7
|
Comparison of the π-stacking properties of purine versus pyrimidine residues. Some generalizations regarding selectivity. J Biol Inorg Chem 2014; 19:691-703. [PMID: 24464134 DOI: 10.1007/s00775-013-1082-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Aromatic-ring stacking is pronounced among the noncovalent interactions occurring in biosystems and therefore some pertinent features regarding nucleobase residues are summarized. Self-stacking decreases in the series adenine > guanine > hypoxanthine > cytosine ~ uracil. This contrasts with the stability of binary (phen)(N) adducts formed by 1,10-phenanthroline (phen) and a nucleobase residue (N), which is largely independent of the type of purine residue involved, including (N1)H-deprotonated guanine. Furthermore, the association constant for (phen)(A)(0/4-) is rather independent of the type and charge of the adenine derivative (A) considered, be it adenosine or one of its nucleotides, including adenosine 5'-triphosphate (ATP(4-)). The same holds for the corresponding adducts of 2,2'-bipyridine (bpy), although owing to the smaller size of the aromatic-ring system of bpy, the (bpy)(A)(0/4-) adducts are less stable; the same applies correspondingly to the adducts formed with pyrimidines. In accord herewith, [M(bpy)](adenosine)(2+) adducts (M(2+) is Co(2+), Ni(2+), or Cu(2+)) show the same stability as the (bpy)(A)(0/4-) ones. The formation of an ionic bridge between -NH3 (+) and -PO3 (2-), as provided by tryptophan [H(Trp)(±)] and adenosine 5'-monophosphate (AMP(2-)), facilitates recognition and stabilizes the indole-purine stack in [H(Trp)](AMP)(2-). Such indole-purine stacks also occur in nature. Similarly, the formation of a metal ion bridge as occurs, e.g., between Cu(2+) coordinated to phen and the phosphonate group of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA(2-)) dramatically favors the intramolecular stack in Cu(phen)(PMEA). The consequences of such interactions for biosystems are discussed, especially emphasizing that the energies involved in such isomeric equilibria are small, allowing Nature to shift such equilibria easily.
Collapse
|
8
|
Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H. Extent of Intramolecular π Stacks in Aqueous Solution in Mixed-Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and 1-[2-(Phosphonomethoxy)ethyl]cytosine (PMEC), a Relative of Antivirally Active Acyclic Nucleotide Analogues (Part 72) [1, 2]. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Gómez-Coca RB, Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H. Extent of intramolecular π-stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and several 2-aminopurine derivatives of the antivirally active nucleotide analog 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Chem Biodivers 2013; 9:2008-34. [PMID: 22976988 DOI: 10.1002/cbdv.201200022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The acidity constants of twofold protonated, antivirally active, acyclic nucleoside phosphonates (ANPs), H(2)(PE)(±), where PE(2-)=9-[2-(phosphonomethoxy)ethyl]adenine (PMEA(2-)), 2-amino-9-[2-(phosphonomethoxy)ethyl]purine (PME2AP(2-)), 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP(2-)), or 2-amino-6-(dimethylamino)-9-[2-(phosphonomethoxy)ethyl]purine (PME(2A6DMAP)(2-)), as well as the stability constants of the corresponding ternary Cu(Arm)(H;PE)(+) and Cu(Arm)(PE) complexes, where Arm=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), are compared. The constants for the systems containing PE(2-)=PMEDAP(2-) and PME(2A6DMAP)(2-) have been determined now by potentiometric pH titrations in aqueous solution at I=0.1M (NaNO(3)) and 25°; the corresponding results for the other ANPs were taken from our earlier work. The basicity of the terminal phosphonate group is very similar for all the ANP(2-) species, whereas the addition of a second amino substituent at the pyrimidine ring of the purine moiety significantly increases the basicity of the N(1) site. Detailed stability-constant comparisons reveal that, in the monoprotonated ternary Cu(Arm)(H;PE)(+) complexes, the proton is at the phosphonate group, that the ether O-atom of the -CH(2)-O-CH(2)-P(O)(2)(-)(OH) residue participates, next to the P(O)(2)(-)(OH) group, to some extent in Cu(Arm)(2+) coordination, and that π-π stacking between the aromatic rings of Cu(Arm)(2+) and the purine moiety is rather important, especially for the H·PMEDAP(-) and H·PME(2A6DMAP)(-) ligands. There are indications that ternary Cu(Arm)(2+)-bridged stacks as well as unbridged (binary) stacks are formed. The ternary Cu(Arm)(PE) complexes are considerably more stable than the corresponding Cu(Arm)(R-PO(3)) species, where R-PO(3)(2-) represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of intramolecular interaction within the complexes. The observed stability enhancements are mainly attributed to intramolecular-stack formation in the Cu(Arm)(PE) complexes and also, to a smaller extent, to the formation of five-membered chelates involving the ether O-atom present in the -CH(2)-O-CH(2)-PO(3)(2-) residue of the PE(2-) species. The quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PE) isomers shows that, e.g., ca. 1.5% of the Cu(phen)(PMEDAP) system exist with Cu(phen)(2+) solely coordinated to the phosphonate group, 4.5% as a five-membered chelate involving the ether O-atom of the -CH(2)-O-CH(2)-PO(3)(2-) residue, and 94% with an intramolecular π-π stack between the purine moiety of PMEDAP(2-) and the aromatic rings of phen. Comparison of the various formation degrees of the species formed reveals that, in the Cu(phen)(PE) complexes, intramolecular-stack formation is more pronounced than in the Cu(bpy)(PE) species. Within a given Cu(Arm)(2+) series the stacking intensity increases in the order PME2AP(2-) <PMEA(2-) <PMEDAP(2-) <PME(2A6DMAP)(2-). One could speculate that the reduced stacking intensity of PME2AP(2-), together with a different H-bonding pattern, could well lead to a different orientation of the 2-aminopurine moiety (compared to the adenine residue) in the active site of nucleic acid polymerases and thus be responsible for the reduced antiviral activity of PME2AP compared with that of PMEA and the other ANPs containing a 6-amino substituent.
Collapse
Affiliation(s)
- Raquel B Gómez-Coca
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel
| | | | | | | | | | | |
Collapse
|
10
|
Sigel A, Operschall BP, Sigel H. Steric guiding of metal ion binding to a purine residue by a non-coordinating amino group: Examplified by 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA), and by related compounds. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Al-Sogair FM, Operschall BP, Sigel A, Sigel H, Schnabl J, Sigel RKO. Probing the metal-ion-binding strength of the hydroxyl group. Chem Rev 2011; 111:4964-5003. [PMID: 21595429 DOI: 10.1021/cr100415s] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fawzia M Al-Sogair
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Development of Inorganic Membranes for Hydrogen Separation. Inorg Chem 2011. [DOI: 10.1201/b12873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Knobloch B, Mucha A, Operschall BP, Sigel H, Jeżowska-Bojczuk M, Kozłowski H, Sigel RKO. Stability and structure of mixed-ligand metal ion complexes that contain Ni2+, Cu2+, or Zn2+, and Histamine, as well as adenosine 5'-triphosphate (ATP4-) or uridine 5'-triphosphate (UTP(4-): an intricate network of equilibria. Chemistry 2011; 17:5393-403. [PMID: 21465580 DOI: 10.1002/chem.201001931] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Indexed: 01/22/2023]
Abstract
With a view on protein-nucleic acid interactions in the presence of metal ions we studied the "simple" mixed-ligand model systems containing histamine (Ha), the metal ions Ni(2+), Cu(2+), or Zn(2+) (M(2+)), and the nucleotides adenosine 5'-triphosphate (ATP(4-)) or uridine 5'-triphosphate (UTP(4-)), which will both be referred to as nucleoside 5'-triphosphate (NTP(4-)). The stability constants of the ternary M(NTP)(Ha)(2-) complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary-complex types, M(ATP)(Ha)(2-) and M(UTP)(Ha)(2-), that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M(2+) in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50%. Consequently, in protein-nucleic acid interactions imidazole-nucleobase stacks may well be of relevance. Furthermore, the well-known formation of macrochelates in binary M(2+) complexes of purine nucleotides, that is, the phosphate-coordinated M(2+) interacts with N7, is confirmed for the M(ATP)(2-) complexes. It is concluded that upon formation of the mixed-ligand complexes the M(2+)-N7 bond is broken and the energy needed for this process corresponds to the stability differences determined for the M(UTP)(Ha)(2-) and M(ATP)(Ha)(2-) complexes. It is, therefore, possible to calculate from these stability differences of the ternary complexes the formation degrees of the binary macrochelates: The closed forms amount to (65±10)%, (75±8)%, and (31±14) % for Ni(ATP)(2-), Cu(ATP)(2-), and Zn(ATP)(2-), respectively, and these percentages agree excellently with previous results obtained by different methods, confirming thus the internal validity of the data and the arguments used in the evaluation processes. Based on the overall results it is suggested that M(ATP)(2-) species, when bound to an enzyme, may exist in a closed macrochelated form only, if no enzyme groups coordinate directly to the metal ion.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
14
|
Fernández-Botello A, Operschall BP, Holy A, Moreno V, Sigel H. Metal ion-binding properties of 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA). Steric guiding of metal ion-coordination by the purine-amino group. Dalton Trans 2010; 39:6344-54. [DOI: 10.1039/c005238h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Sigel H, Operschall BP, Griesser R. Xanthosine 5'-monophosphate (XMP). Acid-base and metal ion-binding properties of a chameleon-like nucleotide. Chem Soc Rev 2009; 38:2465-94. [PMID: 19623361 DOI: 10.1039/b902181g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H(3)(XMP)(+), reveal that in the physiological pH range around 7.5 (X - H x MP)(3-) strongly dominates and not XMP(2-) as commonly given in textbooks and often applied in research papers. Therefore, this nucleotide, which participates in many metabolic processes, should be addressed as xanthosinate 5'-monophosphate as is stated in this critical review. Micro acidity constant schemes allow quantification of intrinsic site basicities. In 9-methylxanthine nucleobase deprotonation occurs to more than 99% at (N3)H, whereas for xanthosine it is estimated that about 30% are (N1)H deprotonated and for (X - H x MP)(3-) it is suggested that (N1)H deprotonation is further favored, especially in macrochelates where the phosphate-coordinated M(2+) interacts with N7. The formation degree of these macrochelates in the (X - H x MP x M)(-) species of Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) amounts to 90% or more. In the monoprotonated (M x X - H x MP x H)(+/-) complexes, M(2+) is located at the N7/[(C6)O] unit as the primary binding site and it forms macrochelates with the P(O)(2)(OH)(-) group to about 65% for nearly all metal ions considered (i.e., including Ba(2+), Sr(2+), Ca(2+), Mg(2+)); this indicates outer-sphere binding to P(O)(2)(OH)(-). Finally, a new method quantifying the chelate effect is applied to the M(X - H x MP)(-) species, stabilities and structures of mixed-ligand complexes are considered, and the stability constants for several M(X - H x DP)(2-) and M(X - H x TP)(3-) complexes are estimated (112 references).
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
16
|
Freisinger E, Griesser R, Lippert B, Moreno-Luque CF, Niclós-Gutiérrez J, Ochocki J, Operschall BP, Sigel H. Comparison of the surprising metal-ion-binding properties of 5- and 6-uracilmethylphosphonate (5Umpa2- and 6Umpa2-) in aqueous solution and crystal structures of the dimethyl and di(isopropyl) esters of H2(6Umpa). Chemistry 2009; 14:10036-46. [PMID: 18803205 DOI: 10.1002/chem.200800998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
5- and 6-Uracilmethylphosphonate (5Umpa(2-) and 6Umpa(2-)) as acyclic nucleotide analogues are in the focus of anticancer and antiviral research. Connected metabolic reactions involve metal ions; therefore, we determined the stability constants of M(Umpa) complexes (M(2+)=Mg(2+), Ca(2+), Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). However, the coordination chemistry of these Umpa species is also of interest in its own right, for example, the phosphonate-coordinated M(2+) interacts with (C4)O to form seven-membered chelates with 5Umpa(2-), thus leading to intramolecular equilibria between open (op) and closed (cl) isomers. No such interaction occurs with 6Umpa(2-). In both M(Umpa) series deprotonation of the uracil residue leads to the formation of M(Umpa-H)(-) complexes at higher pH values. Their stability was evaluated by taking into account the fact that the uracilate residue can bind metal ions to give M(2)(Umpa-H)(+) species. This has led to two further important insights: 1) In M(6Umpa-H)-cl the H(+) is released from (N1)H, giving rise to six-membered chelates (degrees of formation of ca. 90 to 99.9 % with Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). 2) In M(5Umpa-H)$-cl the (N3)H is deprotonated, leading to a higher stability of the seven-membered chelates involving (C4)O (even Mg(2+) and Ca(2+) chelates are formed up to approximately 50 %). In both instances the M(Umpa-H)-op species led to the formation of M(2)(Umpa-H)(+) complexes that have one M(2+) at the phosphonate and one at the (N3)(-) (plus carbonyl) site; this proves that nucleotides can bind metal ions independently at the phosphate and the nucleobase residues. X-ray structural analyses of 6Umpa derivatives show that in diesters the phosphonate group is turned away from the uracil residue, whereas in H(2)(6Umpa) the orientation is such that upon deprotonation in aqueous solution a strong hydrogen bond is formed between (N1)H and PO(3) (2-); replacement of the hydro gen with M(2+) gives the M(6Umpa-H)-cl chelates mentioned.
Collapse
Affiliation(s)
- Eva Freisinger
- Institute of Inorganic Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kumar P, Rao A, Ramakumar KL. Supercritical fluid extraction of thorium from tissue paper matrix employing β-diketones. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.2009.1570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Operschall BP, Bianchi EM, Griesser R, Sigel H. Influence of decreasing solvent polarity (1,4-dioxane/water mixtures) on the stability and structure of complexes formed by copper(II), 2,2′-bipyridine or 1,10-phenanthroline and guanosine 5′-diphosphate: evaluation of isomeric equilibria. J COORD CHEM 2008. [DOI: 10.1080/00958970802474888] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bert P. Operschall
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Emanuela M. Bianchi
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Rolf Griesser
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Helmut Sigel
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
19
|
Mucha A, Knobloch B, Jezowska-Bojczuk M, Kozłowski H, Sigel RKO. Effect of the ribose versus 2'-deoxyribose residue on the metal ion-binding properties of purine nucleotides. Dalton Trans 2008:5368-77. [PMID: 18827944 DOI: 10.1039/b805911j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction between metal ions and nucleotides is well characterized, as is their importance for metabolic processes, e.g. in the synthesis of nucleic acids. Hence, it is surprising to find that no detailed comparison is available of the metal ion-binding properties between nucleoside 5'-phosphates and 2'-deoxynucleoside 5'-phosphates. Therefore, we have measured here by potentiometric pH titrations the stabilities of several metal ion complexes formed with 2'-deoxyadenosine 5'-monophosphate (dAMP2-), 2'-deoxyadenosine 5'-diphosphate (dADP3-) and 2'-deoxyadenosine 5'-triphosphate (dATP4-). These results are compared with previous data measured under the same conditions and available in the literature for the adenosine 5'-phosphates, AMP(2-), ADP(3-) and ATP(4-), as well as guanosine 5'-monophosphate (GMP(2-)) and 2'-deoxyguanosine 5'-monophosphate (dGMP(2-)). Hence, in total four nucleotide pairs, GMP(2-)/dGMP(2-), AMP(2-)/dAMP(2-), ADP(3-)/dADP(3-) and ATP(4-)/dATP(4-) (= NP/dNP), could be compared for the four metal ions Mg2+, Ni2+, Cu2+ and Zn2+ (= M2+). The comparisons show that complex stability and extent of macrochelate formation between the phosphate-coordinated metal ion and N7 of the purine residue is very similar (or even identical) for the AMP(2-)/dAMP(2-) and ADP(3-)/dADP(3-) pairs. In the case of the complexes formed with ATP(4-)/dATP(4-) the 2'-deoxy complexes are somewhat more stable and show also a slightly enhanced tendency for macrochelate formation. This is different for guanine nucleotides: the stabilities of the M(dGMP) complexes are clearly higher, as are the formation degrees of their macrochelates, than is the case with the M(GMP) complexes. This enhanced complex stability and greater tendency to form macrochelates can be attributed to the enhanced basicity (DeltapKaca. 0.2) of N7 in the 2'-deoxy compound. These results allow general conclusions regarding nucleic acids to be made.
Collapse
Affiliation(s)
- Ariel Mucha
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Knobloch B, Okruszek A, Sigel H. Inosylyl(3'-->5')inosine (IpI-). Acid-base and metal ion-binding properties of a dinucleoside monophosphate in aqueous solution. Inorg Chem 2008; 47:2641-8. [PMID: 18330981 DOI: 10.1021/ic701976v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The acidity constants of the (N7)H(+) sites of inosylyl(3'-->5')inosine (IpI(-)) were estimated and those of its (N1)H sites were measured by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). The same method was used for the determination of the stability constants of the 1:1 complexes formed between Mg(2+), Co(2+), Ni(2+), Zn(2+), or Cd(2+) (= M(2+)) and (IpI - H)(2-) and, in the case of Mg(2+), also of (IpI - 2H)(3-). The stability constants of the M(IpI)(+) complexes were estimated. The acidity constants of H(inosine)(+) and the stability constants of the M(Ino)(2+) and M(Ino - H)(+) complexes were taken from the literature. The comparison of these and related data allows the conclusion that, in the M(IpI - H) species, chelates are formed; most likely they are preferably of an N7/N7 type. For the metal ions Co(2+), Ni(2+), Zn(2+), or Cd(2+), the formation degrees of the chelates are on the order of 60-80%; no chelates could be detected for the Mg(IpI - H) complexes. It is noteworthy that the (N1)H deprotonation, which leads to the M(IpI - H) species, occurs in all M(IpI)(+) complexes in the physiological pH range of about 7.5 or even below.
Collapse
Affiliation(s)
- Bernd Knobloch
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
21
|
Acid–base and metal ion binding properties of 2-thiocytidine in aqueous solution. J Biol Inorg Chem 2008; 13:663-74. [DOI: 10.1007/s00775-008-0351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
|
22
|
Knobloch B, Nawrot B, Okruszek A, Sigel RKO. Discrimination in metal-ion binding to RNA dinucleotides with a non-bridging oxygen or sulfur in the phosphate diester link. Chemistry 2008; 14:3100-9. [PMID: 18270983 DOI: 10.1002/chem.200701491] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replacement of a non-bridging oxygen in the phosphate diester bond by a sulfur has become quite popular in nucleic acid research and is often used as a probe, for example, in ribozymes, where the normally essential Mg(2+) is partly replaced by a thiophilic metal ion to reactivate the system. Despite these widely applied rescue experiments no detailed studies exist quantifying the affinity of metal ions to such terminal sulfur atoms. Therefore, we performed potentiometric pH titrations to determine the binding properties of pUp((S))U(3-) towards Mg(2+), Mn(2+), Zn(2+), Cd(2+), and Pb(2+), and compared these data with those previously obtained for the corresponding pUpU(3-) complexes. The primary binding site in both dinucleotides is the terminal phosphate group. Theoretically, also the formation of 10-membered chelates involving the terminal oxygen or sulfur atoms of the (thio)phosphate bridge is possible with both ligands. The results show that Mg(2+) and Mn(2+) exist as open (op) isomers binding to both dinucleotides only at the terminal phosphate group. Whereas Cd(pUpU)(-) only exists as Cd(pUpU)(-)(op), Cd(pUp((S))U)(-) is present to about 64 % as the S-coordinated macrochelate, Cd(pUp((S))U)(-)(cl/PS). Zn(2+) forms with pUp((S))U(3-) three isomeric species, that is, Zn(pUp((S))U)(-)(op), Zn(pUp((S))U)(-)(cl/PO), and Zn(pUp((S))U)(-)(cl/PS), which occur to about 33, 12 (O-bound), and 55 %, respectively. Pb(2+) forms the 10-membered chelate with both nucleotides involving only the terminal oxygen atoms of the (thio)phosphate bridge, that is, no indication of S binding was discovered in this case. Hence, Zn(2+) and Cd(2+) show pronounced thiophilic properties, whereas Mg(2+), Mn(2+), and Pb(2+) coordinate to the oxygen, macrochelate formation being of relevance with Pb(2+) only.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
23
|
Tanaka M, Tabata M. An Attempt to Discriminate between the Hydrophobic and Aromatic π−π Interactions in the Copper(II) Ternary Complexes CuLA with L = 1,10-Phenanthroline or 2,2‘-Bipyridyl and A = para-X-Substituted Phenylalaninates. Inorg Chem 2007; 46:9975-8. [DOI: 10.1021/ic701261e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Motoharu Tanaka
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Chemistry, Faculty of Science and Engineering, Saga University, 1, Honjo-machi, Saga 840-8502, Japan
| | - Masaaki Tabata
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan, and Department of Chemistry, Faculty of Science and Engineering, Saga University, 1, Honjo-machi, Saga 840-8502, Japan
| |
Collapse
|
24
|
Sigel H, Massoud SS, Song B, Griesser R, Knobloch B, Operschall BP. Acid-base and metal-ion-binding properties of xanthosine 5'-monophosphate (XMP) in aqueous solution: complex stabilities, isomeric equilibria, and extent of macrochelation. Chemistry 2007; 12:8106-22. [PMID: 16888737 DOI: 10.1002/chem.200600160] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H3(XMP)+, reveal that at the physiological pH of 7.5 (XMP-H)(3-) strongly dominates (and not XMP(2-) as given in textbooks); this is in contrast to the related inosine (IMP(2-)) and guanosine 5'-monophosphate (GMP(2-)) and it means that XMP should better be named as xanthosinate 5'-monophosphate. In addition, evidence is provided for a tautomeric (XMP-HN1)(3-)/(XMP-HN3)(3-) equilibrium. The stability constants of the M(H;XMP)+ species were estimated and those of the M(XMP) and M(XMP-H)- complexes (M2+=Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+) measured potentiometrically in aqueous solution. The primary M2+ binding site in M(XMP) is (mostly) N7 of the monodeprotonated xanthine residue, the proton being at the phosphate group. The corresponding macrochelates involving P(O)2(OH)- (most likely outer-sphere) are formed to approximately 65% for nearly all M2+. In M(XMP-H)- the primary M2+ binding site is (mostly) the phosphate group; here the formation degree of the N7 macrochelates varies widely from close to zero for the alkaline earth ions, to approximately 50% for Mn2+, and approximately 90% or more for Co2+, Ni2+, Cu2+, Zn2+, and Cd2+. Because for (XMP-H)(3-) the micro stability constants quantifying the M2+ affinity of the xanthosinate and PO3(2-) residues are known, one may apply a recently developed quantification method for the chelate effect to the corresponding macrochelates; this chelate effect is close to zero for the alkaline earth ions and it amounts to about one log unit for Co2+, Ni2+, Cu2+. This method also allows calculation of the formation degrees of the monodentatally coordinated isomers; this information is of relevance for biological systems because it demonstrates how metal ions can switch from one site to another through macrochelate formation. These insights are meaningful for metal-ion-dependent reactions of XMP in metabolic pathways; previous mechanistic proposals based on XMP(2-) need revision.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
25
|
Freisinger E, Sigel RK. From nucleotides to ribozymes—A comparison of their metal ion binding properties. Coord Chem Rev 2007. [DOI: 10.1016/j.ccr.2007.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Storr T, Merkel M, Song-Zhao GX, Scott LE, Green DE, Bowen ML, Thompson KH, Patrick BO, Schugar HJ, Orvig C. Synthesis, Characterization, and Metal Coordinating Ability of Multifunctional Carbohydrate-Containing Compounds for Alzheimer's Therapy. J Am Chem Soc 2007; 129:7453-63. [PMID: 17511455 DOI: 10.1021/ja068965r] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dysfunctional interactions of metal ions, especially Cu, Zn, and Fe, with the amyloid-beta (A beta) peptide are hypothesized to play an important role in the etiology of Alzheimer's disease (AD). In addition to direct effects on A beta aggregation, both Cu and Fe catalyze the generation of reactive oxygen species (ROS) in the brain further contributing to neurodegeneration. Disruption of these aberrant metal-peptide interactions via chelation therapy holds considerable promise as a therapeutic strategy to combat this presently incurable disease. To this end, we developed two multifunctional carbohydrate-containing compounds N,N'-bis[(5-beta-D-glucopyranosyloxy-2-hydroxy)benzyl]-N,N'-dimethyl-ethane-1,2-diamine (H2GL1) and N,N'-bis[(5-beta-D-glucopyranosyloxy-3-tert-butyl-2-hydroxy)benzyl]-N,N'-dimethyl-ethane-1,2-diamine (H2GL2) for brain-directed metal chelation and redistribution. Acidity constants were determined by potentiometry aided by UV-vis and 1H NMR measurements to identify the protonation sites of H2GL1,2. Intramolecular H bonding between the amine nitrogen atoms and the H atoms of the hydroxyl groups was determined to have an important stabilizing effect in solution for the H2GL1 and H2GL2 species. Both H2GL1 and H2GL2 were found to have significant antioxidant capacity on the basis of an in vitro antioxidant assay. The neutral metal complexes CuGL1, NiGL1, CuGL2, and NiGL2 were synthesized and fully characterized. A square-planar arrangement of the tetradentate ligand around CuGL2 and NiGL2 was determined by X-ray crystallography with the sugar moieties remaining pendant. The coordination properties of H2GL1,2 were also investigated by potentiometry, and as expected, both ligands displayed a higher affinity for Cu2+ over Zn2+ with H2GL1 displaying better coordinating ability at physiological pH. Both H2GL1 and H2GL2 were found to reduce Zn2+- and Cu2+- induced Abeta1-40 aggregation in vitro, further demonstrating the potential of these multifunctional agents as AD therapeutics.
Collapse
Affiliation(s)
- Tim Storr
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Odani A, Kozlowski H, Swiatek-Kozlowska J, Brasuń J, Operschall BP, Sigel H. Extent of metal ion-sulfur binding in complexes of thiouracil nucleosides and nucleotides in aqueous solution. J Inorg Biochem 2007; 101:727-35. [PMID: 17320183 DOI: 10.1016/j.jinorgbio.2006.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 12/17/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
Previously published stability constants of several metal ion (M2+) complexes formed with thiouridines and their 5'-monophosphates, together with recently obtained log K(M(U))(M) versus pK(U)(H) plots for M2+ complexes of uridinate derivatives (U-) allowed now a quantitative evaluation of the effect that the exchange of a (C)O by a (C)S group has on the stability of the corresponding complexes. For example, the stability of the Ni2+, Cu2+ and Cd2+ complexes of 2-thiouridinate is increased by about 1.6, 2.3, and 1.3 log units, respectively, by the indicated exchange of groups. Similar results were obtained for other thiouridinates, including 4-thiouridinate. The structure of these complexes and the types of chelates formed (involving (N3)- and (C)S) are discussed. A recently advanced method for the quantification of the chelate effect allows now also an evaluation of several complexes of thiouridinate 5'-monophosphates. In most instances the thiouracilate coordination dominates the systems, allowing only the formation of small amounts of phosphate-bound isomers. Among the complexes studied only the one formed by Cu2+ with 2-thiouridinate 5'-monophosphate leads to significant amounts of the macrochelated isomer, which means that in this case Cu2+ is able to force the nucleotide from the anti to the syn conformation, allowing thus metal ion binding to both potential sites and this results in the formation of about 58% of the macrochelated isomer. The remaining 42% are species in which Cu2+ is overwhelmingly coordinated to the thiouracilate residue; Cu2+ binding to the phosphate group occurs in this case only in trace amounts.
Collapse
Affiliation(s)
- Akira Odani
- Department of Chemistry, Graduate School of Sciences, Nagoya University, Nagoya 464-8602, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Knobloch B, Suliga D, Okruszek A, Sigel RKO. Acid-base and metal-ion binding properties of the RNA dinucleotide uridylyl-(5'-->3')-[5']uridylate (pUpU3-). Chemistry 2006; 11:4163-70. [PMID: 15861476 DOI: 10.1002/chem.200500013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It is well known that Mg2+ and other divalent metal ions bind to the phosphate groups of nucleic acids. Subtle differences in the coordination properties of these metal ions to RNA, especially to ribozymes, determine whether they either promote or inhibit catalytic activity. The ability of metal ions to coordinate simultaneously with two neighboring phosphate groups is important for ribozyme structure and activity. However, such an interaction has not yet been quantified. Here, we have performed potentiometric pH titrations to determine the acidity constants of the protonated dinucleotide H2(pUpU)-, as well as the binding properties of pUpU3- towards Mg2+, Mn2+, Cd2+, Zn2+, and Pb2+. Whereas Mg2+, Mn2+, and Cd2+ only bind to the more basic 5'-terminal phosphate group, Pb2+, and to a certain extent also Zn2+, show a remarkably enhanced stability of the [M(pUpU)]- complex. This can be attributed to the formation of a macrochelate by bridging the two phosphate groups within this dinucleotide by these metal ions. Such a macrochelate is also possible in an oligonucleotide, because the basic structural units are the same, despite the difference in charge. The formation degrees of the macrochelated species of [Zn(pUpU)]- and [Pb(pUpU)]- amount to around 25 and 90 %, respectively. These findings are important in the context of ribozyme and DNAzyme catalysis, and explain, for example, why the leadzyme could be selected in the first place, and why this artificial ribozyme is inhibited by other divalent metal ions, such as Mg2+.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
29
|
Toom L, Kütt A, Kaljurand I, Leito I, Ottosson H, Grennberg H, Gogoll A. Substituent Effects on the Basicity of 3,7-Diazabicyclo[3.3.1]nonanes. J Org Chem 2006; 71:7155-64. [PMID: 16958508 DOI: 10.1021/jo0604991] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Basicity constants for a series of 3,7-diazabicyclo[3.3.1]nonane derivatives in acetonitrile with a variation over 13 orders of magnitude have been determined using a spectrophotometric titration technique. An excellent correlation between basicity and calculated proton affinities obtained at PCM-B3LYP/6-31+G(d)//B3LYP/6-31G(d) level was found. The results are discussed in terms of substituent effects and compared to (15)N NMR chemical shifts.
Collapse
Affiliation(s)
- Lauri Toom
- Department of Biochemistry and Organic Chemistry, Uppsala University, Box 576, SE-75123, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Sigel H, Operschall BP, Massoud SS, Song B, Griesser R. Evidence for intramolecular aromatic-ring stacking in the physiological pH range of the monodeprotonated xanthine residue in mixed-ligand complexes containing xanthosinate 5′-monophosphate (XMP). Dalton Trans 2006:5521-9. [PMID: 17117222 DOI: 10.1039/b610082a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+ [Arm = 2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen)], and the di- or trianion of xanthosine 5'-monophosphoric acid [= XMP(2-) or (XMP - H)(3-)] were determined by potentiometric pH titration in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). Those for the monoanion, i.e., the Cu(Arm)(H;XMP)+ complexes, could only be estimated; for these species it is concluded that the metal ion is overwhelmingly bound at N7 and the proton resides at the phosphate group. Similarly, in the Cu(Arm)(XMP)+/- [= Cu(Arm)(X - H.MP.H)+/-] complexes Cu(Arm)2+ is also at N7 but the xanthine residue has lost a proton whereas the phosphate group still carries one, i.e., stacking plays, if at all, only a very minor role, yet, the N7-bound Cu(Arm)2+ appears to form an outer-sphere macrochelate with P(O)2(OH)-, its formation degree being about 60%. All this is different in the Cu(Arm)(XMP - H)- complexes, which are formed by the (XMP - H)(3-) species, that occur at the physiological pH of 7.5 and for which previously evidence has been provided that in a tautomeric equilibrium the xanthine moiety loses a proton either from (N1)H or (N3)H. In Cu(Arm)(XMP - H)- the phosphate group is the primary binding site for Cu(Arm)2+ and the observed increased complex stability is mainly due to intramolecular stack (st) formation between the aromatic-ring systems of Phen or Bpy and the monodeprotonated xanthine residue of (XMP - H)(3-); e.g., the stacked Cu(Phen)(XMP - H) isomer occurs with approximately 76%. Regarding biological systems the most important result is that at physiological pH the xanthine moiety has lost a proton from the (N1)H/(N3)H sites forming (XMP - H)(3-) and that its anionic xanthinate residue is able to undergo aromatic-ring stacking.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
31
|
Lomozik L, Gasowska A, Bregier-Jarzebowska R, Jastrzab R. Coordination chemistry of polyamines and their interactions in ternary systems including metal ions, nucleosides and nucleotides. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2005.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Coordination properties of didentate N,O heterocyclic alcohols and aldehydes towards Cu(II), Co(II), Zn(II) and Cd(II) ions in the solid state and aqueous solution. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2005.02.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Fernández-Botello A, Griesser R, Holý A, Moreno V, Sigel H. Acid-base and metal-ion-binding properties of 9-[2-(2-phosphonoethoxy)ethyl]adenine (PEEA), a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). An exercise on the quantification of isomeric complex equilibria in solution. Inorg Chem 2005; 44:5104-17. [PMID: 15998039 DOI: 10.1021/ic050341j] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The acidity constants of 3-fold protonated 9-[2-(2-phosphonoethoxy)ethyl]adenine, H3(PEEA)+, and of 2-fold protonated (2-phosphonoethoxy)ethane, H2(PEE), and the stability constants of the M(H;PEEA)+, M(PEEA), and M(PEE) complexes with M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+ have been determined (potentiometric pH titrations; aqueous solution; 25 degrees C; I = 0.1 M, NaNO3). It is concluded that in the M(H;PEEA)+ species, the proton is at the phosphonate group and the metal ion at the adenine residue. The application of previously determined straight-line plots of log K(M(R-PO3))M versus pK(H(R-PO3))H for simple phosph(on)ate ligands, R-PO3(2-), where R represents a residue that does not affect metal-ion binding, proves that the M(PEEA) complexes of Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ as well as the M(PEE) complexes of Co2+, Cu2+, and Zn2+ have larger stabilities than is expected for a sole phosphonate coordination of M2+. For the M2+ complexes without an enhanced stability (e.g., Mg2+ or Mn2+), it is concluded that M2+ binds in a monodentate fashion to the phosphonate group of the two ligands. Combination of all of the results allows the following conclusions: (i) The increased stability of the Co(PEE), Cu(PEE), Zn(PEE), and Co(PEEA) complexes is due to the formation of six-membered chelates involving the ether-oxygen atom of the aliphatic residue (-CH2-O-CH2CH2-PO3(2-)) of the ligands with formation degrees of about 15-30%. (ii) Cd(PEEA) forms a macrochelate with N7 of the adenine residue (formation degree about 30%); Ni(PEEA) has similar properties. (iii) With Zn(PEEA), both mentioned types of chelates are observed, that is, Zn(PEEA)(cl/O) and Zn(PEEA)(cl/N7), with formation degrees of about 13 and 41%, respectively; the remaining 46% is due to the "open" isomer Zn(PEEA)(op) in which the metal ion binds only to the PO3(2-) group. (iv) Most remarkable is Cu(PEEA) because a fourth isomer, Cu(PEEA)(cl/O/N3), is formed that contains a six-membered ring involving the ether oxygen next to the phosphonate group and also a seven-membered ring involving N3 of the adenine residue with a very significant formation degree of about 50%. Hence, PEEA(2-) is a truly ambivalent ligand, its properties being strongly dependent on the kind of metal ion involved. Comparisons with M2+ complexes formed by the dianions of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) and related ligands reveal that five-membered chelates involving an ether-oxygen atom are considerably more stable than the corresponding six-membered ones. This observation offers an explanation of why PMEA is a nucleotide analogue with excellent antiviral properties and PEEA is not.
Collapse
Affiliation(s)
- Alfonso Fernández-Botello
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Sigel H, Griesser R. Nucleoside 5'-triphosphates: self-association, acid-base, and metal ion-binding properties in solution. Chem Soc Rev 2005; 34:875-900. [PMID: 16172677 DOI: 10.1039/b505986k] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenosine 5'-triphosphate (ATP(4-)) and related nucleoside 5'-triphosphates (NTP(4-)) serve as substrates in the form of metal ion complexes in enzymic reactions taking part thus in central metabolic processes. With this in mind, the coordination chemistry of NTPs is critically reviewed and the conditions are defined for studies aiming to describe the properties of monomeric complexes because at higher concentrations (>1 mM) self-stacking may take place. The metal ion (M(2+)) complexes of purine-NTPs are more stable than those of pyrimidine-NTPs; this stability enhancement is attributed, in accord with NMR studies, to macrochelate formation of the phosphate-coordinated M(2+) with N7 of the purine residue and the formation degrees of the resulting isomeric complexes are listed. Furthermore, the formation of mixed-ligand complexes (including also those with buffer molecules), the effect of a reduced solvent polarity on complex stability and structure (giving rise to selectivity), the use of nucleotide analogues as antiviral agents, and the effect of metal ions on group transfer reactions are summarized.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
35
|
Knobloch B, Linert W, Sigel H. Metal ion-binding properties of (N3)-deprotonated uridine, thymidine, and related pyrimidine nucleosides in aqueous solution. Proc Natl Acad Sci U S A 2005; 102:7459-64. [PMID: 15897459 PMCID: PMC1140430 DOI: 10.1073/pnas.0501446102] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Indexed: 11/18/2022] Open
Abstract
The acidity constants for (N3)H of the uridine-type ligands (U) 5-fluorouridine, 5-chloro-2'-deoxyuridine, uridine, and thymidine (2'-deoxy-5-methyluridine) and the stability constants of the M(U-H)(+) complexes for M(2+) = Mg(2+), Ca(2+), Sr(2+), Ba(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Pb(2+) were measured (potentiometric pH titrations; aqueous solution; 25 degrees C; I = 0.1 M, NaNO(3)). Plots of logK(M(U-H))(M) vs. pK(U)(H) result in straight lines that are compared with previous plots for simple pyridine-type and o-amino(methyl)pyridine-type ligands as well as with the stabilities of the corresponding M(cytidine)(2+) complexes. The results indicate monodentate coordination to (N3)(-) in M(U-H)(+) for Co(2+) and Ni(2+). For the M(U-H)(+) species of Cd(2+), Zn(2+), or Cu(2+), increased stabilities imply that semichelates form, i.e., M(2+) is (N3)(-)-bound and coordinated water molecules form hydrogen bonds to (C2)O and (C4)O; these "double" semichelates are in equilibrium with "single" semichelates involving either (C2)O or (C4)O and possibly also with four-membered chelates for which M(2+) is innersphere-coordinated to (N3)(-) and a carbonyl oxygen. For the alkaline earth ions, semichelates dominate with the M(2+) outersphere bound to (N3)(-) and innersphere to one of the carbonyl oxygens. Mn(U-H)(+) is with its properties between those of Cd(2+) (which probably also hold for Pb(2+)) and the alkaline earth ions. In nucleic acids, M(2+)-C(O) interactions are expected, if support is provided by other primary binding sites. (N3)H may possibly be acidified via carbonyl-coordinated M(2+) to become a proton donor in the physiological pH range, at which direct (N3)(-) binding of M(2+) also seems possible.
Collapse
Affiliation(s)
- Bernd Knobloch
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
36
|
Bianchi E, Griesser R, Sigel H. Influence of Decreasing Solvent Polarity (1,4-Dioxane/Water Mixtures) on the Acid-Base and Copper(II)-Binding Properties of Guanosine 5?-Diphosphate. Helv Chim Acta 2005. [DOI: 10.1002/hlca.200590026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Kersch C, Witkamp GJ, Woerlee GF. Supercritical Fluid Extraction: A Study on Metal Recovery and Regeneration of β‐Diketones and Organophosphorus Extractants. SOLVENT EXTRACTION AND ION EXCHANGE 2005. [DOI: 10.1081/sei-200052331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Fernández-Botello A, Holý A, Moreno V, Sigel H. Intramolecular stacking interactions in ternary copper(II) complexes formed by a heteroaromatic amine and 9-[2-(2-phosphonoethoxy)ethyl]adenine, a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine☆. J Inorg Biochem 2004; 98:2114-24. [PMID: 15541501 DOI: 10.1016/j.jinorgbio.2004.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/31/2004] [Accepted: 08/03/2004] [Indexed: 11/29/2022]
Abstract
The stability constants of the mixed-ligand complexes formed between Cu(Arm)2+, where Arm=2,2'-bipyridine (Bpy) or 1,10-phenanthroline (Phen), and the dianions of 9-[2-(2-phosphonoethoxy)ethyl]adenine (PEEA2-) and (2-phosphonoethoxy)ethane (PEE2-), also known as [2-(2-ethoxy)ethyl]phosphonate, were determined by potentiometric pH titrations in aqueous solution (25 degrees C; I=0.1 M, NaNO3). The ternary Cu(Arm)(PEEA) complexes are considerably more stable than the corresponding Cu(Arm)(R-PO3) species, where R-PO3(2-) represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of interaction within the complexes. The increased stability is attributed to intramolecular stack formation in the Cu(Arm)(PEEA) complexes and also, to a smaller extent, to the formation of 6-membered chelates involving the ether oxygen atom present in the -CH2-O-CH2-CH2-PO3(2-) residue of PEEA2-. This latter interaction is separately quantified by studying the ternary Cu(Arm)(PEE) complexes which can form the 6-membered chelates but where no intramolecular ligand-ligand stacking is possible. Application of these results allows a quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PEEA) species; e.g., of the Cu(Bpy)(PEEA) system about 11% exist with the metal ion solely coordinated to the phosphonate group, 4% as a 6-membered chelate involving the ether oxygen atom of the -CH2-O-CH2CH2-PO3(2-) residue, and 85% with an intramolecular stack between the adenine moiety of PEEA2- and the aromatic rings of Bpy. In addition, the Cu(Arm)(PEEA) complexes may be protonated, leading to Cu(Arm)(H;PEEA)+ species for which it is concluded that the proton is located at the phosphonate group and that the complexes are mainly formed (50 and 70%) by a stacking adduct between Cu(Arm)2+ and the adenine residue of H(PEEA)-. Finally, the stacking properties of adenosine 5'-monophosphate (AMP2-), of the dianion of 9-[2-(phophonomethoxy)ethyl]adenine (PMEA2-) and of several of its analogues (=PA2-) are compared in their ternary Cu(Arm)(AMP) and Cu(Arm)(PA) systems. Conclusions regarding the antiviral properties of several acyclic nucleoside phosphonates are shortly discussed.
Collapse
Affiliation(s)
- Alfonso Fernández-Botello
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
39
|
Sigel H, Chen D, Corfù NA, Gregáň F, Holý A, Strakšá M. Metal-ion-coordinating properties of various phosphonate derivatives, including 9−[2−(phosphonylmethoxy)ethyl]adenine (PMEA) - an adenosine monophosphate (AMP) analogue with antiviral properties. Helv Chim Acta 2004. [DOI: 10.1002/hlca.19920750817] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Gómez-Coca RB, Kapinos LE, Holý A, Vilaplana RA, González-Vílchez F, Sigel H. Quantification of isomeric equilibria formed by metal ion complexes of 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) and 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA). Derivatives of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). J Biol Inorg Chem 2004; 9:961-72. [PMID: 15503234 DOI: 10.1007/s00775-004-0591-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 07/29/2004] [Indexed: 11/25/2022]
Abstract
The acidity constants of the two-fold protonated acyclic 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine, H2(9,8aPMEA)(+)(-), and its 8-isomer, 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine, H2(8,8aPMEA)(+)(-), both abbreviated as H2(PA)(+)(-), as well as the stability constants of their M(H;PA)+ and M(PA) complexes with the metal ions M2+=Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ or Cd2+, have been determined by potentiometric pH titrations in aqueous solution at I=0.1 M (NaNO3) and 25 degrees C. Application of previously determined straight-line plots of log K(M)M(R-PO3) versus pK(H)H(R-PO3)for simple phosph(on)ate ligands, R-PO3(2-), where R represents a residue without an affinity for metal ions, proves that for all M(PA) complexes a larger stability is observed than is expected for a sole phosphonate coordination of the metal ion. This increased stability is attributed to the formation of five-membered chelates involving the ether oxygen present in the aliphatic residue (-CH2-O-CH2-PO3(2-)) of the ligands. The formation degrees of these chelates were calculated; they vary between about 13% for Ca(8,8aPMEA) and 71% for Cu(8,8aPMEA). The adenine residue has no influence on complex stability except in the Cu(9,8aPMEA) and Zn(9,8aPMEA) systems, where an additional stability increase attributable to the adenine residue is observed and equilibria between four different isomers exist. This means (1) an open isomer with a sole phosphonate coordination, M(PA)op, where PA(2-)=9,8aPMEA2-, (2) an isomer with a five-membered chelate involving the ether oxygen, M(PA)cl/O, (3) an isomer which contains five- and seven-membered chelates formed by coordination of the phosphonate group, the ether oxygen and the N3 site of the adenine residue, M(PA)cl/O/N3, and finally (4) a macrochelated isomer involving N7, M(PA)cl/N7. For Cu(9,8aPMEA) the formation degrees are 15, 30, 48 and 7% for Cu(PA)op, Cu(PA)cl/O, Cu(PA)cl/O/N3 and Cu(PA)cl/N7, respectively; this proves that the macrochelate involving N7 is a minority species. The situation for the Cu(PMEA) system, where PMEA2- represents the parent compound, i.e. the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine, is quite similar. The relationship between the antiviral activity of acyclic nucleoside phosphonates and the structures of the various complexes is discussed and an explanation is offered why 9,8aPMEA is biologically active but 8,8aPMEA is not.
Collapse
Affiliation(s)
- Raquel B Gómez-Coca
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
41
|
Knobloch B, Sigel H. A quantitative appraisal of the ambivalent metal ion binding properties of cytidine in aqueous solution and an estimation of the anti–syn energy barrier of cytidine derivatives. J Biol Inorg Chem 2004; 9:365-73. [PMID: 15034770 DOI: 10.1007/s00775-004-0533-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
The recently defined log K (M)(M)(L) versus pK(H)(H)(L) straight-line plots for L = pyridine-type (PyN) and ortho-aminopyridine-type (oPyN) ligands now allow the evaluation in a quantitative manner of the stability of the 1:1 complexes formed between cytidine (Cyd) and Ca(2+), Mg(2+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) (M(2+)); the corresponding stability constants, K(M)(M)(Cyd) including the acidity constant, K(H)(H)(Cyd) for the deprotonation of the (N3)H(+) site had been determined previously under exactly the same conditions as the mentioned plots. Since the stabilities of the M(PyN)(2+) and M(oPyN)(2+) complexes of Ca(2+) and Mg(2+) are practically identical, it is concluded that complex formation occurs in an outer-sphere manner, and this is in accord with the fact that in the p K(a) range 3-7 metal ion binding is independent of K(H)(H)(Pyn) or K(H)(H)(oPyN). Ca(Cyd)(2+) and Mg(Cyd)(2+) are more stable than the corresponding (outer-sphere) M(PyN)(2+) complexes and this means that the C2 carbonyl group of Cyd must participate, next to N3 which is most likely outer-sphere, in metal ion binding, leading thus to chelates; these have formation degrees of about 50% and 35%, respectively. Co(Cyd)(2+) and Ni(Cyd)(2+) show no increased stability based on the log K(M)(M)(oPyN) versus pK(H)(H)(oPyN) hence, the (C2)O group does not participate in metal ion binding, but the inner-sphere coordination to N3 is strongly inhibited by the (C4)NH(2) group. In the M(Cyd)(2+) complexes of Mn(2+), Cu(2+), Zn(2+) and Cd(2+), this inhibiting effect on M(2+) binding at N3 is partially compensated by participation of the (C2)O group in complex formation and the corresponding chelates have formation degrees between about 30% (Zn(2+)) and 83% (Cu(2+)). The different structures of the mentioned chelates are discussed in relation to available crystal structure analyses. (1). There is evidence (crystal structure studies: Cu(2+), Zn(2+), Cd(2+)) that four-membered rings form, i.e. there is a strong M(2+) bond to N3 and a weak one to (C2)O. (2). By hydrogen bond formation to (C2)O of a metal ion-bound water molecule, six-membered rings, so-called semichelates, may form. (3). For Ca(2+) and Mg(2+), and possibly Mn(2+), and their Cyd complexes, six-membered chelates are also likely with (C2)O being inner-sphere (crystal structure) and N3 outer-sphere. (4). Finally, for these metal ions also complexes with a sole outer-sphere interaction may occur. All these types of chelates are expected to be in equilibrium with each other in solution, but, depending on the metal ion, either the one or the other form will dominate. Clearly, the cytidine residue is an ambivalent binding site which adjusts well to the requirements of the metal ion to be bound and this observation is of relevance for single-stranded nucleic acids and their interactions with metal ions. In addition, the anti- syn energy barrier has been estimated as being in the order of 6-7.5 kJ/mol for cytidine derivatives in aqueous solution at 25 degrees C.
Collapse
Affiliation(s)
- Bernd Knobloch
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056, Basel, Switzerland
| | | |
Collapse
|
42
|
Sánchez-Moreno MJ, Fernández-Botello A, Gómez-Coca RB, Griesser R, Ochocki J, Kotynski A, Niclós-Gutiérrez J, Moreno V, Sigel H. Metal Ion-Binding Properties of (1H-Benzimidazol-2-yl-methyl)phosphonate (Bimp2-) in Aqueous Solution.⊥Isomeric Equilibria, Extent of Chelation, and a New Quantification Method for the Chelate Effect. Inorg Chem 2004; 43:1311-22. [PMID: 14966966 DOI: 10.1021/ic030175k] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The acidity constants of the 2-fold protonated (1H-benzimidazol-2-yl-methyl)phosphonate, H2(Bimp)(+/-), are given, and the stability constants of the M(H;Bimp)+ and M(Bimp) complexes with the metal ions M2+ = Mg2+, Ca2+, Ba2+, Mn2+, Co2+, Cu2+, Zn2+, or Cd2+ have been determined by potentiometric pH titrations in aqueous solution at I = 0.1 M (NaNO3) and 25 degrees C. Application of previously determined straight-line plots of log KM(M(Bi-R)) versus pKH(H(Bi-R)) for benzimidazole-type ligands, Bi-R, where R represents a residue which does not affect metal ion binding, proves that the primary binding site in the M(H;Bimp)+ complexes is (mostly) N3 and that the proton is located at the phosphonate group; outersphere interactions seem to be important, and the degree of chelate formation is above 60% for all metal ion complexes studied, except for Zn(H;Bimp)+. A similar evaluation based on log KM(M(R-PO3)) versus pKH(H(R-PO3)) straight-line plots for simple phosph(on)ate ligands, R-, where R represents a residue which cannot participate in the coordination process, reveals that the primary binding site in the M(Bimp) complexes is (mostly) the phosphonate group with all metal ions studied. In this case, the formation degree of the chelates varies more widely in dependence on the kind of metal ion involved, i.e., from 17 +/- 11% to nearly 100% for Ba(Bimp) and Cu(Bimp), respectively. For all the M(H;Bimp)+ and M(Bimp) systems, the intramolecular equilibria between the isomeric complexes are evaluated in a quantitative manner. The fact that for Bimp2- the metal ion affinity of the two binding sites, N3 and PO3(2-), can be calculated independently, i.e., the corresponding micro stability constants become known, allows us to present for the first time a method for the quantification of the chelate effect solely based on comparisons of stability constants which carry the same dimensions. This effect is often ill defined in textbooks because equilibrium constants of different dimensions are compared, which is avoided in the present case. For the M(Bimp) complexes, it is shown that the chelate effect is close to zero for Ba(Bimp) whereas for Cu(Bimp) it amounts to about four log units. This method is also applicable to other chelating systems. Finally, considering that benzimidazole as well as phosphonate derivatives are employed as therapeutic agents, the potential biological properties of Bimp, especially regarding nucleic acid polymerases, are briefly discussed.
Collapse
Affiliation(s)
- María José Sánchez-Moreno
- Inorganic Chemistry, Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gómez-Coca R, Holý A, Vilaplana R, González-Vílchez F, Sigel H. Solution Structures of Binary and Ternary Metal Ion Complexes of 9-(5-Phosphonopentyl)adenine (3′-deoxa-PEEA). A Nucleotide Analogue Related to the Antivirally Active 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA). Eur J Inorg Chem 2003. [DOI: 10.1002/ejic.200300100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Da Costa CP, Okruszek A, Sigel H. Complex formation of divalent metal ions with uridine 5'-O-thiomonophosphate or methyl thiophosphate: comparison of complex stabilities with those of the parent phosphate ligands. Chembiochem 2003; 4:593-602. [PMID: 12851928 DOI: 10.1002/cbic.200200551] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The stability constants of the 1:1 complexes formed in aqueous solution between Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Zn2+, or Cd2+ (M2+) and methyl thiophosphate (MeOPS(2-)) or uridine 5'-O-thiomonophosphate (UMPS(2-)) (PS(2-)=MeOPS(2-) or UMPS(2-)) have been determined (potentiometric pH titrations; 25 degrees C; I = 0.1 M, NaNO(3)). Comparison of these results for M(PS) complexes with those known for the parent M(PO) phosphate species, where PO(2-)=CH(3)OPO(2-)(3) or UMP(2-) (uridine 5'-monophosphate), shows that the alkaline earth metal ions, as well as Mn2+, Co2+, and Ni2+ have a higher affinity for phosphate groups than for their thio analogues. However, based on the linear log K(M)(M(R-PO3)) versus pK(H)(H(R-PO3)) relationships (R-PO(2-)(3) simple phosphate monoester or phosphonate ligands with a non-interacting residue R) it becomes clear that the indicated observation is only the result of the lower basicity of the thiophosphate residue. In contrast, the thio complexes of Zn2+ and Cd2+ are more stable than their parent phosphate ones, and this despite the lower basicity of the PS(2-) ligands. This stability increase is identical for M(MeOPS) and M(UMPS) species and amounts to about 0.6 and 2.4 log units for Zn(PS) and Cd(PS), respectively. Since no other binding site is available in MeOPS(2-), this enhanced stability has to be attributed to the S atom. Indeed, from the mentioned stability differences it follows that Cd2+ in Cd(PS) is coordinated by more than 99% to the thiophosphate S atom; the same value holds for Pb(PS), which was studied earlier. The formation degree of the Sbonded isomer amounts to 76+/-6 % for Zn(PS) and is close to zero for the corresponding Mg2+, Ca2+, and Mn2+ species. It is further shown that Zn(MeOPS)(aq)(2+) releases a proton from a coordinated water molecule with pK(a) approximately 6.9; i.e., this deprotonation occurs at a lower pH value than that for the same reaction in Zn(aq)(2+). Since Mg2+, Ca2+, Mn2+, and Cd2+ have a relatively low tendency for hydroxo complex formation, it was possible, for these M2+, to also quantify the stability of the binuclear complexes, M(2)(UMPS-H)+, where one M2+ is thiophosphate-coordinated and the other is coordinated at (N3)(-) of the uracil residue. The impact of the results presented herein regarding M2+/nucleic acid interactions, including those of ribozymes (rescue experiments), is briefly discussed.
Collapse
Affiliation(s)
- Carla P Da Costa
- Departement Chemie Anorganische Chemie, Universität Basel Spitalstrasse 51, 4056 Basel, Switzerland
| | | | | |
Collapse
|
45
|
Stability and structure of binary and ternary metal ion complexes in aqueous solution of the quaternary 1-[2-(phosphonomethoxy)ethyl] derivative of 2,4-diaminopyrimidine (PMEDAPy−). Properties of an acyclic nucleotide analogue. Polyhedron 2003. [DOI: 10.1016/s0277-5387(03)00093-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
|
47
|
Acid–base and metal ion binding properties of pyridine-type ligands in aqueous solution. Inorganica Chim Acta 2002. [DOI: 10.1016/s0020-1693(02)00993-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
|
49
|
Yamauchi O, Odani A, Takani M. Metal–amino acid chemistry. Weak interactions and related functions of side chain groups. ACTA ACUST UNITED AC 2002. [DOI: 10.1039/b202385g] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Sigel H, Bianchi EM, Corfù NA, Kinjo Y, Tribolet R, Martin RB. Stabilities and isomeric equilibria in solutions of monomeric metal-ion complexes of guanosine 5'-triphosphate (GTP4-) and inosine 5'-triphosphate (ITP4-) in comparison with those of adenosine 5'-triphosphate (ATP4-). Chemistry 2001; 7:3729-37. [PMID: 11575773 DOI: 10.1002/1521-3765(20010903)7:17<3729::aid-chem3729>3.0.co;2-e] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Under experimental conditions in which the self-association of the purine-nucleoside 5'-triphosphates (PuNTPs) GTP and ITP is negligible, potentiometric pH titrations were carried out to determine the stabilities of the M(H;PuNTP) and M(PuNTP)2-complexes where M2+ = Mg2+, Ca2+, Sr2+. Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+ (I = 0.1 M, 25 degrees C). The stabilities of all M(GTP)2- and M(ITP)2- complexes are significantly larger than those of the corresponding complexes formed with pyrimidine-nucleoside 5'-triphosphates (PyNTPs), which had been determined previously under the same conditions. This increased complex stability is attributed, in agreement with previous 1H MNR shift studies, to the formation of macrochelates of the phosphate-coordinated metal ions with N7 of the purine residues. A similar enhanced stability (despite relatively large error limits) was observed for the M(H;PuNTP) complexes, in which H+ is bound to the terminal y-phosphate group, relative to the stability of the M(H;PyNTP)- species. The percentage of the macrochelated isomers in the M(GTP)2- and M(ITP)2- systems was quantified by employing the difference log KMM(PuNTP)-log KMM(PyNTP); the lowest and highest formation degrees of the macrochelates were observed for Mg(ITP)2- and Cu(GTP)2- with 17 +/- 11% and 97 +/- 1%, respectively. From previous studies of M(ATP)2- complexes, it is known that innersphere and outersphere macrochelates may form; that is, in the latter case a water molecule is between N7 and the phosphate-coordinated M2+. Similar conclusions are reached now by comparisons with earlier 1H MNR shift measurements, that is, that Mg(GTP)2- (21 +/- 11%), for example, exists largely in the form of an outersphere macrochelate and Zn(GTP)2- (68 +/- 4%) as an innersphere one. Generally, the overall percentage of macrochelate falls off for a given metal ion in the order M(GTP)2- > M(ITP)2- > M(ATP)2-; this is in accord with the decreasing basicity of N7 and the steric inhibition of the (C6)NH2 group in the adenine residue. Furthermore, although the absolute stability constants of the previously studied M(GMP), M(IMP), and M(AMP) complexes differ by about two to three log units from the present M(PuNTP)2- results, the formation degrees of the macrochelates are astonishingly similar for the two series of nucleotides for a given metal ion and purine-nucleobase residue. The conclusion that N7 of the guanine residue is an especially favored binding site for metal ions is also in accord with observations made for nucleic acids.
Collapse
Affiliation(s)
- H Sigel
- Institut für Anorganische Chemie, Universität Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|