1
|
Kim SE, Burket Koltsov JC, Richards AW, Zhou J, Schadl K, Ladd AL, Rose J. Validation of Inertial Measurement Units for Analyzing Golf Swing Rotational Biomechanics. SENSORS (BASEL, SWITZERLAND) 2023; 23:8433. [PMID: 37896527 PMCID: PMC10611231 DOI: 10.3390/s23208433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Training devices to enhance golf swing technique are increasingly in demand. Golf swing biomechanics are typically assessed in a laboratory setting and not readily accessible. Inertial measurement units (IMUs) offer improved access as they are wearable, cost-effective, and user-friendly. This study investigates the accuracy of IMU-based golf swing kinematics of upper torso and pelvic rotation compared to lab-based 3D motion capture. Thirty-six male and female professional and amateur golfers participated in the study, nine in each sub-group. Golf swing rotational kinematics, including upper torso and pelvic rotation, pelvic rotational velocity, S-factor (shoulder obliquity), O-factor (pelvic obliquity), and X-factor were compared. Strong positive correlations between IMU and 3D motion capture were found for all parameters; Intraclass Correlations ranged from 0.91 (95% confidence interval [CI]: 0.89, 0.93) for O-factor to 1.00 (95% CI: 1.00, 1.00) for upper torso rotation; Pearson coefficients ranged from 0.92 (95% CI: 0.92, 0.93) for O-factor to 1.00 (95% CI: 1.00, 1.00) for upper torso rotation (p < 0.001 for all). Bland-Altman analysis demonstrated good agreement between the two methods; absolute mean differences ranged from 0.61 to 1.67 degrees. Results suggest that IMUs provide a practical and viable alternative for golf swing analysis, offering golfers accessible and wearable biomechanical feedback to enhance performance. Furthermore, integrating IMUs into golf coaching can advance swing analysis and personalized training protocols. In conclusion, IMUs show significant promise as cost-effective and practical devices for golf swing analysis, benefiting golfers across all skill levels and providing benchmarks for training.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; (S.E.K.); (J.C.B.K.); (J.Z.); (K.S.); (A.L.L.)
- Motion & Gait Analysis Lab, Lucile Packard Children’s Hospital, Palo Alto, CA 94304, USA
| | - Jayme Carolynn Burket Koltsov
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; (S.E.K.); (J.C.B.K.); (J.Z.); (K.S.); (A.L.L.)
| | - Alexander Wilder Richards
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; (S.E.K.); (J.C.B.K.); (J.Z.); (K.S.); (A.L.L.)
| | - Joanne Zhou
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; (S.E.K.); (J.C.B.K.); (J.Z.); (K.S.); (A.L.L.)
| | - Kornel Schadl
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; (S.E.K.); (J.C.B.K.); (J.Z.); (K.S.); (A.L.L.)
- Motion & Gait Analysis Lab, Lucile Packard Children’s Hospital, Palo Alto, CA 94304, USA
| | - Amy L. Ladd
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; (S.E.K.); (J.C.B.K.); (J.Z.); (K.S.); (A.L.L.)
| | - Jessica Rose
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94305, USA; (S.E.K.); (J.C.B.K.); (J.Z.); (K.S.); (A.L.L.)
- Motion & Gait Analysis Lab, Lucile Packard Children’s Hospital, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
Lin ZJ, Peng YC, Yang CJ, Hsu CY, Hamill J, Tang WT. Lower Limb Biomechanics during the Golf Downswing in Individuals with and without a History of Knee Joint Injury. Bioengineering (Basel) 2023; 10:bioengineering10050626. [PMID: 37237695 DOI: 10.3390/bioengineering10050626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Although prevention is better than treatment, after a knee injury occurs, the adjustment of the movement technique back to the posture before the injury and the restoration of accuracy is very important for professional and amateur players. This study aimed to compare the differences in lower limb mechanics during the golf downswing between those with and without a history of knee joint injury. A total of 20 professional golfers with single-digit handicaps were recruited for this study, 10 of whom had a knee injury history (KIH+), while another 10 players were without a knee injury history (KIH-). From the 3D analysis, selected kinematic and kinetic parameters during the downswing were analyzed using an independent samples t-test with a significance level of α = 0.05. During the downswing, individuals with KIH+ exhibited a smaller hip flexion angle, smaller ankle abduction angle, and larger ankle adduction/abduction range of motion (ROM). Moreover, there was no significant difference found in the knee joint moment. Athletes with a history of knee injury can adjust the motion angles of their hip and ankle joints (e.g., by avoiding excessive forward leaning of the trunk and maintaining stable foot posture without inward or outward rotation) to minimize the impact of changes in their movement patterns resulting from the injury.
Collapse
Affiliation(s)
- Zi-Jun Lin
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Yi-Chien Peng
- Physical Education Office, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chun-Ju Yang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Chung-Yuan Hsu
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
- Center of Traditional Chinese Medicine, Division of Chinese Acupuncture and Traumatology, Taoyuan Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan
| | - Joseph Hamill
- Biomechanics Laboratory, University of Massachusetts, Amherst, MA 01003, USA
| | - Wen-Tzu Tang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| |
Collapse
|
3
|
Li B, Wang J, Wu C, Hu Z, Li J, Nam SC, Zhang Z, Ryu JK, Kim Y. Effects of Ground Slopes on Erector Spinae Muscle Activities and Characteristics of Golf Swing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1176. [PMID: 36673931 PMCID: PMC9858818 DOI: 10.3390/ijerph20021176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
(1) Background: 'Slope' refers to the position faced by golfers on the course. Research on the recruitment strategies of thoracolumbar erector spinae during golf swings on different slopes may help us to understand some underlying mechanisms of lower back pain. (2) Purpose: The purpose of the present study is to assess electromyography (EMG) patterns of the erector spinae muscles (ES) and the kinematics of the trunk and swing parameters while performing golf swings on three different ground slopes: (1) no slope where the ball is level with the feet (BLF), (2) a slope where the ball is above the feet (BAF), and (3) a slope where the ball is below the feet (BBF). Furthermore, the present study evaluates the effect of slope on the kinematics of the trunk, the X-factor angle, and the hitting parameters. (3) Methods: Eight right-handed recreational male golfers completed five swings using a seven-iron for each ground slope. Surface electromyograms from the left and right sides of the ES thoracolumbar region (T8 and L3 on the spinous process side) were evaluated. Each golf swing was divided into five phases. Kinematics of the shoulder, trunk, and spine were evaluated, and the ball speed, swing speed, carry, smash factor, launch angle, and apex were measured using Caddie SC300. (3) Results: The muscle activity of the BAF and BBF slopes was significantly lower than that of the BLF slope during the early follow-through phase of the thoracic ES on the lead side (i.e., left side) and during the acceleration and early follow-through phases of the lumbar ES on the lead side. The lead and trail side (i.e., right side) lumbar ES were more active during acceleration than the thoracic ES. Additionally, the trends of the lead and trail sides of the thoracolumbar regions on the three slopes were found to be the same across the five phases. Trunk angle and X-factor angles had no significant differences in address, top of backswing, or ball impact. The maximum separation angles of the X-factor appeared in the early phase of the downswing for all the three slopes. Regarding smash factor and launch angle, there were no significant differences between the three slopes. The ball speed, swing speed, carry, and apex were higher on BLF than on BAF and BBF slopes. (4) Conclusion: The findings suggest that amateur golfers face different slopes with altered muscle recruitment strategies. Specifically, during the acceleration phase of the golf swing, the BAF and the BBF slopes, compared with the BLF slope, significantly underactivated the lead side thoracolumbar erector spinae muscles, thereby increasing the risk of back injury. Changes in muscle activity during critical periods may affect neuromuscular deficits in high-handicap players and may have implications for the understanding and development of golf-related lower back pain. In addition, the X-factor angle was not affected by the slope, however, it can be found that the hitting parameters on the BLF slope are more dominant than on the other slopes.
Collapse
Affiliation(s)
- Bairan Li
- Department of Physical Education, Putian University, Putian 351100, China
- Department of Physical Education, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Republic of Korea
| | - Junsig Wang
- Department of Sports Medicine, KyungHee University, Youngin 17104, Gyeonggi-do, Republic of Korea
| | - Chaojie Wu
- Department of Physical Education, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Republic of Korea
| | - Zhe Hu
- Department of Physical Education, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Republic of Korea
| | - Jiaying Li
- Department of Physical Education, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Republic of Korea
| | - Sang-Cheul Nam
- College of Physical Education, Pingdingshan University, Pingdingshan 467000, China
| | - Ze Zhang
- Department of Physical Education, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Republic of Korea
| | - Jae-Kyun Ryu
- Department of Coaching, KyungHee University, Youngin 17104, Gyeonggi-do, Republic of Korea
| | - Youngsuk Kim
- Department of Physical Education, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Republic of Korea
- Department of Coaching, KyungHee University, Youngin 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Campanini I, Disselhorst-Klug C, Rymer WZ, Merletti R. Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use. Front Neurol 2020; 11:934. [PMID: 32982942 PMCID: PMC7492208 DOI: 10.3389/fneur.2020.00934] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
This article addresses the potential clinical value of techniques based on surface electromyography (sEMG) in rehabilitation medicine with specific focus on neurorehabilitation. Applications in exercise and sport pathophysiology, in movement analysis, in ergonomics and occupational medicine, and in a number of related fields are also considered. The contrast between the extensive scientific literature in these fields and the limited clinical applications is discussed. The "barriers" between research findings and their application are very broad, and are longstanding, cultural, educational, and technical. Cultural barriers relate to the general acceptance and use of the concept of objective measurement in a clinical setting and its role in promoting Evidence Based Medicine. Wide differences between countries exist in appropriate training in the use of such quantitative measurements in general, and in electrical measurements in particular. These differences are manifest in training programs, in degrees granted, and in academic/research career opportunities. Educational barriers are related to the background in mathematics and physics for rehabilitation clinicians, leading to insufficient basic concepts of signal interpretation, as well as to the lack of a common language with rehabilitation engineers. Technical barriers are being overcome progressively, but progress is still impacted by the lack of user-friendly equipment, insufficient market demand, gadget-like devices, relatively high equipment price and a pervasive lack of interest by manufacturers. Despite the recommendations provided by the 20-year old EU project on "Surface EMG for Non-Invasive Assessment of Muscles (SENIAM)," real international standards are still missing and there is minimal international pressure for developing and applying such standards. The need for change in training and teaching is increasingly felt in the academic world, but is much less perceived in the health delivery system and clinical environments. The rapid technological progress in the fields of sensor and measurement technology (including sEMG), assistive devices, and robotic rehabilitation, has not been driven by clinical demands. Our assertion is that the most important and urgent interventions concern enhanced education, more effective technology transfer, and increased academic opportunities for physiotherapists, occupational therapists, and kinesiologists.
Collapse
Affiliation(s)
- Isabella Campanini
- LAM-Motion Analysis Laboratory, Neuromotor and Rehabilitation Department, San Sebastiano Hospital, Correggio, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Catherine Disselhorst-Klug
- Department of Rehabilitation & Prevention Engineering, Institute of Applied Medical Engineering, RWTH Aachen University, Aachen, Germany
| | - William Z. Rymer
- Shirley Ryan Ability Lab, Single Motor Unit Laboratory, Chicago, IL, United States
| | - Roberto Merletti
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| |
Collapse
|