1
|
Abalo-Rodríguez I, Blithikioti C. Let's fail better: Using philosophical tools to improve neuroscientific research in psychiatry. Eur J Neurosci 2024. [PMID: 39400986 DOI: 10.1111/ejn.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 07/23/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
Despite predictions that neuroscientific discoveries would revolutionize psychiatry, decades of research have not yet led to clinically significant advances in psychiatric care. For this reason, an increasing number of researchers are recognizing the limitations of a purely biomedical approach in psychiatric research. These researchers call for reevaluating the conceptualization of mental disorders and argue for a non-reductionist approach to mental health. The aim of this paper is to discuss philosophical assumptions that underly neuroscientific research in psychiatry and offer practical tools to researchers for overcoming potential conceptual problems that are derived from those assumptions. Specifically, we will discuss: the analogy problem, questioning whether mental health problems are equivalent to brain disorders, the normativity problem, addressing the value-laden nature of psychiatric categories and the priority problem, which describes the level of analysis (e.g., biological, psychological, social, etc.) that should be prioritized when studying psychiatric conditions. In addition, we will explore potential strategies to mitigate practical problems that might arise due to these implicit assumptions. Overall, the aim of this paper is to suggest philosophical tools of practical use for neuroscientists, demonstrating the benefits of a closer collaboration between neuroscience and philosophy.
Collapse
Affiliation(s)
- Inés Abalo-Rodríguez
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Chrysanthi Blithikioti
- Department of General Psychology, Faculty of Psychology, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Martin E, Chowdury A, Kopchick J, Thomas P, Khatib D, Rajan U, Zajac-Benitez C, Haddad L, Amirsadri A, Robison AJ, Thakkar KN, Stanley JA, Diwadkar VA. The mesolimbic system and the loss of higher order network features in schizophrenia when learning without reward. Front Psychiatry 2024; 15:1337882. [PMID: 39355381 PMCID: PMC11443173 DOI: 10.3389/fpsyt.2024.1337882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Schizophrenia is characterized by a loss of network features between cognition and reward sub-circuits (notably involving the mesolimbic system), and this loss may explain deficits in learning and cognition. Learning in schizophrenia has typically been studied with tasks that include reward related contingencies, but recent theoretical models have argued that a loss of network features should be seen even when learning without reward. We tested this model using a learning paradigm that required participants to learn without reward or feedback. We used a novel method for capturing higher order network features, to demonstrate that the mesolimbic system is heavily implicated in the loss of network features in schizophrenia, even when learning without reward. Methods fMRI data (Siemens Verio 3T) were acquired in a group of schizophrenia patients and controls (n=78; 46 SCZ, 18 ≤ Age ≤ 50) while participants engaged in associative learning without reward-related contingencies. The task was divided into task-active conditions for encoding (of associations) and cued-retrieval (where the cue was to be used to retrieve the associated memoranda). No feedback was provided during retrieval. From the fMRI time series data, network features were defined as follows: First, for each condition of the task, we estimated 2nd order undirected functional connectivity for each participant (uFC, based on zero lag correlations between all pairs of regions). These conventional 2nd order features represent the task/condition evoked synchronization of activity between pairs of brain regions. Next, in each of the patient and control groups, the statistical relationship between all possible pairs of 2nd order features were computed. These higher order features represent the consistency between all possible pairs of 2nd order features in that group and embed within them the contributions of individual regions to such group structure. Results From the identified inter-group differences (SCZ ≠ HC) in higher order features, we quantified the respective contributions of individual brain regions. Two principal effects emerged: 1) SCZ were characterized by a massive loss of higher order features during multiple task conditions (encoding and retrieval of associations). 2) Nodes in the mesolimbic system were over-represented in the loss of higher order features in SCZ, and notably so during retrieval. Discussion Our analytical goals were linked to a recent circuit-based integrative model which argued that synergy between learning and reward circuits is lost in schizophrenia. The model's notable prediction was that such a loss would be observed even when patients learned without reward. Our results provide substantial support for these predictions where we observed a loss of network features between the brain's sub-circuits for a) learning (including the hippocampus and prefrontal cortex) and b) reward processing (specifically constituents of the mesolimbic system that included the ventral tegmental area and the nucleus accumbens. Our findings motivate a renewed appraisal of the relationship between reward and cognition in schizophrenia and we discuss their relevance for putative behavioral interventions.
Collapse
Affiliation(s)
- Elizabeth Martin
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Psychiatry, University of Texas Austin, Austin, TX, United States
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - John Kopchick
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Patricia Thomas
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dalal Khatib
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Usha Rajan
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Caroline Zajac-Benitez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Luay Haddad
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alireza Amirsadri
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alfred J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Katherine N. Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Jeffrey A. Stanley
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
3
|
Samona EA, Chowdury A, Kopchick J, Thomas P, Rajan U, Khatib D, Zajac-Benitez C, Amirsadri A, Haddad L, Stanley JA, Diwadkar VA. The importance of covert memory consolidation in schizophrenia: Dysfunctional network profiles of the hippocampus and the dorsolateral prefrontal cortex. Psychiatry Res Neuroimaging 2024; 340:111805. [PMID: 38447230 PMCID: PMC11188056 DOI: 10.1016/j.pscychresns.2024.111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Altered brain network profiles in schizophrenia (SCZ) during memory consolidation are typically observed during task-active periods such as encoding or retrieval. However active processes are also sub served by covert periods of memory consolidation. These periods are active in that they allow memories to be recapitulated even in the absence of overt sensorimotor processing. It is plausible that regions central to memory formation like the dlPFC and the hippocampus, exert network signatures during covert periods. Are these signatures altered in patients? The question is clinically relevant because real world learning and memory is facilitated by covert processing, and may be impaired in schizophrenia. Here, we compared network signatures of the dlPFC and the hippocampus during covert periods of a learning and memory task. Because behavioral proficiency increased non-linearly, functional connectivity of the dlPFC and hippocampus [psychophysiological interaction (PPI)] was estimated for each of the Early (linear increases in performance) and Late (asymptotic performance) covert periods. During Early periods, we observed hypo-modulation by the hippocampus but hyper-modulation by dlPFC. Conversely, during Late periods, we observed hypo-modulation by both the dlPFC and the hippocampus. We stitch these results into a conceptual model of network deficits during covert periods of memory consolidation.
Collapse
Affiliation(s)
- Elias A Samona
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - John Kopchick
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Patricia Thomas
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Usha Rajan
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dalal Khatib
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Caroline Zajac-Benitez
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alireza Amirsadri
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Luay Haddad
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jeffrey A Stanley
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Vaibhav A Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
4
|
Liloia D, Cauda F, Uddin LQ, Manuello J, Mancuso L, Keller R, Nani A, Costa T. Revealing the Selectivity of Neuroanatomical Alteration in Autism Spectrum Disorder via Reverse Inference. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1075-1083. [PMID: 35131520 DOI: 10.1016/j.bpsc.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Although neuroimaging research has identified atypical neuroanatomical substrates in individuals with autism spectrum disorder (ASD), it is at present unclear whether and to what extent disorder-selective gray matter alterations occur in this spectrum of conditions. In fact, a growing body of evidence shows a substantial overlap between the pathomorphological changes across different brain diseases, which may complicate identification of reliable neural markers and differentiation of the anatomical substrates of distinct psychopathologies. METHODS Using a novel data-driven and Bayesian methodology with published voxel-based morphometry data (849 peer-reviewed experiments and 22,304 clinical subjects), this study performs the first reverse inference investigation to explore the selective structural brain alteration profile of ASD. RESULTS We found that specific brain areas exhibit a >90% probability of gray matter alteration selectivity for ASD: the bilateral precuneus (Brodmann area 7), right inferior occipital gyrus (Brodmann area 18), left cerebellar lobule IX and Crus II, right cerebellar lobule VIIIA, and right Crus I. Of note, many brain voxels that are selective for ASD include areas that are posterior components of the default mode network. CONCLUSIONS The identification of these spatial gray matter alteration patterns offers new insights into understanding the complex neurobiological underpinnings of ASD and opens attractive prospects for future neuroimaging-based interventions.
Collapse
Affiliation(s)
- Donato Liloia
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Jordi Manuello
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy.
| | - Lorenzo Mancuso
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Roberto Keller
- Adult Autism Center, DSM Local Health Unit, ASL TO, Turin, Italy
| | - Andrea Nani
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI Research Group, Koelliker Hospital, and Department of Psychology, University of Turin, Turin, Italy; Functional Neuroimaging and Complex Neural Systems Laboratory, Department of Psychology, University of Turin, Turin, Italy; Neuroscience Institute of Turin, Turin, Italy
| |
Collapse
|
5
|
Heit E. Brain imaging, forward inference, and theories of reasoning. Front Hum Neurosci 2015; 8:1056. [PMID: 25620926 PMCID: PMC4288126 DOI: 10.3389/fnhum.2014.01056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/18/2014] [Indexed: 11/13/2022] Open
Abstract
This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.
Collapse
Affiliation(s)
- Evan Heit
- School of Social Sciences, Humanities and Arts, University of California Merced , Merced, CA , USA
| |
Collapse
|
6
|
Abstract
AbstractIn theoretical accounts of the neurosciences, investigative research programs have often been separated into the morphological and physiological tradition. The morphological tradition is seen as describing the structure and form of the external and interior parts of the brain and spinal cord. The physiological tradition is interpreted as a compilation of those approaches which investigate cerebral functions particularly in their dynamic interactions. It must be regarded as an open question, though, whether the distinction between the morphological and physiological tradition in modern clinical and basic neuroscience has now become obsolete with the most recent neuroimaging techniques, such as fMRI, PET scans, SPECT, etc. Taken at face value, these new imaging techniques seem to relate, overlap, and even identify the anatomical with the functional substrate, when mapping individual patterns of neural activity across the visually delineated morphological structures. The particular focus of this review article is primarily on the morphological tradition, beginning with German neuroanatomist Samuel Thomas Soemmerring and leading to recent approaches in the neurohistological work of neuroscience centres in the United States and morphophysiological neuroimaging techniques in Canada. Following some landmark research steps in neuroanatomy detailed in the first section, this article analyzes the changing trajectories to an integrative theory of the brain in its second section. An examination of the relationship between form and function within the material culture of neuroscience in the third and final part, will further reveal an astonishingly heterogeneous investigative and conceptual terrain.
Collapse
|