1
|
Lesourd M, Martin J, Hague S, Laroze M, Clément G, Comte A, Medeiros de Bustos E, Fargeix G, Magnin E, Moulin T. Organization of conceptual tool knowledge following left and right brain lesions: Evidence from neuropsychological dissociations and multivariate disconnectome symptom mapping. Brain Cogn 2024; 181:106210. [PMID: 39217817 DOI: 10.1016/j.bandc.2024.106210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The aim of this work was to better understand the organization of conceptual tool knowledge following stroke. We explored specifically the link between manipulation kinematics and manipulation hand posture; and the link between manipulation kinematics and function relations in left brain-damaged (n = 30) and right brain-damaged (n = 30) patients. We examined the performance of brain-damaged patients in conceptual tool tasks using neuropsychological dissociations and disconnectome symptom mapping. Our results suggest that manipulation kinematics is more impaired than function relations, following left or right brain lesions. We also observed that manipulation kinematics and manipulation hand posture are dissociable dimensions but are still highly interrelated, particularly in left brain-damaged patients. We also found that the corpus callosum and bilateral superior longitudinal fasciculus are involved in action and semantic tool knowledge following left brain lesions. Our results provide evidence that the right hemisphere contains conceptual tool representations. Further studies are needed to better understand the mechanisms supporting the cognitive recovery of conceptual tool knowledge. An emerging hypothesis is that the right hemisphere may support functional recovery through interhemispheric transfer following a left hemisphere stroke.
Collapse
Affiliation(s)
- Mathieu Lesourd
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Université de Franche-Comté, CNRS, UAR 3124 MSHE, Besançon, France; Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France.
| | - Julie Martin
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France; Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Sébastien Hague
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Margolise Laroze
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Gautier Clément
- Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Alexandre Comte
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France
| | | | - Guillaume Fargeix
- Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| | - Eloi Magnin
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Centre Mémoire Ressources et Recherche (CMRR), Service de Neurologie, CHRU Besançon, F-25000 Besançon, France
| | - Thierry Moulin
- Université de Franche-Comté, UMR INSERM 1322 LINC, F-25000, Besançon, France; Unité de Neurologie Vasculaire (UNV) et Hôpital de jour (HDJ), Service de Neurologie, CHRU de Besançon, France
| |
Collapse
|
2
|
Metaireau M, Osiurak F, Seye A, Lesourd M. The neural correlates of limb apraxia: An anatomical likelihood estimation meta-analysis of lesion-symptom mapping studies in brain-damaged patients. Neurosci Biobehav Rev 2024; 162:105720. [PMID: 38754714 DOI: 10.1016/j.neubiorev.2024.105720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Limb apraxia is a motor disorder frequently observed following a stroke. Apraxic deficits are classically assessed with four tasks: tool use, pantomime of tool use, imitation, and gesture understanding. These tasks are supported by several cognitive processes represented in a left-lateralized brain network including inferior frontal gyrus, inferior parietal lobe (IPL), and lateral occipito-temporal cortex (LOTC). For the past twenty years, voxel-wise lesion symptom mapping (VLSM) studies have been used to unravel the neural correlates associated with apraxia, but none of them has proposed a comprehensive view of the topic. In the present work, we proposed to fill this gap by performing a systematic Anatomic Likelihood Estimation meta-analysis of VLSM studies which included tasks traditionally used to assess apraxia. We found that the IPL was crucial for all the tasks. Moreover, lesions within the LOTC were more associated with imitation deficits than tool use or pantomime, confirming its important role in higher visual processing. Our results questioned traditional neurocognitive models on apraxia and may have important clinical implications.
Collapse
Affiliation(s)
- Maximilien Metaireau
- Université de Franche-Comté, UMR INSERM 1322, LINC, Besançon F-25000, France; Maison des Sciences de l'Homme et de l'Environnement (UAR 3124), Besançon, France.
| | - François Osiurak
- Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Université Lyon 2, Bron, France; Institut Universitaire de France, Paris, France
| | - Arthur Seye
- Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Université Lyon 2, Bron, France
| | - Mathieu Lesourd
- Université de Franche-Comté, UMR INSERM 1322, LINC, Besançon F-25000, France; Maison des Sciences de l'Homme et de l'Environnement (UAR 3124), Besançon, France; Unité de Neurologie Vasculaire, CHU Besançon, France.
| |
Collapse
|
3
|
Karlsson EM, Carey DP. Hemispheric asymmetry of hand and tool perception in left- and right-handers with known language dominance. Neuropsychologia 2024; 196:108837. [PMID: 38428518 DOI: 10.1016/j.neuropsychologia.2024.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Regions in the brain that are selective for images of hands and tools have been suggested to be lateralised to the left hemisphere of right-handed individuals. In left-handers, many functions related to tool use or tool pantomime may also depend more on the left hemisphere. This result seems surprising, given that the dominant hand of these individuals is controlled by the right hemisphere. One explanation is that the left hemisphere is dominant for speech and language in the majority of left-handers, suggesting a supraordinate control system for complex motor sequencing that is required for skilled tool use, as well as for speech. In the present study, we examine if this left-hemispheric specialisation extends to perception of hands and tools in left- and right-handed individuals. We, crucially, also include a group of left-handers with right-hemispheric language dominance to examine their asymmetry biases. The results suggest that tools lateralise to the left hemisphere in most right-handed individuals with left-hemispheric language dominance. Tools also lateralise to the language dominant hemisphere in right-hemispheric language dominant left-handers, but the result for left-hemispheric language dominant left-handers are more varied, and no clear bias towards one hemisphere is found. Hands did not show a group-level asymmetry pattern in any of the groups. These results suggest a more complex picture regarding hemispheric overlap of hand and tool representations, and that visual appearance of tools may be driven in part by both language dominance and the hemisphere which controls the motor-dominant hand.
Collapse
Affiliation(s)
- Emma M Karlsson
- Institute of Cognitive Neuroscience, School of Psychology and Sport Science, Bangor University, Bangor, UK; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| | - David P Carey
- Institute of Cognitive Neuroscience, School of Psychology and Sport Science, Bangor University, Bangor, UK
| |
Collapse
|
4
|
Chen J, Paciocco JU, Deng Z, Culham JC. Human Neuroimaging Reveals Differences in Activation and Connectivity between Real and Pantomimed Tool Use. J Neurosci 2023; 43:7853-7867. [PMID: 37722847 PMCID: PMC10648550 DOI: 10.1523/jneurosci.0068-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
Because the sophistication of tool use is vastly enhanced in humans compared with other species, a rich understanding of its neural substrates requires neuroscientific experiments in humans. Although functional magnetic resonance imaging (fMRI) has enabled many studies of tool-related neural processing, surprisingly few studies have examined real tool use. Rather, because of the many constraints of fMRI, past research has typically used proxies such as pantomiming despite neuropsychological dissociations between pantomimed and real tool use. We compared univariate activation levels, multivariate activation patterns, and functional connectivity when participants used real tools (a plastic knife or fork) to act on a target object (scoring or poking a piece of putty) or pantomimed the same actions with similar movements and timing. During the Execute phase, we found higher activation for real versus pantomimed tool use in sensorimotor regions and the anterior supramarginal gyrus, and higher activation for pantomimed than real tool use in classic tool-selective areas. Although no regions showed significant differences in activation magnitude during the Plan phase, activation patterns differed between real versus pantomimed tool use and motor cortex showed differential functional connectivity. These results reflect important differences between real tool use, a closed-loop process constrained by real consequences, and pantomimed tool use, a symbolic gesture that requires conceptual knowledge of tools but with limited consequences. These results highlight the feasibility and added value of employing natural tool use tasks in functional imaging, inform neuropsychological dissociations, and advance our theoretical understanding of the neural substrates of natural tool use.SIGNIFICANCE STATEMENT The study of tool use offers unique insights into how the human brain synthesizes perceptual, cognitive, and sensorimotor functions to accomplish a goal. We suggest that the reliance on proxies, such as pantomiming, for real tool use has (1) overestimated the contribution of cognitive networks, because of the indirect, symbolic nature of pantomiming; and (2) underestimated the contribution of sensorimotor networks necessary for predicting and monitoring the consequences of real interactions between hand, tool, and the target object. These results enhance our theoretical understanding of the full range of human tool functions and inform our understanding of neuropsychological dissociations between real and pantomimed tool use.
Collapse
Affiliation(s)
- Juan Chen
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, and the School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
- Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou, Guangdong 510631, China
| | - Joseph U Paciocco
- Neuroscience Program, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Zhiqing Deng
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, and the School of Psychology, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Jody C Culham
- Neuroscience Program, University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Psychology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
5
|
Federico G, Osiurak F, Ciccarelli G, Ilardi CR, Cavaliere C, Tramontano L, Alfano V, Migliaccio M, Di Cecca A, Salvatore M, Brandimonte MA. On the functional brain networks involved in tool-related action understanding. Commun Biol 2023; 6:1163. [PMID: 37964121 PMCID: PMC10645930 DOI: 10.1038/s42003-023-05518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Tool-use skills represent a significant cognitive leap in human evolution, playing a crucial role in the emergence of complex technologies. Yet, the neural mechanisms underlying such capabilities are still debated. Here we explore with fMRI the functional brain networks involved in tool-related action understanding. Participants viewed images depicting action-consistent (e.g., nail-hammer) and action-inconsistent (e.g., scarf-hammer) object-tool pairs, under three conditions: semantic (recognizing the tools previously seen in the pairs), mechanical (assessing the usability of the pairs), and control (looking at the pairs without explicit tasks). During the observation of the pairs, task-based left-brain functional connectivity differed within conditions. Compared to the control, both the semantic and mechanical conditions exhibited co-activations in dorsal (precuneus) and ventro-dorsal (inferior frontal gyrus) regions. However, the semantic condition recruited medial and posterior temporal areas, whereas the mechanical condition engaged inferior parietal and posterior temporal regions. Also, when distinguishing action-consistent from action-inconsistent pairs, an extensive frontotemporal neural circuit was activated. These findings support recent accounts that view tool-related action understanding as the combined product of semantic and mechanical knowledge. Furthermore, they emphasize how the left inferior parietal and anterior temporal lobes might be considered as hubs for the cross-modal integration of physical and conceptual knowledge, respectively.
Collapse
Affiliation(s)
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Bron, France
- Institut Universitaire de France, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yliranta A, Karjalainen VL, Nuorva J, Ahmasalo R, Jehkonen M. Apraxia testing to distinguish early Alzheimer's disease from psychiatric causes of cognitive impairment. Clin Neuropsychol 2023; 37:1629-1650. [PMID: 36829305 DOI: 10.1080/13854046.2023.2181223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
Objective: Mood- and stress-related disorders commonly cause attentional and memory impairments in middle-aged individuals. In memory testing, these impairments can be mistakenly interpreted as symptoms of dementia; thus, more reliable diagnostic approaches are needed. The present work defines the discriminant accuracy of the Dementia Apraxia Test (DATE) between psychiatric conditions and early-onset Alzheimer's disease (AD) on its own and in combination with memory tests. Method: The consecutive sample included 50-70-year-old patients referred to dementia investigations for recent cognitive and/or affective symptoms. The DATE was administered and scored as a blinded measurement, and a receiver operating curve analysis was used to define the optimal diagnostic cut-off score. Results: A total of 24 patients were diagnosed with probable AD (mean age 61 ± 4) and 23 with a psychiatric condition (mean age 57 ± 4). The AD patients showed remarkable limb apraxia, but the psychiatric patients mainly performed at a healthy level on the DATE. The test showed a total discriminant accuracy of 87% for a total sum cut-off of 47 (sensitivity 79% and specificity 96%). The limb subscale alone reached an accuracy of 91% for a cut-off of 20 (sensitivity 83% and specificity 100%). All memory tests were diagnostically less accurate, while the combination of the limb praxis subscale and a verbal episodic memory test suggested a correct diagnosis in all but one patient. Conclusions: Apraxia testing may improve the accuracy of differentiation between AD and psychiatric aetiologies. Its potential in severe and chronic psychiatric conditions should be examined in the future.
Collapse
Affiliation(s)
- Aino Yliranta
- Faculty of Social Sciences, Tampere University
- Neurology Clinic, Lapland Central Hospital
| | | | | | | | | |
Collapse
|
7
|
Su WC, Culotta M, Mueller J, Tsuzuki D, Bhat A. fNIRS-Based Differences in Cortical Activation during Tool Use, Pantomimed Actions, and Meaningless Actions between Children with and without Autism Spectrum Disorder (ASD). Brain Sci 2023; 13:876. [PMID: 37371356 DOI: 10.3390/brainsci13060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Children with autism spectrum disorder (ASD) have difficulties with tool use and pantomime actions. The current study utilized functional near-infrared spectroscopy (fNIRS) to examine the neural mechanisms underlying these gestural difficulties. Thirty-one children with and without ASD (age (mean ± SE) = 11.0 ± 0.6) completed a naturalistic peg-hammering task using an actual hammer (hammer condition), pantomiming hammering actions (pantomime condition), and performing meaningless actions with similar joint motions (meaningless condition). Children with ASD exhibited poor praxis performance (praxis error: TD = 17.9 ± 1.7; ASD = 27.0 ± 2.6, p < 0.01), which was significantly correlated with their cortical activation (R = 0.257 to 0.543). Both groups showed left-lateralized activation, but children with ASD demonstrated more bilateral activation during all gestural conditions. Compared to typically developing children, children with ASD showed hyperactivation of the inferior parietal lobe and hypoactivation of the middle/inferior frontal and middle/superior temporal regions. Our findings indicate intact technical reasoning (typical left-IPL activation) but atypical visuospatial and proprioceptive processing (hyperactivation of the right IPL) during tool use in children with ASD. These results have important implications for clinicians and researchers, who should focus on facilitating/reducing the burden of visuospatial and proprioceptive processing in children with ASD. Additionally, fNIRS-related biomarkers could be used for early identification through early object play/tool use and to examine neural effects following gesture-based interventions.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
- Biomechanics & Movement Science Program, College of Health Sciences, University of Delaware, Newark, DE 19713, USA
| | - McKenzie Culotta
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
- Biomechanics & Movement Science Program, College of Health Sciences, University of Delaware, Newark, DE 19713, USA
| | - Jessica Mueller
- Department of Behavioral Health, Swank Autism Center, A. I. du Pont Nemours Children's Hospital, Wilmington, DE 19803, USA
| | - Daisuke Tsuzuki
- Department of Information Science, Faculty of Science and Technology, Kochi University, Kochi 780-8520, Japan
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, DE 19713, USA
- Biomechanics & Movement Science Program, College of Health Sciences, University of Delaware, Newark, DE 19713, USA
- Interdisciplinary Neuroscience Graduate (ING) Program, Department of Psychological & Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
Rissman L, Horton L, Goldin-Meadow S. Universal Constraints on Linguistic Event Categories: A Cross-Cultural Study of Child Homesign. Psychol Sci 2023; 34:298-312. [PMID: 36608154 DOI: 10.1177/09567976221140328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Languages carve up conceptual space in varying ways-for example, English uses the verb cut both for cutting with a knife and for cutting with scissors, but other languages use distinct verbs for these events. We asked whether, despite this variability, there are universal constraints on how languages categorize events involving tools (e.g., knife-cutting). We analyzed descriptions of tool events from two groups: (a) 43 hearing adult speakers of English, Spanish, and Chinese and (b) 10 deaf child homesigners ages 3 to 11 (each of whom has created a gestural language without input from a conventional language model) in five different countries (Guatemala, Nicaragua, United States, Taiwan, Turkey). We found alignment across these two groups-events that elicited tool-prominent language among the spoken-language users also elicited tool-prominent language among the homesigners. These results suggest ways of conceptualizing tool events that are so prominent as to constitute a universal constraint on how events are categorized in language.
Collapse
Affiliation(s)
- Lilia Rissman
- Department of Psychology, University of Wisconsin-Madison
| | - Laura Horton
- Language Sciences Program, University of Wisconsin-Madison
| | - Susan Goldin-Meadow
- Department of Psychology, The University of Chicago.,Center for Gesture, Sign, and Language, The University of Chicago
| |
Collapse
|
9
|
The visual encoding of graspable unfamiliar objects. PSYCHOLOGICAL RESEARCH 2023; 87:452-461. [PMID: 35322276 DOI: 10.1007/s00426-022-01673-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
We explored by eye-tracking the visual encoding modalities of participants (N = 20) involved in a free-observation task in which three repetitions of ten unfamiliar graspable objects were administered. Then, we analysed the temporal allocation (t = 1500 ms) of visual-spatial attention to objects' manipulation (i.e., the part aimed at grasping the object) and functional (i.e., the part aimed at recognizing the function and identity of the object) areas. Within the first 750 ms, participants tended to shift their gaze on the functional areas while decreasing their attention on the manipulation areas. Then, participants reversed this trend, decreasing their visual-spatial attention to the functional areas while fixing the manipulation areas relatively more. Crucially, the global amount of visual-spatial attention for objects' functional areas significantly decreased as an effect of stimuli repetition while remaining stable for the manipulation areas, thus indicating stimulus familiarity effects. These findings support the action reappraisal theoretical approach, which considers object/tool processing as abilities emerging from semantic, technical/mechanical, and sensorimotor knowledge integration.
Collapse
|
10
|
Humphreys GF, Tibon R. Dual-axes of functional organisation across lateral parietal cortex: the angular gyrus forms part of a multi-modal buffering system. Brain Struct Funct 2023; 228:341-352. [PMID: 35670844 PMCID: PMC9813060 DOI: 10.1007/s00429-022-02510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/08/2022] [Indexed: 01/09/2023]
Abstract
Decades of neuropsychological and neuroimaging evidence have implicated the lateral parietal cortex (LPC) in a myriad of cognitive domains, generating numerous influential theoretical models. However, these theories fail to explain why distinct cognitive activities appear to implicate common neural regions. Here we discuss a unifying model in which the angular gyrus forms part of a wider LPC system with a core underlying neurocomputational function; the multi-sensory buffering of spatio-temporally extended representations. We review the principles derived from computational modelling with neuroimaging task data and functional and structural connectivity measures that underpin the unified neurocomputational framework. We propose that although a variety of cognitive activities might draw on shared underlying machinery, variations in task preference across angular gyrus, and wider LPC, arise from graded changes in the underlying structural connectivity of the region to different input/output information sources. More specifically, we propose two primary axes of organisation: a dorsal-ventral axis and an anterior-posterior axis, with variations in task preference arising from underlying connectivity to different core cognitive networks (e.g. the executive, language, visual, or episodic memory networks).
Collapse
Affiliation(s)
- Gina F Humphreys
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
| | - Roni Tibon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK.
- School of Psychology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
11
|
Hodgson VJ, Lambon Ralph MA, Jackson RL. The cross-domain functional organization of posterior lateral temporal cortex: insights from ALE meta-analyses of 7 cognitive domains spanning 12,000 participants. Cereb Cortex 2022; 33:4990-5006. [PMID: 36269034 PMCID: PMC10110446 DOI: 10.1093/cercor/bhac394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
The posterior lateral temporal cortex is implicated in many verbal, nonverbal, and social cognitive domains and processes. Yet without directly comparing these disparate domains, the region's organization remains unclear; do distinct processes engage discrete subregions, or could different domains engage shared neural correlates and processes? Here, using activation likelihood estimation meta-analyses, the bilateral posterior lateral temporal cortex subregions engaged in 7 domains were directly compared. These domains comprised semantics, semantic control, phonology, biological motion, face processing, theory of mind, and representation of tools. Although phonology and biological motion were predominantly associated with distinct regions, other domains implicated overlapping areas, perhaps due to shared underlying processes. Theory of mind recruited regions implicated in semantic representation, tools engaged semantic control areas, and faces engaged subregions for biological motion and theory of mind. This cross-domain approach provides insight into how posterior lateral temporal cortex is organized and why.
Collapse
Affiliation(s)
- Victoria J Hodgson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Rebecca L Jackson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom.,Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
12
|
Bailey KM, Giordano BL, Kaas AL, Smith FW. Decoding sounds depicting hand-object interactions in primary somatosensory cortex. Cereb Cortex 2022; 33:3621-3635. [PMID: 36045002 DOI: 10.1093/cercor/bhac296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Neurons, even in the earliest sensory regions of cortex, are subject to a great deal of contextual influences from both within and across modality connections. Recent work has shown that primary sensory areas can respond to and, in some cases, discriminate stimuli that are not of their target modality: for example, primary somatosensory cortex (SI) discriminates visual images of graspable objects. In the present work, we investigated whether SI would discriminate sounds depicting hand-object interactions (e.g. bouncing a ball). In a rapid event-related functional magnetic resonance imaging experiment, participants listened attentively to sounds from 3 categories: hand-object interactions, and control categories of pure tones and animal vocalizations, while performing a one-back repetition detection task. Multivoxel pattern analysis revealed significant decoding of hand-object interaction sounds within SI, but not for either control category. Crucially, in the hand-sensitive voxels defined from an independent tactile localizer, decoding accuracies were significantly higher for hand-object interactions compared to pure tones in left SI. Our findings indicate that simply hearing sounds depicting familiar hand-object interactions elicit different patterns of activity in SI, despite the complete absence of tactile stimulation. These results highlight the rich contextual information that can be transmitted across sensory modalities even to primary sensory areas.
Collapse
Affiliation(s)
- Kerri M Bailey
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Bruno L Giordano
- Institut des Neurosciences de La Timone, CNRS UMR 7289, Université Aix-Marseille, Marseille CNRS UMR 7289, France
| | - Amanda L Kaas
- Department of Cognitive Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| | - Fraser W Smith
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
13
|
Kobayashi R, Sakurai N, Nagasaka K, Kasai S, Kodama N. Relationship between Tactile Sensation, Motor Activity, and Differential Brain Activity in Young Individuals. Brain Sci 2022; 12:brainsci12070924. [PMID: 35884731 PMCID: PMC9321563 DOI: 10.3390/brainsci12070924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, we compared the differences in brain activation associated with the different types of objects using functional magnetic resonance imaging (fMRI). Twenty-six participants in their 20s underwent fMRI while grasping four different types of objects. After the experiment, all of the participants completed a questionnaire based on the Likert Scale, which asked them about the sensations they experienced while grasping each object (comfort, hardness, pain, ease in grasping). We investigated the relationship between brain activity and the results of the survey; characteristic brain activity for each object was correlated with the results of the questionnaire, indicating that each object produced a different sensation response in the participants. Additionally, we observed brain activity in the primary somatosensory cortex (postcentral gyrus), the primary motor cortex (precentral gyrus), and the cerebellum exterior during the gripping task. Our study shows that gripping different objects produces activity in specific and distinct brain regions and suggests an “action appraisal” mechanism, which is considered to be the act of integrating multiple different sensory information and connecting it to actual action. To the best of our knowledge, this is the first study to observe brain activity in response to tactile stimuli and motor activity simultaneously.
Collapse
Affiliation(s)
- Ryota Kobayashi
- CLAIRVO TECHNOLOGIES, Inc., 1-4-2 Ohtemachi, Chiyoda-ku, Tokyo 100-8088, Japan
- Correspondence: (R.K.); (N.K.)
| | - Noriko Sakurai
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan; (N.S.); (S.K.)
| | - Kazuaki Nagasaka
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan;
| | - Satoshi Kasai
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan; (N.S.); (S.K.)
| | - Naoki Kodama
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan; (N.S.); (S.K.)
- Correspondence: (R.K.); (N.K.)
| |
Collapse
|
14
|
Federico G, Reynaud E, Navarro J, Lesourd M, Gaujoux V, Lamberton F, Ibarrola D, Cavaliere C, Alfano V, Aiello M, Salvatore M, Seguin P, Schnebelen D, Brandimonte MA, Rossetti Y, Osiurak F. The cortical thickness of the area PF of the left inferior parietal cortex mediates technical-reasoning skills. Sci Rep 2022; 12:11840. [PMID: 35821259 PMCID: PMC9276675 DOI: 10.1038/s41598-022-15587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Most recent research highlights how a specific form of causal understanding, namely technical reasoning, may support the increasing complexity of tools and techniques developed by humans over generations, i.e., the cumulative technological culture (CTC). Thus, investigating the neurocognitive foundations of technical reasoning is essential to comprehend the emergence of CTC in our lineage. Whereas functional neuroimaging evidence started to highlight the critical role of the area PF of the left inferior parietal cortex (IPC) in technical reasoning, no studies explored the links between the structural characteristics of such a brain region and technical reasoning skills. Therefore, in this study, we assessed participants’ technical-reasoning performance by using two ad-hoc psycho-technical tests; then, we extracted from participants’ 3 T T1-weighted magnetic-resonance brain images the cortical thickness (i.e., a volume-related measure which is associated with cognitive performance as reflecting the size, density, and arrangement of cells in a brain region) of all the IPC regions for both hemispheres. We found that the cortical thickness of the left area PF predicts participants’ technical-reasoning performance. Crucially, we reported no correlations between technical reasoning and the other IPC regions, possibly suggesting the specificity of the left area PF in generating technical knowledge. We discuss these findings from an evolutionary perspective, by speculating about how the evolution of parietal lobes may have supported the emergence of technical reasoning in our lineage.
Collapse
Affiliation(s)
- Giovanni Federico
- IRCCS Synlab SDN, Via Emanuele Gianturco, 113, 80143, Naples, Italy.
| | - Emanuelle Reynaud
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France
| | - Jordan Navarro
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France
| | - Mathieu Lesourd
- Laboratoire de recherches Intégratives en Neurosciences et Psychologie Cognitive (UR 481), Université de Bourgogne Franche-Comté, Besançon, France.,MSHE Ledoux, CNRS, Université de Bourgogne Franche-Comté, F-25000, Besançon, France
| | - Vivien Gaujoux
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France
| | - Franck Lamberton
- CERMEP-Imagerie du vivant, MRI Department and CNRS UMS3453, Lyon, France
| | - Danièle Ibarrola
- CERMEP-Imagerie du vivant, MRI Department and CNRS UMS3453, Lyon, France
| | - Carlo Cavaliere
- IRCCS Synlab SDN, Via Emanuele Gianturco, 113, 80143, Naples, Italy
| | - Vincenzo Alfano
- IRCCS Synlab SDN, Via Emanuele Gianturco, 113, 80143, Naples, Italy
| | - Marco Aiello
- IRCCS Synlab SDN, Via Emanuele Gianturco, 113, 80143, Naples, Italy
| | - Marco Salvatore
- IRCCS Synlab SDN, Via Emanuele Gianturco, 113, 80143, Naples, Italy
| | - Perrine Seguin
- Centre de Recherche en Neurosciences de Lyon (CRNL), Computation, Cognition and Neurophysiology Team (Inserm UMR_S 1028-CNRS-UMR 5292-Université de Lyon), Bron, France
| | - Damien Schnebelen
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France
| | | | - Yves Rossetti
- Centre de Recherche en Neurosciences de Lyon (CRNL), Trajectoires Team (Inserm UMR_S 1028-CNRS-UMR 5292-Université de Lyon), Bron, France.,Mouvement et Handicap and Neuro-Immersion, Hospices Civils de Lyon et Centre de Recherche en Neurosciences de Lyon, Hôpital Henry Gabrielle, St Genis Laval, France
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
15
|
Ghio M, Conca F, Bellebaum C, Perani D, Tettamanti M. Effective connectivity within the neural system for object-directed action representation during aware and unaware tool processing. Cortex 2022; 153:55-65. [DOI: 10.1016/j.cortex.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/15/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
|
16
|
Wu MH, Anderson AJ, Jacobs RA, Raizada RDS. Analogy-Related Information Can Be Accessed by Simple Addition and Subtraction of fMRI Activation Patterns, Without Participants Performing any Analogy Task. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:1-17. [PMID: 37215331 PMCID: PMC10158578 DOI: 10.1162/nol_a_00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
Analogical reasoning, for example, inferring that teacher is to chalk as mechanic is to wrench, plays a fundamental role in human cognition. However, whether brain activity patterns of individual words are encoded in a way that could facilitate analogical reasoning is unclear. Recent advances in computational linguistics have shown that information about analogical problems can be accessed by simple addition and subtraction of word embeddings (e.g., wrench = mechanic + chalk - teacher). Critically, this property emerges in artificial neural networks that were not trained to produce analogies but instead were trained to produce general-purpose semantic representations. Here, we test whether such emergent property can be observed in representations in human brains, as well as in artificial neural networks. fMRI activation patterns were recorded while participants viewed isolated words but did not perform analogical reasoning tasks. Analogy relations were constructed from word pairs that were categorically or thematically related, and we tested whether the predicted fMRI pattern calculated with simple arithmetic was more correlated with the pattern of the target word than other words. We observed that the predicted fMRI patterns contain information about not only the identity of the target word but also its category and theme (e.g., teaching-related). In summary, this study demonstrated that information about analogy questions can be reliably accessed with the addition and subtraction of fMRI patterns, and that, similar to word embeddings, this property holds for task-general patterns elicited when participants were not explicitly told to perform analogical reasoning.
Collapse
Affiliation(s)
- Meng-Huan Wu
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York, USA
| | - Andrew J. Anderson
- Department of Neuroscience, University of Rochester, Rochester, New York, USA
- Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York, USA
| | - Robert A. Jacobs
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York, USA
| | - Rajeev D. S. Raizada
- Department of Brain & Cognitive Sciences, University of Rochester, Rochester, New York, USA
| |
Collapse
|
17
|
Chen L, Zhu S, Feng B, Zhang X, Jiang Y. Altered effective connectivity between lateral occipital cortex and superior parietal lobule contributes to manipulability-related modulation of the Ebbinghaus illusion. Cortex 2022; 147:194-205. [DOI: 10.1016/j.cortex.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/30/2021] [Accepted: 11/30/2021] [Indexed: 11/03/2022]
|
18
|
The evolution of combinatoriality and compositionality in hominid tool use: a comparative perspective. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-021-00267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Korisky U, Mudrik L. Dimensions of Perception: 3D Real-Life Objects Are More Readily Detected Than Their 2D Images. Psychol Sci 2021; 32:1636-1648. [PMID: 34555305 DOI: 10.1177/09567976211010718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Most of our interactions with our environment involve manipulating real 3D objects. Accordingly, 3D objects seem to enjoy preferential processing compared with 2D images, for example, in capturing attention or being better remembered. But are they also more readily perceived? Thus far, the possibility of preferred detection for real 3D objects could not be empirically tested because suppression from awareness has been applied only to on-screen stimuli. Here, using a variant of continuous flash suppression (CFS) with augmented-reality goggles ("real-life" CFS), we managed to suppress both real 3D objects and their 2D representations. In 20 healthy young adults, real objects broke suppression faster than their photographs. Using 3D printing, we also showed in 50 healthy young adults that this finding held only for meaningful objects, whereas no difference was found for meaningless, novel ones (a similar trend was observed in another experiment with 20 subjects, yet it did not reach significance). This suggests that the effect might be mediated by affordances facilitating detection of 3D objects under interocular suppression.
Collapse
Affiliation(s)
- Uri Korisky
- School of Psychological Sciences, Tel Aviv University
| | - Liad Mudrik
- School of Psychological Sciences, Tel Aviv University.,Sagol School of Neuroscience, Tel Aviv University
| |
Collapse
|
20
|
Asyraff A, Lemarchand R, Tamm A, Hoffman P. Stimulus-independent neural coding of event semantics: Evidence from cross-sentence fMRI decoding. Neuroimage 2021; 236:118073. [PMID: 33878380 PMCID: PMC8270886 DOI: 10.1016/j.neuroimage.2021.118073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 11/25/2022] Open
Abstract
Multivariate neuroimaging studies indicate that the brain represents word and object concepts in a format that readily generalises across stimuli. Here we investigated whether this was true for neural representations of simple events described using sentences. Participants viewed sentences describing four events in different ways. Multivariate classifiers were trained to discriminate the four events using a subset of sentences, allowing us to test generalisation to novel sentences. We found that neural patterns in a left-lateralised network of frontal, temporal and parietal regions discriminated events in a way that generalised successfully over changes in the syntactic and lexical properties of the sentences used to describe them. In contrast, decoding in visual areas was sentence-specific and failed to generalise to novel sentences. In the reverse analysis, we tested for decoding of syntactic and lexical structure, independent of the event being described. Regions displaying this coding were limited and largely fell outside the canonical semantic network. Our results indicate that a distributed neural network represents the meaning of event sentences in a way that is robust to changes in their structure and form. They suggest that the semantic system disregards the surface properties of stimuli in order to represent their underlying conceptual significance.
Collapse
Affiliation(s)
- Aliff Asyraff
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Rafael Lemarchand
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Andres Tamm
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
21
|
Modulation of Working Memory and Resting-State fMRI by tDCS of the Right Frontoparietal Network. Neural Plast 2021; 2021:5594305. [PMID: 34349797 PMCID: PMC8328716 DOI: 10.1155/2021/5594305] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Many cognitive functions, including working memory, are processed within large-scale brain networks. We targeted the right frontoparietal network (FPN) with one session of transcranial direct current stimulation (tDCS) in an attempt to modulate the cognitive speed of a visual working memory task (WMT) in 27 young healthy subjects using a double-blind crossover design. We further explored the neural underpinnings of induced changes by performing resting-state fMRI prior to and immediately after each stimulation session with the main focus on the interaction between a task-positive FPN and a task-negative default mode network (DMN). Twenty minutes of 2 mA anodal tDCS was superior to sham stimulation in terms of cognitive speed manipulation of a subtask with processing of objects and tools in unconventional views (i.e., the higher cognitive load subtask of the offline WMT). This result was linked to the magnitude of resting-state functional connectivity decreases between the stimulated FPN seed and DMN seeds. We provide the first evidence for the action reappraisal mechanism of object and tool processing. Modulation of cognitive speed of the task by tDCS was reflected by FPN-DMN cross-talk changes.
Collapse
|
22
|
Lesourd M, Servant M, Baumard J, Reynaud E, Ecochard C, Medjaoui FT, Bartolo A, Osiurak F. Semantic and action tool knowledge in the brain: Identifying common and distinct networks. Neuropsychologia 2021; 159:107918. [PMID: 34166668 DOI: 10.1016/j.neuropsychologia.2021.107918] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022]
Abstract
Most cognitive models of apraxia assume that impaired tool use results from a deficit occurring at the conceptual level, which contains dedicated information about tool use, namely, semantic and action tool knowledge. Semantic tool knowledge contains information about the prototypical use of familiar tools, such as function (e.g., a hammer and a mallet share the same purpose) and associative relations (e.g., a hammer goes with a nail). Action tool knowledge contains information about how to manipulate tools, such as hand posture and kinematics. The present review aimed to better understand the neural correlates of action and semantic tool knowledge, by focusing on activation, stimulation and patients' studies (left brain-damaged patients). We found that action and semantic tool knowledge rely upon a large brain network including temporal and parietal regions. Yet, while action tool knowledge calls into play the intraparietal sulcus, function relations mostly involve the anterior and posterior temporal lobe. Associative relations engaged the angular and the posterior middle temporal gyrus. Moreover, we found that hand posture and kinematics both tapped into the inferior parietal lobe and the lateral occipital temporal cortex, but no region specificity was found for one or the other representation. Our results point out the major role of both posterior middle temporal gyrus and inferior parietal lobe for action and semantic tool knowledge. They highlight the common and distinct brain networks involved in action and semantic tool networks and spur future directions on this topic.
Collapse
Affiliation(s)
- Mathieu Lesourd
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, F-25000, Besançon, France; MSHE Ledoux, CNRS, Université de Bourgogne Franche-Comté, F-25000, Besançon, France.
| | - Mathieu Servant
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université Bourgogne Franche-Comté, F-25000, Besançon, France; MSHE Ledoux, CNRS, Université de Bourgogne Franche-Comté, F-25000, Besançon, France
| | | | - Emanuelle Reynaud
- Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Université Lyon 2, Bron, France
| | | | | | - Angela Bartolo
- Univ. Lille, CNRS, UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, F-59000, Lille, France; Institut Universitaire de France (IUF), France
| | - François Osiurak
- Laboratoire d'Étude des Mécanismes Cognitifs (EA 3082), Université Lyon 2, Bron, France; Institut Universitaire de France (IUF), France
| |
Collapse
|
23
|
Knights E, Mansfield C, Tonin D, Saada J, Smith FW, Rossit S. Hand-Selective Visual Regions Represent How to Grasp 3D Tools: Brain Decoding during Real Actions. J Neurosci 2021; 41:5263-5273. [PMID: 33972399 PMCID: PMC8211542 DOI: 10.1523/jneurosci.0083-21.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023] Open
Abstract
Most neuroimaging experiments that investigate how tools and their actions are represented in the brain use visual paradigms where tools or hands are displayed as 2D images and no real movements are performed. These studies discovered selective visual responses in occipitotemporal and parietal cortices for viewing pictures of hands or tools, which are assumed to reflect action processing, but this has rarely been directly investigated. Here, we examined the responses of independently visually defined category-selective brain areas when participants grasped 3D tools (N = 20; 9 females). Using real-action fMRI and multivoxel pattern analysis, we found that grasp typicality representations (i.e., whether a tool is grasped appropriately for use) were decodable from hand-selective areas in occipitotemporal and parietal cortices, but not from tool-, object-, or body-selective areas, even if partially overlapping. Importantly, these effects were exclusive for actions with tools, but not for biomechanically matched actions with control nontools. In addition, grasp typicality decoding was significantly higher in hand than tool-selective parietal regions. Notably, grasp typicality representations were automatically evoked even when there was no requirement for tool use and participants were naive to object category (tool vs nontools). Finding a specificity for typical tool grasping in hand-selective, rather than tool-selective, regions challenges the long-standing assumption that activation for viewing tool images reflects sensorimotor processing linked to tool manipulation. Instead, our results show that typicality representations for tool grasping are automatically evoked in visual regions specialized for representing the human hand, the primary tool of the brain for interacting with the world.
Collapse
Affiliation(s)
- Ethan Knights
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, United Kingdom
| | - Courtney Mansfield
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Diana Tonin
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Janak Saada
- Department of Radiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich NR4 7UY, United Kingdom
| | - Fraser W Smith
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Stéphanie Rossit
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
24
|
Valério D, Santana I, Aguiar de Sousa D, Schu G, Leal G, Pavão Martins I, Almeida J. Knowing how to do it or doing it? A double dissociation between tool-gesture production and tool-gesture knowledge. Cortex 2021; 141:449-464. [PMID: 34147827 DOI: 10.1016/j.cortex.2021.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/05/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Deciding how to manipulate an object to fulfill a goal requires accessing different types of object-related information. How these different types of information are integrated and represented in the brain is still an open question. Here, we focus on examining two types of object-related information-tool-gesture knowledge (i.e., how to manipulate an object), and tool-gesture production (i.e., the actual manipulation of an object). We show a double dissociation between tool-gesture knowledge and tool-gesture production: Patient FP presents problems in pantomiming tool use in the context of a spared ability to perform judgments about an object's manipulation, whereas Patient LS can pantomime tool use, but is impaired at performing manipulation judgments. Moreover, we compared the location of the lesions in FP and LS with those sustained by two classic ideomotor apraxic patients (IMA), using a cortical thickness approach. Patient FP presented lesions in common with our classic IMA that included the left inferior parietal lobule (IPL), and specifically the supramarginal gyrus, the left parietal operculum, the left premotor cortex and the left inferior frontal gyrus, whereas Patient LS and our classic IMA patients presented common lesions in regions of the superior parietal lobule (SPL), motor areas (as primary somatosensory cortex, premotor cortex and primary motor cortex), and frontal areas. Our results show that tool-gesture production and tool-gesture knowledge can be behaviorally and neurally doubly dissociated and put strong constraints on extant theories of action and object recognition and use.
Collapse
Affiliation(s)
- Daniela Valério
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Isabel Santana
- Neurology Department and Dementia Clinic, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Guilherme Schu
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Gabriela Leal
- Language Research Laboratory, Faculty of Medicine, University of Lisbon, Portugal
| | - Isabel Pavão Martins
- Neurology Department, Hospital de Santa Maria, Lisbon, Portugal; Language Research Laboratory, Faculty of Medicine, University of Lisbon, Portugal
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal.
| |
Collapse
|
25
|
Bergström F, Wurm M, Valério D, Lingnau A, Almeida J. Decoding stimuli (tool-hand) and viewpoint invariant grasp-type information. Cortex 2021; 139:152-165. [PMID: 33873036 DOI: 10.1016/j.cortex.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 01/30/2023]
Abstract
When we see a manipulable object (henceforth tool) or a hand performing a grasping movement, our brain is automatically tuned to how that tool can be grasped (i.e., its affordance) or what kind of grasp that hand is performing (e.g., a power or precision grasp). However, it remains unclear where visual information related to tools or hands are transformed into abstract grasp representations. We therefore investigated where different levels of abstractness in grasp information are processed: grasp information that is invariant to the kind of stimuli that elicits it (tool-hand invariance); and grasp information that is hand-specific but viewpoint-invariant (viewpoint invariance). We focused on brain areas activated when viewing both tools and hands, i.e., the posterior parietal cortices (PPC), ventral premotor cortices (PMv), and lateral occipitotemporal cortex/posterior middle temporal cortex (LOTC/pMTG). To test for invariant grasp representations, we presented participants with tool images and grasp videos (from first or third person perspective; 1pp or 3pp) inside an MRI scanner, and cross-decoded power versus precision grasps across (i) grasp perspectives (viewpoint invariance), (ii) tool images and grasp 1pp videos (tool-hand 1pp invariance), and (iii) tool images and grasp 3pp videos (tool-hand 3pp invariance). Tool-hand 1pp, but not tool-hand 3pp, invariant grasp information was found in left PPC, whereas viewpoint-invariant information was found bilaterally in PPC, left PMv, and left LOTC/pMTG. These findings suggest different levels of abstractness-where visual information is transformed into stimuli-invariant grasp representations/tool affordances in left PPC, and viewpoint invariant but hand-specific grasp representations in the hand network.
Collapse
Affiliation(s)
- Fredrik Bergström
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal.
| | - Moritz Wurm
- Center for Mind/ Brain Sciences (CIMeC), University of Trento, Rovereto, TN, Italy
| | - Daniela Valério
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Angelika Lingnau
- Center for Mind/ Brain Sciences (CIMeC), University of Trento, Rovereto, TN, Italy; Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| |
Collapse
|
26
|
Intrinsic connectivity of anterior temporal lobe relates to individual differences in semantic retrieval for landmarks. Cortex 2020; 134:76-91. [PMID: 33259970 DOI: 10.1016/j.cortex.2020.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023]
Abstract
Contemporary neuroscientific accounts suggest that ventral anterior temporal lobe (ATL) acts as a bilateral heteromodal semantic hub, which is particularly critical for the specific-level knowledge needed to recognise unique entities, such as familiar landmarks and faces. There may also be graded functional differences between left and right ATL, relating to effects of modality (linguistic versus non-linguistic) and category (e.g., knowledge of people and places). Individual differences in intrinsic connectivity from left and right ATL might be associated with variation in semantic categorisation performance across these categories and modalities. We recorded resting-state fMRI in 74 individuals and, in a separate session, examined semantic categorisation. People with greater connectivity between left and right ATL were more efficient at categorising landmarks (e.g., Eiffel Tower), especially when these were presented visually. In addition, participants who showed stronger connectivity from right than left ATL to medial occipital cortex showed more efficient semantic categorisation of landmarks regardless of modality of presentation. These results can be interpreted in terms of graded differences in the patterns of connectivity across left and right ATL, which give rise to a bilateral yet partially segregated semantic 'hub'. More specifically, right ATL connectivity supports the efficient semantic categorisation of landmarks.
Collapse
|
27
|
Xiong A, Proctor RW, Xu Y, Zelaznik HN. Visual salience of 3D and 2D spoons determines S-R mapping and flanker effects. Q J Exp Psychol (Hove) 2020; 74:241-253. [PMID: 33063606 DOI: 10.1177/1747021820959599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study tested the hypothesis that affordances for grasping with the corresponding hand are activated more strongly by three-dimensional (3D) real objects than by two-dimensional (2D) pictures of the objects. In Experiment 1, participants made left and right keypress responses to the handle or functional end (tip) of an eating utensil using compatible and incompatible mappings. In one session, stimuli were spoons mounted horizontally on a blackboard with the sides to which the handle and tip pointed varying randomly. In the other, stimuli were pictures of spoons displayed on a black computer screen. Three-dimensional and 2D sessions showed a similar benefit for compatible mapping when the tip was relevant and a small cost of compatible mapping when the handle was relevant. Experiment 2 used a flanker task in which participants responded compatibly to the location of the handle or the tip, and spoons located above and below the target spoon could have congruent or incongruent orientations. The difference between 3D and 2D displays was not obtained in the flanker effect for reaction time. There was little evidence that 3D objects activate grasping affordances that 2D images do not. Instead, we argue that visual salience of the tip is the critical factor determining these correspondence effects.
Collapse
Affiliation(s)
- Aiping Xiong
- College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA
| | | | - Yaqi Xu
- Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
28
|
Using tools effectively despite defective hand posture: A single-case study. Cortex 2020; 129:406-422. [DOI: 10.1016/j.cortex.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 04/22/2020] [Indexed: 12/28/2022]
|
29
|
General and feature-based semantic representations in the semantic network. Sci Rep 2020; 10:8931. [PMID: 32488152 PMCID: PMC7265368 DOI: 10.1038/s41598-020-65906-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/12/2020] [Indexed: 01/07/2023] Open
Abstract
How semantic representations are manifest over the brain remains a topic of active debate. A semantic representation may be determined by specific semantic features (e.g. sensorimotor information), or may abstract away from specific features and represent generalized semantic characteristics (general semantic representation). Here we tested whether nodes of the semantic system code for a general semantic representation and/or possess representational spaces linked to particular semantic features. In an fMRI study, eighteen participants performed a typicality judgment task with written words drawn from sixteen different categories. Multivariate pattern analysis (MVPA) and representational similarity analysis (RSA) were adopted to investigate the sensitivity of the brain regions to semantic content and the type of semantic representation coded (general or feature-based). We replicated previous findings of sensitivity to general semantic similarity in posterior middle/inferior temporal gyrus (pMTG/ITG) and precuneus (PC) and additionally observed general semantic representations in ventromedial prefrontal cortex (PFC). Finally, two brain regions of the semantic network were sensitive to semantic features: the left pMTG/ITG was sensitive to haptic perception and the left ventral temporal cortex (VTC) to size. This finding supports the involvement of both general semantic representation and feature-based representations in the brain's semantic system.
Collapse
|
30
|
Casiraghi L, Alahmadi AAS, Monteverdi A, Palesi F, Castellazzi G, Savini G, Friston K, Gandini Wheeler-Kingshott CAM, D'Angelo E. I See Your Effort: Force-Related BOLD Effects in an Extended Action Execution-Observation Network Involving the Cerebellum. Cereb Cortex 2020; 29:1351-1368. [PMID: 30615116 PMCID: PMC6373696 DOI: 10.1093/cercor/bhy322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Action observation (AO) is crucial for motor planning, imitation learning, and social interaction, but it is not clear whether and how an action execution–observation network (AEON) processes the effort of others engaged in performing actions. In this functional magnetic resonance imaging (fMRI) study, we used a “squeeze ball” task involving different grip forces to investigate whether AEON activation showed similar patterns when executing the task or observing others performing it. Both in action execution, AE (subjects performed the visuomotor task) and action observation, AO (subjects watched a video of the task being performed by someone else), the fMRI signal was detected in cerebral and cerebellar regions. These responses showed various relationships with force mapping onto specific areas of the sensorimotor and cognitive systems. Conjunction analysis of AE and AO was repeated for the “0th” order and linear and nonlinear responses, and revealed multiple AEON nodes remapping the detection of actions, and also effort, of another person onto the observer’s own cerebrocerebellar system. This result implies that the AEON exploits the cerebellum, which is known to process sensorimotor predictions and simulations, performing an internal assessment of forces and integrating information into high-level schemes, providing a crucial substrate for action imitation.
Collapse
Affiliation(s)
- Letizia Casiraghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Adnan A S Alahmadi
- Diagnostic Radiography Technology Department, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah 80200-21589, Saudi Arabia.,NMR Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, Institute of Neurology, University College London (UCL), London, UK
| | - Anita Monteverdi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Brain MRI 3T Center, Neuroradiology Unit, IRCCS Mondino Foundation, Pavia, PV, Italy
| | - Gloria Castellazzi
- NMR Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, Institute of Neurology, University College London (UCL), London, UK.,Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Giovanni Savini
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Physics, University of Milan, Milan, Italy
| | - Karl Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London (UCL), London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,NMR Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, Institute of Neurology, University College London (UCL), London, UK.,Brain MRI 3T Mondino Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
31
|
Yliranta A, Jehkonen M. Limb and face apraxias in frontotemporal dementia: A systematic scoping review. Cortex 2020; 129:529-547. [PMID: 32418629 DOI: 10.1016/j.cortex.2020.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/12/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the literature for frequencies, profiles and neural correlates of limb and face apraxias in frontotemporal dementia (FTD). METHOD The search conducted in Ovid Medline, PsycINFO and Scopus yielded 487 non-duplicate records, and 43 were included in the final analysis. RESULTS Apraxias are evident in diverse forms in all clinical variants of FTD within the first four years of the disease. Face apraxia and productive limb apraxia co-occur in the behavioural and nonfluent variants. The logopenic variant resembles Alzheimer's disease in terms of pronounced parietal limb apraxia and absence of face apraxia. The semantic variant exhibits conceptual praxis deficits together with relatively preserved imitation skills. Concerning the genetic variants of FTD, productive limb apraxia is common among carriers of the progranulin gene mutation, and subtle gestural alterations have been documented among carriers of the chromosome 9 open reading frame 72 gene mutation before the expected disease onset. The data on neural correlations suggest that the breakdown of praxis results from bilateral cortical and subcortical damage in FTD and that Alzheimer-type pathology of the cerebrospinal fluid increases the severity of limb apraxia in all of the variants. Face apraxia correlates with degeneration of the medial and superior frontal cortices. CONCLUSIONS Each of the clinical variants of FTD exhibits a characteristic profile of apraxias that may support early differentiation between the variants and from Alzheimer's disease. However, the screening procedures developed for stroke populations seem insufficient, and a multifaceted assessment tool is needed. Although valid and practical tests already exist for dementia populations, a concise selection of test items that covers all of the critical domains is called for.
Collapse
Affiliation(s)
- Aino Yliranta
- Neurology Clinic, Lapland Central Hospital, Rovaniemi, Finland; Faculty of Social Sciences, Tampere University, Tampere, Finland.
| | - Mervi Jehkonen
- Faculty of Social Sciences, Tampere University, Tampere, Finland.
| |
Collapse
|
32
|
The functional relevance of dorsal motor systems for processing tool nouns– evidence from patients with focal lesions. Neuropsychologia 2020; 141:107384. [DOI: 10.1016/j.neuropsychologia.2020.107384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/17/2019] [Accepted: 02/09/2020] [Indexed: 02/03/2023]
|
33
|
Saarinen T, Kujala J, Laaksonen H, Jalava A, Salmelin R. Task-Modulated Corticocortical Synchrony in the Cognitive-Motor Network Supporting Handwriting. Cereb Cortex 2020; 30:1871-1886. [PMID: 31670795 PMCID: PMC7132916 DOI: 10.1093/cercor/bhz210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 01/06/2023] Open
Abstract
Both motor and cognitive aspects of behavior depend on dynamic, accurately timed neural processes in large-scale brain networks. Here, we studied synchronous interplay between cortical regions during production of cognitive-motor sequences in humans. Specifically, variants of handwriting that differed in motor variability, linguistic content, and memorization of movement cues were contrasted to unveil functional sensitivity of corticocortical connections. Data-driven magnetoencephalography mapping (n = 10) uncovered modulation of mostly left-hemispheric corticocortical interactions, as quantified by relative changes in phase synchronization. At low frequencies (~2–13 Hz), enhanced frontoparietal synchrony was related to regular handwriting, whereas premotor cortical regions synchronized for simple loop production and temporo-occipital areas for a writing task substituting normal script with loop patterns. At the beta-to-gamma band (~13–45 Hz), enhanced synchrony was observed for regular handwriting in the central and frontoparietal regions, including connections between the sensorimotor and supplementary motor cortices and between the parietal and dorsal premotor/precentral cortices. Interpreted within a modular framework, these modulations of synchrony mainly highlighted interactions of the putative pericentral subsystem of hand coordination and the frontoparietal subsystem mediating working memory operations. As part of cortical dynamics, interregional phase synchrony varies depending on task demands in production of cognitive-motor sequences.
Collapse
Affiliation(s)
- Timo Saarinen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Aalto NeuroImaging, Aalto University, FI-00076 AALTO, Espoo, Finland
- Address correspondence to Timo Saarinen, Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, FI-00076 AALTO, Espoo, Finland.
| | - Jan Kujala
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Department of Psychology, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Hannu Laaksonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Aalto NeuroImaging, Aalto University, FI-00076 AALTO, Espoo, Finland
| | - Antti Jalava
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00076 AALTO, Espoo, Finland
- Aalto NeuroImaging, Aalto University, FI-00076 AALTO, Espoo, Finland
| |
Collapse
|
34
|
Pazen M, Uhlmann L, van Kemenade BM, Steinsträter O, Straube B, Kircher T. Predictive perception of self-generated movements: Commonalities and differences in the neural processing of tool and hand actions. Neuroimage 2020; 206:116309. [DOI: 10.1016/j.neuroimage.2019.116309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/28/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
|
35
|
Jefferies E, Thompson H, Cornelissen P, Smallwood J. The neurocognitive basis of knowledge about object identity and events: dissociations reflect opposing effects of semantic coherence and control. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190300. [PMID: 31840592 DOI: 10.1098/rstb.2019.0300] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Semantic memory encompasses knowledge of specific objects and their diverse associations, but the mechanisms that allow us to retrieve aspects of knowledge required for a given task are poorly understood. The dual hub theory suggests that separate semantic stores represent knowledge of (i) taxonomic categories (in the anterior temporal lobes, ATL) and (ii) thematic associations (in angular gyrus, AG or posterior middle temporal gyrus, pMTG). Alternatively, the controlled semantic cognition (CSC) framework suggests that semantic processing emerges from the flexible interaction of heteromodal semantic representations in ATL with a semantic control network, which includes pMTG as well as prefrontal regions. According to this view, ATL supports patterns of coherent auto-associative retrieval, while semantic control sites respond when ongoing conceptual activation needs to be altered to suit the task or context. These theories make different predictions about the nature of functional dissociations within the semantic network. We review evidence for these claims across multiple methods. First, we show ATL is sensitive to the strength of thematic associations as well as taxonomic relations. Next, we document functional dissociations between AG and pMTG: rather than these regions acting as comparable thematic hubs, AG is allied to the default mode network and supports more 'automatic' retrieval, while pMTG responds when control demands are high. However, the semantic control network, including pMTG, also shows a greater response to events/actions and verbs, supporting the claims of both theories. We propose that tasks tapping event semantics often require greater shaping of conceptual retrieval than comparison tasks, because these elements of our knowledge are inherently flexible, with relevant features depending on the context. In this way, the CSC account might be able to account for findings that suggest both a process and a content distinction within the semantic network. This article is part of the theme issue 'Towards mechanistic models of meaning composition'.
Collapse
|
36
|
Dressing A, Kaller CP, Nitschke K, Beume LA, Kuemmerer D, Schmidt CS, Bormann T, Umarova RM, Egger K, Rijntjes M, Weiller C, Martin M. Neural correlates of acute apraxia: Evidence from lesion data and functional MRI in stroke patients. Cortex 2019; 120:1-21. [DOI: 10.1016/j.cortex.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/28/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
|
37
|
Reynaud E, Navarro J, Lesourd M, Osiurak F. To Watch is to Work: a Review of NeuroImaging Data on Tool Use Observation Network. Neuropsychol Rev 2019; 29:484-497. [PMID: 31664589 DOI: 10.1007/s11065-019-09418-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Since the discovery of mirror neurons in the 1990s, many neuroimaging studies have tackled the issue of action observation with the aim of unravelling a putative homolog human system. However, these studies do not distinguish between non-tool-use versus tool-use actions, implying that a common brain network is systematically involved in the observation of any action. Here we provide evidence for a brain network dedicated to tool-use action observation, called the tool-use observation network, mostly situated in the left hemisphere, and distinct from the non-tool-use action observation network. Areas specific for tool-use action observation are the left cytoarchitectonic area PF within the left inferior parietal lobe and the left inferior frontal gyrus. The neural correlates associated with the observation of tool-use reported here offer new insights into the neurocognitive bases of action observation and tool use, as well as addressing more fundamental issues on the origins of specifically human phenomena such as cumulative technological evolution.
Collapse
Affiliation(s)
- Emanuelle Reynaud
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Institut de Psychologie, Université de Lyon, 5, avenue Pierre Mendès-France, 69676, Bron Cedex, France.
| | - Jordan Navarro
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Institut de Psychologie, Université de Lyon, 5, avenue Pierre Mendès-France, 69676, Bron Cedex, France.,Institut Universitaire de France, Paris, France
| | - Mathieu Lesourd
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France.,Aix Marseille Univ, CNRS, Fédération 3C, Marseille, France
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Institut de Psychologie, Université de Lyon, 5, avenue Pierre Mendès-France, 69676, Bron Cedex, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
38
|
How words get meaning: The neural processing of novel object names after sensorimotor training. Neuroimage 2019; 197:284-294. [DOI: 10.1016/j.neuroimage.2019.04.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/13/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022] Open
|
39
|
Garcea FE, Almeida J, Sims MH, Nunno A, Meyers SP, Li YM, Walter K, Pilcher WH, Mahon BZ. Domain-Specific Diaschisis: Lesions to Parietal Action Areas Modulate Neural Responses to Tools in the Ventral Stream. Cereb Cortex 2019; 29:3168-3181. [PMID: 30169596 PMCID: PMC6933536 DOI: 10.1093/cercor/bhy183] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Indexed: 12/31/2022] Open
Abstract
Neural responses to small manipulable objects ("tools") in high-level visual areas in ventral temporal cortex (VTC) provide an opportunity to test how anatomically remote regions modulate ventral stream processing in a domain-specific manner. Prior patient studies indicate that grasp-relevant information can be computed about objects by dorsal stream structures independently of processing in VTC. Prior functional neuroimaging studies indicate privileged functional connectivity between regions of VTC exhibiting tool preferences and regions of parietal cortex supporting object-directed action. Here we test whether lesions to parietal cortex modulate tool preferences within ventral and lateral temporal cortex. We found that lesions to the left anterior intraparietal sulcus, a region that supports hand-shaping during object grasping and manipulation, modulate tool preferences in left VTC and in the left posterior middle temporal gyrus. Control analyses demonstrated that neural responses to "place" stimuli in left VTC were unaffected by lesions to parietal cortex, indicating domain-specific consequences for ventral stream neural responses in the setting of parietal lesions. These findings provide causal evidence that neural specificity for "tools" in ventral and lateral temporal lobe areas may arise, in part, from online inputs to VTC from parietal areas that receive inputs via the dorsal visual pathway.
Collapse
Affiliation(s)
- Frank E Garcea
- University of Rochester, Department of Brain & Cognitive Sciences, 358 Meliora Hall, Rochester, NY, USA
- University of Rochester, Center for Language Sciences, 358 Meliora Hall, Rochester, NY, USA
- University of Rochester, Center for Visual Science, 274 Meliora Hall, Rochester, NY, USA
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, PA, USA
| | - Jorge Almeida
- University of Coimbra, Faculty of Psychology and Educational Sciences, Rua do Colégio Novo, Coimbra, Portugal
- University of Coimbra, Proaction Laboratory, Faculty of Psychology and Educational Sciences, Rua do Colégio Novo, Coimbra, Portugal
| | - Maxwell H Sims
- University of Rochester, Department of Brain & Cognitive Sciences, 358 Meliora Hall, Rochester, NY, USA
| | - Andrew Nunno
- University of Rochester, Department of Brain & Cognitive Sciences, 358 Meliora Hall, Rochester, NY, USA
| | - Steven P Meyers
- University of Rochester Medical Center, Department of Imaging Sciences, 601 Elmwood Avenue, Rochester, NY, USA
- University of Rochester Medical Center, Department of Neurosurgery, 601 Elmwood Avenue, Rochester, NY, USA
| | - Yan Michael Li
- University of Rochester Medical Center, Department of Neurosurgery, 601 Elmwood Avenue, Rochester, NY, USA
| | - Kevin Walter
- University of Rochester Medical Center, Department of Neurosurgery, 601 Elmwood Avenue, Rochester, NY, USA
| | - Webster H Pilcher
- University of Rochester Medical Center, Department of Neurosurgery, 601 Elmwood Avenue, Rochester, NY, USA
| | - Bradford Z Mahon
- University of Rochester, Department of Brain & Cognitive Sciences, 358 Meliora Hall, Rochester, NY, USA
- University of Rochester, Center for Language Sciences, 358 Meliora Hall, Rochester, NY, USA
- University of Rochester, Center for Visual Science, 274 Meliora Hall, Rochester, NY, USA
- University of Rochester Medical Center, Department of Neurosurgery, 601 Elmwood Avenue, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
- Department of Psychology, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Styrkowiec PP, Nowik AM, Króliczak G. The neural underpinnings of haptically guided functional grasping of tools: An fMRI study. Neuroimage 2019; 194:149-162. [DOI: 10.1016/j.neuroimage.2019.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/26/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022] Open
|
41
|
Borghesani V, Riello M, Gesierich B, Brentari V, Monti A, Gorno-Tempini ML. The Neural Representations of Movement across Semantic Categories. J Cogn Neurosci 2019; 31:791-807. [PMID: 30883288 PMCID: PMC7012372 DOI: 10.1162/jocn_a_01390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Previous evidence from neuropsychological and neuroimaging studies suggests functional specialization for tools and related semantic knowledge in a left frontoparietal network. It is still debated whether these areas are involved in the representation of rudimentary movement-relevant knowledge regardless of semantic domains (animate vs. inanimate) or categories (tools vs. nontool objects). Here, we used fMRI to record brain activity while 13 volunteers performed two semantic judgment tasks on visually presented items from three different categories: animals, tools, and nontool objects. Participants had to judge two distinct semantic features: whether two items typically move in a similar way (e.g., a fan and a windmill move in circular motion) or whether they are usually found in the same environment (e.g., a seesaw and a swing are found in a playground). We investigated differences in overall activation (which areas are involved) as well as representational content (which information is encoded) across semantic features and categories. Results of voxel-wise mass univariate analysis showed that, regardless of semantic category, a dissociation emerges between processing information on prototypical location (involving the anterior temporal cortex and the angular gyrus) and movement (linked to left inferior parietal and frontal activation). Multivoxel pattern correlation analyses confirmed the representational segregation of networks encoding task- and category-related aspects of semantic processing. Taken together, these findings suggest that the left frontoparietal network is recruited to process movement properties of items (including both biological and nonbiological motion) regardless of their semantic category.
Collapse
|
42
|
Chiou R, Lambon Ralph MA. Unveiling the dynamic interplay between the hub- and spoke-components of the brain's semantic system and its impact on human behaviour. Neuroimage 2019; 199:114-126. [PMID: 31132452 PMCID: PMC6693526 DOI: 10.1016/j.neuroimage.2019.05.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 01/05/2023] Open
Abstract
The neural architecture of semantic knowledge comprises two key structures: (i) A set of widely dispersed regions, located adjacent to the sensorimotor cortices, serve as spokes that represent various modality-specific and context-dependent contents. (ii) The anterior-temporal lobe (ATL) serves as a hub that computes the nonlinear mappings required to transform modality-specific information into pan-modality, multifaceted concepts. Little is understood regarding whether neural dynamics between the hub and spokes might flexibly alter depending on the nature of a concept and how it impinges upon behaviour. Using fMRI, we demonstrate for the first time that the ATL serves as a 'pivot' which dynamically forms flexible long-range networks with cortical modules specialised for different domains (in the present case, the knowledge about actions and places). In two experiments, we manipulated semantic congruity and asked participants to recognise visually presented items. In Experiment 1 (dual-object displays), the ATL increased its functional coupling with the bilateral frontoparietal action-sensitive system when the objects formed a pair that permitted semantically meaningful action. In Experiment 2 (objects embedded in a scene), the ATL augmented its coupling with the retrosplenial cortex of the place-sensitive system when the objects and scene formed a semantically coherent ensemble. Causative connectivity revealed that, while communication between the hub and spokes was bidirectional, the hub's directional impact on spokes dwarfed the strength of the inverse spoke-to-hub connectivity. Furthermore, the size of behavioural congruity effects co-varied with the strength of neural coupling between the ATL hub and action- / place-related spokes, evident both at the within-individual level (the behavioural fluctuation across scanning runs) and between-individual level (the behavioural variation of between participants). Together, these findings have important implications for understanding the machinery that links neural dynamics with semantic cognition.
Collapse
Affiliation(s)
- Rocco Chiou
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | | |
Collapse
|
43
|
Effects of Mnemonic Strategy Training on Brain Activity and Cognitive Functioning of Left-Hemisphere Ischemic Stroke Patients. Neural Plast 2019; 2019:4172569. [PMID: 31210761 PMCID: PMC6532294 DOI: 10.1155/2019/4172569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/22/2019] [Accepted: 04/04/2019] [Indexed: 01/09/2023] Open
Abstract
Memory dysfunction is one of the main cognitive impairments caused by stroke, especially associative memory. Therefore, cognitive training, such as face-name mnemonic strategy training, could be an important intervention for this group of patients. The goal of this study was to evaluate the behavioral effects of face-name mnemonic strategy training, along with the neural substrate behind these effects, in the left frontoparietal lobe stroke patients. Volunteers underwent 2 sessions of functional magnetic resonance imaging (fMRI) during face-name association task: one prior and the other after the cognitive training. The fMRI followed a block design task with three active conditions: trained face-name pairs, untrained face-name pairs, and a couple of repeated face-name pairs. Prior to each fMRI session, volunteers underwent neuropsychological assessment. Training resulted in better performance on delayed memory scores of HVLT-R, and on recognition on a generalization strategy task, as well as better performance in the fMRI task. Also, trained face-name pairs presented higher activation after training in default-mode network regions, such as the posterior cingulate cortex, precuneus, and angular gyrus, as well as in lateral occipital and temporal regions. Similarly, untrained face-name pairs also showed a nonspecific training effect in the right superior parietal cortex, right supramarginal gyrus, anterior intraparietal sulcus, and lateral occipital cortex. A correlation between brain activation and task performance was also found in the angular gyrus, superior parietal cortex, anterior intraparietal sulcus, and lateral occipital cortex. In conclusion, these results suggest that face-name mnemonic strategy training has the potential to improve memory performance and to foster brain activation changes, by the recruitment of contralesional areas from default-mode, frontoparietal, and dorsal attention networks as a possible compensation mechanism.
Collapse
|
44
|
Ghio M, Haegert K, Vaghi MM, Tettamanti M. Sentential negation of abstract and concrete conceptual categories: a brain decoding multivariate pattern analysis study. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0124. [PMID: 29914992 DOI: 10.1098/rstb.2017.0124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 11/12/2022] Open
Abstract
We rarely use abstract and concrete concepts in isolation but rather embedded within a linguistic context. To examine the modulatory impact of the linguistic context on conceptual processing, we isolated the case of sentential negation polarity, in which an interaction occurs between the syntactic operator not and conceptual information in the negation's scope. Previous studies suggested that sentential negation of concrete action-related concepts modulates activation in the fronto-parieto-temporal action representation network. In this functional magnetic resonance imaging study, we examined the influence of negation on a wider spectrum of meanings, by factorially manipulating sentence polarity (affirmative, negative) and fine-grained abstract (mental state, emotion, mathematics) and concrete (related to mouth, hand, leg actions) conceptual categories. We adopted a multivariate pattern analysis approach, and tested the accuracy of a machine learning classifier in discriminating brain activation patterns associated to the factorial manipulation. Searchlight analysis was used to localize the discriminating patterns. Overall, the neural processing of affirmative and negative sentences with either an abstract or concrete content could be accurately predicted by means of multivariate classification. We suggest that sentential negation polarity modulates brain activation in distributed representational semantic networks, through the functional mediation of syntactic and cognitive control systems.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'.
Collapse
Affiliation(s)
- Marta Ghio
- Institute for Experimental Psychology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Karolin Haegert
- Institute for Experimental Psychology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Matilde M Vaghi
- Department of Psychology, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Marco Tettamanti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| |
Collapse
|
45
|
Potok W, Maskiewicz A, Króliczak G, Marangon M. The temporal involvement of the left supramarginal gyrus in planning functional grasps: A neuronavigated TMS study. Cortex 2019; 111:16-34. [DOI: 10.1016/j.cortex.2018.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 01/01/2023]
|
46
|
Cerebral correlates of imitation of intransitive gestures: An integrative review of neuroimaging data and brain lesion studies. Neurosci Biobehav Rev 2018; 95:44-60. [DOI: 10.1016/j.neubiorev.2018.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/29/2018] [Accepted: 07/29/2018] [Indexed: 12/25/2022]
|
47
|
Left inferior parietal and posterior temporal cortices mediate the effect of action observation on semantic processing of objects: evidence from rTMS. PSYCHOLOGICAL RESEARCH 2018; 84:1006-1019. [DOI: 10.1007/s00426-018-1117-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
|
48
|
Watson CE, Gotts SJ, Martin A, Buxbaum LJ. Bilateral functional connectivity at rest predicts apraxic symptoms after left hemisphere stroke. Neuroimage Clin 2018; 21:101526. [PMID: 30612063 PMCID: PMC6319198 DOI: 10.1016/j.nicl.2018.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/22/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Increasing evidence indicates that focal lesions following stroke cause alterations in connectivity among functional brain networks. Functional connectivity between hemispheres has been shown to be particularly critical for predicting stroke-related behavioral deficits and recovery of motor function and attention. Much less is known, however, about the relevance of interhemispheric functional connectivity for cognitive abilities like praxis that rely on strongly lateralized brain networks. In the current study, we examine correlations between symptoms of apraxia-a disorder of skilled action that cannot be attributed to lower-level sensory or motor impairments-and spontaneous, resting brain activity in functional MRI in chronic left hemisphere stroke patients and neurologically-intact control participants. Using a data-driven approach, we identified 32 regions-of-interest in which pairwise functional connectivity correlated with two distinct measures of apraxia, even when controlling for age, head motion, lesion volume, and other artifacts: overall ability to pantomime the typical use of a tool, and disproportionate difficulty pantomiming the use of tools associated with different, competing use and grasp-to-move actions (e.g., setting a kitchen timer versus picking it up). Better performance on both measures correlated with stronger interhemispheric functional connectivity. Relevant regions in the right hemisphere were often homologous to left hemisphere areas associated with tool use and action. Additionally, relative to overall pantomime accuracy, disproportionate difficulty pantomiming the use of tools associated with competing use and grasp actions was associated with weakened functional connectivity among a more strongly left-lateralized and peri-Sylvian set of brain regions. Finally, patient performance on both measures of apraxia was best predicted by a model that incorporated information about lesion location and functional connectivity, and functional connectivity continued to explain unique variance in behavior even after accounting for lesion loci. These results indicate that interhemispheric functional connectivity is relevant even for a strongly lateralized cognitive ability like praxis and emphasize the importance of the right hemisphere in skilled action.
Collapse
Affiliation(s)
| | - Stephen J Gotts
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Alex Martin
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Laurel J Buxbaum
- Moss Rehabilitation Research Institute, Elkins Park, PA 19027, USA.
| |
Collapse
|
49
|
Garcea FE, Chen Q, Vargas R, Narayan DA, Mahon BZ. Task- and domain-specific modulation of functional connectivity in the ventral and dorsal object-processing pathways. Brain Struct Funct 2018; 223:2589-2607. [PMID: 29536173 PMCID: PMC6252262 DOI: 10.1007/s00429-018-1641-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 03/01/2018] [Indexed: 01/08/2023]
Abstract
A whole-brain network of regions collectively supports the ability to recognize and use objects-the Tool Processing Network. Little is known about how functional interactions within the Tool Processing Network are modulated in a task-dependent manner. We designed an fMRI experiment in which participants were required to either generate object pantomimes or to carry out a picture matching task over the same images of tools, while holding all aspects of stimulus presentation constant across the tasks. The Tool Processing Network was defined with an independent functional localizer, and functional connectivity within the network was measured during the pantomime and picture matching tasks. Relative to tool picture matching, tool pantomiming led to an increase in functional connectivity between ventral stream regions and left parietal and frontal-motor areas; in contrast, the matching task was associated with an increase in functional connectivity among regions in ventral temporo-occipital cortex, and between ventral temporal regions and the left inferior parietal lobule. Graph-theory analyses over the functional connectivity data indicated that the left premotor cortex and left lateral occipital complex were hub-like (exhibited high betweenness centrality) during tool pantomiming, while ventral stream regions (left medial fusiform gyrus and left posterior middle temporal gyrus) were hub-like during the picture matching task. These results demonstrate task-specific modulation of functional interactions among a common set of regions, and indicate dynamic coupling of anatomically remote regions in task-dependent manner.
Collapse
Affiliation(s)
- Frank E Garcea
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY, 14627-0268, USA
- Center for Visual Science, University of Rochester, Rochester, USA
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Quanjing Chen
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY, 14627-0268, USA
| | - Roger Vargas
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, USA
| | - Darren A Narayan
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, USA
| | - Bradford Z Mahon
- Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, NY, 14627-0268, USA.
- Center for Visual Science, University of Rochester, Rochester, USA.
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, USA.
- Department of Neurology, University of Rochester Medical Center, Rochester, USA.
| |
Collapse
|
50
|
Almeida J, Amaral L, Garcea FE, Aguiar de Sousa D, Xu S, Mahon BZ, Martins IP. Visual and visuomotor processing of hands and tools as a case study of cross talk between the dorsal and ventral streams. Cogn Neuropsychol 2018; 35:288-303. [PMID: 29792367 DOI: 10.1080/02643294.2018.1463980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A major principle of organization of the visual system is between a dorsal stream that processes visuomotor information and a ventral stream that supports object recognition. Most research has focused on dissociating processing across these two streams. Here we focus on how the two streams interact. We tested neurologically-intact and impaired participants in an object categorization task over two classes of objects that depend on processing within both streams-hands and tools. We measured how unconscious processing of images from one of these categories (e.g., tools) affects the recognition of images from the other category (i.e., hands). Our findings with neurologically-intact participants demonstrated that processing an image of a hand hampers the subsequent processing of an image of a tool, and vice versa. These results were not present in apraxic patients (N = 3). These findings suggest local and global inhibitory processes working in tandem to co-register information across the two streams.
Collapse
Affiliation(s)
- Jorge Almeida
- a Faculty of Psychology and Educational Sciences , University of Coimbra , Coimbra , Portugal.,b Faculty of Psychology and Educational Sciences , Proaction Laboratory, University of Coimbra , Coimbra , Portugal
| | - Lénia Amaral
- b Faculty of Psychology and Educational Sciences , Proaction Laboratory, University of Coimbra , Coimbra , Portugal
| | - Frank E Garcea
- c Department of Brain and Cognitive Sciences , University of Rochester , Rochester , NY , USA.,d Center for Visual Science, University of Rochester , Rochester , NY , USA
| | - Diana Aguiar de Sousa
- e Faculty of Medicine , Laboratório de Estudos da Linguagem, Centro de Estudos Egas Moniz, University of Lisbon, Hospital Santa Maria , Lisbon , Portugal
| | - Shan Xu
- f School of Psychology, Beijing Normal University , Beijing , People's Republic of China
| | - Bradford Z Mahon
- c Department of Brain and Cognitive Sciences , University of Rochester , Rochester , NY , USA.,d Center for Visual Science, University of Rochester , Rochester , NY , USA.,g Department of Neurosurgery , University of Rochester , Rochester , NY , USA
| | - Isabel Pavão Martins
- e Faculty of Medicine , Laboratório de Estudos da Linguagem, Centro de Estudos Egas Moniz, University of Lisbon, Hospital Santa Maria , Lisbon , Portugal
| |
Collapse
|