1
|
Ahuja A, Yusif Rodriguez N, Ashok AK, Serre T, Desrochers TM, Sheinberg DL. Monkeys engage in visual simulation to solve complex problems. Curr Biol 2024; 34:5635-5645.e3. [PMID: 39549702 DOI: 10.1016/j.cub.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 11/18/2024]
Abstract
Visual simulation-i.e., using internal reconstructions of the world to experience potential future versions of events that are not currently happening-is among the most sophisticated capacities of the human mind. But is this ability in fact uniquely human? To answer this question, we tested monkeys on a series of experiments involving the "Planko" game, which we have previously used to evoke visual simulation in human participants. We found that monkeys were able to successfully play the game using a simulation strategy, predicting the trajectory of a ball through a field of planks while demonstrating a level of accuracy and behavioral signatures comparable with those of humans. Computational analyses further revealed that the monkeys' strategy while playing Planko aligned with a recurrent neural network (RNN) that approached the task using a spontaneously learned simulation strategy. Finally, we carried out awake functional magnetic resonance imaging while monkeys played Planko. We found activity in motion-sensitive regions of the monkey brain during hypothesized simulation periods, even without any perceived visual motion cues. This neural result closely mirrors previous findings from human research, suggesting a shared mechanism of visual simulation across species. Taken together, these findings challenge traditional views of animal cognition, proposing that nonhuman primates possess a complex cognitive landscape, capable of invoking imaginative and predictive mental experiences to solve complex everyday problems.
Collapse
Affiliation(s)
- Aarit Ahuja
- Department of Neuroscience, Brown University, Meeting Street, Providence, RI 02906, USA; Exponent, Worcester Street, Natick, MA 01760, USA
| | | | - Alekh Karkada Ashok
- Department of Cognitive and Psychological Science, Brown University, Thayer Street, Providence, RI 02906, USA
| | - Thomas Serre
- Department of Cognitive and Psychological Science, Brown University, Thayer Street, Providence, RI 02906, USA; Robert J. and Nancy D. Carney Institute for Brain Sciences, Brown University, Angell Street, Providence, RI 02906, USA
| | - Theresa M Desrochers
- Department of Neuroscience, Brown University, Meeting Street, Providence, RI 02906, USA; Robert J. and Nancy D. Carney Institute for Brain Sciences, Brown University, Angell Street, Providence, RI 02906, USA; Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02906, USA
| | - David L Sheinberg
- Department of Neuroscience, Brown University, Meeting Street, Providence, RI 02906, USA; Robert J. and Nancy D. Carney Institute for Brain Sciences, Brown University, Angell Street, Providence, RI 02906, USA.
| |
Collapse
|
2
|
Friedrich J, Fischer MH, Raab M. Invariant representations in abstract concept grounding - the physical world in grounded cognition. Psychon Bull Rev 2024; 31:2558-2580. [PMID: 38806790 PMCID: PMC11680661 DOI: 10.3758/s13423-024-02522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/30/2024]
Abstract
Grounded cognition states that mental representations of concepts consist of experiential aspects. For example, the concept "cup" consists of the sensorimotor experiences from interactions with cups. Typical modalities in which concepts are grounded are: The sensorimotor system (including interoception), emotion, action, language, and social aspects. Here, we argue that this list should be expanded to include physical invariants (unchanging features of physical motion; e.g., gravity, momentum, friction). Research on physical reasoning consistently demonstrates that physical invariants are represented as fundamentally as other grounding substrates, and therefore should qualify. We assess several theories of concept representation (simulation, conceptual metaphor, conceptual spaces, predictive processing) and their positions on physical invariants. We find that the classic grounded cognition theories, simulation and conceptual metaphor theory, have not considered physical invariants, while conceptual spaces and predictive processing have. We conclude that physical invariants should be included into grounded cognition theories, and that the core mechanisms of simulation and conceptual metaphor theory are well suited to do this. Furthermore, conceptual spaces and predictive processing are very promising and should also be integrated with grounded cognition in the future.
Collapse
Affiliation(s)
- Jannis Friedrich
- German Sport University Cologne, Germany, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - Martin H Fischer
- Psychology Department, University of Potsdam, Karl-Liebknecht-Strasse 24-25, House 14 D - 14476, Potsdam-Golm, Germany
| | - Markus Raab
- German Sport University Cologne, Germany, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
3
|
Croom S, Firestone C. Tangled Physics: Knots Strain Intuitive Physical Reasoning. Open Mind (Camb) 2024; 8:1170-1190. [PMID: 39439589 PMCID: PMC11495958 DOI: 10.1162/opmi_a_00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/11/2024] [Indexed: 10/25/2024] Open
Abstract
Whereas decades of research have cataloged striking errors in physical reasoning, a resurgence of interest in intuitive physics has revealed humans' remarkable ability to successfully predict the unfolding of physical scenes. A leading interpretation intended to resolve these opposing results is that physical reasoning recruits a general-purpose mechanism that reliably models physical scenarios (explaining recent successes), but overly contrived tasks or impoverished and ecologically invalid stimuli can produce poor performance (accounting for earlier failures). But might there be tasks that persistently strain physical understanding, even in naturalistic contexts? Here, we explore this question by introducing a new intuitive physics task: evaluating the strength of knots and tangles. Knots are ubiquitous across cultures and time-periods, and evaluating them correctly often spells the difference between safety and peril. Despite this, 5 experiments show that observers fail to discern even very large differences in strength between knots. In a series of two-alternative forced-choice tasks, observers viewed a variety of simple "bends" (knots joining two pieces of thread) and decided which would require more force to undo. Though the strength of these knots is well-documented, observers' judgments completely failed to reflect these distinctions, across naturalistic photographs (E1), idealized renderings (E2), dynamic videos (E3), and even when accompanied by schematic diagrams of the knots' structures (E4). Moreover, these failures persisted despite accurate identification of the topological differences between the knots (E5); in other words, even when observers correctly perceived the underlying structure of the knot, they failed to correctly judge its strength. These results expose a blindspot in physical reasoning, placing new constraints on general-purpose theories of scene understanding.
Collapse
Affiliation(s)
- Sholei Croom
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Chaz Firestone
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Ritchie JB, Andrews ST, Vaziri-Pashkam M, Baker CI. Graspable foods and tools elicit similar responses in visual cortex. Cereb Cortex 2024; 34:bhae383. [PMID: 39319569 DOI: 10.1093/cercor/bhae383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
The extrastriatal visual cortex is known to exhibit distinct response profiles to complex stimuli of varying ecological importance (e.g. faces, scenes, and tools). Although food is primarily distinguished from other objects by its edibility, not its appearance, recent evidence suggests that there is also food selectivity in human visual cortex. Food is also associated with a common behavior, eating, and food consumption typically also involves the manipulation of food, often with hands. In this context, food items share many properties with tools: they are graspable objects that we manipulate in self-directed and stereotyped forms of action. Thus, food items may be preferentially represented in extrastriatal visual cortex in part because of these shared affordance properties, rather than because they reflect a wholly distinct kind of category. We conducted functional MRI and behavioral experiments to test this hypothesis. We found that graspable food items and tools were judged to be similar in their action-related properties and that the location, magnitude, and patterns of neural responses for images of graspable food items were similar in profile to the responses for tool stimuli. Our findings suggest that food selectivity may reflect the behavioral affordances of food items rather than a distinct form of category selectivity.
Collapse
Affiliation(s)
- John Brendan Ritchie
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, 10 Center Drive, Bethesda, MD 20982, United States
| | - Spencer T Andrews
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, 10 Center Drive, Bethesda, MD 20982, United States
- Harvard Law School, Harvard University, 1585 Massachusetts Ave, Cambridge, MA 02138, United States
| | - Maryam Vaziri-Pashkam
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, 10 Center Drive, Bethesda, MD 20982, United States
- Department of Psychological and Brain Sciences, University of Delaware, 434 Wolf Hall, Newark, DE 19716, United States
| | - Chris I Baker
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, 10 Center Drive, Bethesda, MD 20982, United States
| |
Collapse
|
5
|
Tsay JS, Kim HE, McDougle SD, Taylor JA, Haith A, Avraham G, Krakauer JW, Collins AGE, Ivry RB. Fundamental processes in sensorimotor learning: Reasoning, refinement, and retrieval. eLife 2024; 13:e91839. [PMID: 39087986 PMCID: PMC11293869 DOI: 10.7554/elife.91839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. Furthermore, we propose a theoretical framework for motor learning that consists of three fundamental processes: reasoning, the process of understanding action-outcome relationships; refinement, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and retrieval, the process of inferring the context and recalling a control policy. We anticipate that this '3R' framework for understanding how complex movements are learned will open exciting avenues for future research at the intersection between cognition and action.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburgUnited States
| | - Hyosub E Kim
- School of Kinesiology, University of British ColumbiaVancouverCanada
| | | | - Jordan A Taylor
- Department of Psychology, Princeton UniversityPrincetonUnited States
| | - Adrian Haith
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Guy Avraham
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| | - John W Krakauer
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Santa Fe InstituteSanta FeUnited States
| | - Anne GE Collins
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| | - Richard B Ivry
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| |
Collapse
|
6
|
Bianchi I, Actis-Grosso R, Ball LJ. Grounding Cognition in Perceptual Experience. J Intell 2024; 12:66. [PMID: 39057186 PMCID: PMC11277933 DOI: 10.3390/jintelligence12070066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this Special Issue was to put forward a multifaceted reflection on the relevance of perceptual experience in affecting and modeling various aspects of cognitive performance [...].
Collapse
Affiliation(s)
- Ivana Bianchi
- Department of Humanities, University of Macerata, 62100 Macerata, Italy
| | | | - Linden J. Ball
- School of Psychology & Humanities, University of Central Lancashire, Fylde Road, Preston PR1 8TY, UK;
| |
Collapse
|
7
|
Mahon BZ, Almeida J. Reciprocal interactions among parietal and occipito-temporal representations support everyday object-directed actions. Neuropsychologia 2024; 198:108841. [PMID: 38430962 PMCID: PMC11498102 DOI: 10.1016/j.neuropsychologia.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Everyday interactions with common manipulable objects require the integration of conceptual knowledge about objects and actions with real-time sensory information about the position, orientation and volumetric structure of the grasp target. The ability to successfully interact with everyday objects involves analysis of visual form and shape, surface texture, material properties, conceptual attributes such as identity, function and typical context, and visuomotor processing supporting hand transport, grasp form, and object manipulation. Functionally separable brain regions across the dorsal and ventral visual pathways support the processing of these different object properties and, in cohort, are necessary for functional object use. Object-directed grasps display end-state-comfort: they anticipate in form and force the shape and material properties of the grasp target, and how the object will be manipulated after it is grasped. End-state-comfort is the default for everyday interactions with manipulable objects and implies integration of information across the ventral and dorsal visual pathways. We propose a model of how visuomotor and action representations in parietal cortex interact with object representations in ventral and lateral occipito-temporal cortex. One pathway, from the supramarginal gyrus to the middle and inferior temporal gyrus, supports the integration of action-related information, including hand and limb position (supramarginal gyrus) with conceptual attributes and an appreciation of the action goal (middle temporal gyrus). A second pathway, from posterior IPS to the fusiform gyrus and collateral sulcus supports the integration of grasp parameters (IPS) with the surface texture and material properties (e.g., weight distribution) of the grasp target. Reciprocal interactions among these regions are part of a broader network of regions that support everyday functional object interactions.
Collapse
Affiliation(s)
- Bradford Z Mahon
- Department of Psychology, Carnegie Mellon University, USA; Neuroscience Institute, Carnegie Mellon University, USA; Department of Neurosurgery, University of Rochester Medical Center, USA.
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| |
Collapse
|
8
|
Mitko A, Navarro-Cebrián A, Cormiea S, Fischer J. A dedicated mental resource for intuitive physics. iScience 2024; 27:108607. [PMID: 38222113 PMCID: PMC10784689 DOI: 10.1016/j.isci.2023.108607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/15/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024] Open
Abstract
Countless decisions and actions in daily life draw on a mental model of the physical structure and dynamics of the world - from stepping carefully around a patch of slippery pavement to stacking delicate produce in a shopping basket. People can make fast and accurate inferences about how physical interactions will unfold, but it remains unclear whether we do so by applying a general set of physical principles across scenarios, or instead by reasoning about the physics of individual scenarios in an ad-hoc fashion. Here, we hypothesized that humans possess a dedicated and flexible mental resource for physical inference, and we tested for such a resource using a battery of fine-tuned tasks to capture individual differences in performance. Despite varying scene contents across tasks, we found that performance was highly correlated among them and well-explained by a unitary intuitive physics resource, distinct from other facets of cognition such as spatial reasoning and working memory.
Collapse
Affiliation(s)
- Alex Mitko
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ana Navarro-Cebrián
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Sarah Cormiea
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Fischer
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Karakose-Akbiyik S, Sussman O, Wurm MF, Caramazza A. The Role of Agentive and Physical Forces in the Neural Representation of Motion Events. J Neurosci 2024; 44:e1363232023. [PMID: 38050107 PMCID: PMC10860628 DOI: 10.1523/jneurosci.1363-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
How does the brain represent information about motion events in relation to agentive and physical forces? In this study, we investigated the neural activity patterns associated with observing animated actions of agents (e.g., an agent hitting a chair) in comparison to similar movements of inanimate objects that were either shaped solely by the physics of the scene (e.g., gravity causing an object to fall down a hill and hit a chair) or initiated by agents (e.g., a visible agent causing an object to hit a chair). Using an fMRI-based multivariate pattern analysis (MVPA), this design allowed testing where in the brain the neural activity patterns associated with motion events change as a function of, or are invariant to, agentive versus physical forces behind them. A total of 29 human participants (nine male) participated in the study. Cross-decoding revealed a shared neural representation of animate and inanimate motion events that is invariant to agentive or physical forces in regions spanning frontoparietal and posterior temporal cortices. In contrast, the right lateral occipitotemporal cortex showed a higher sensitivity to agentive events, while the left dorsal premotor cortex was more sensitive to information about inanimate object events that were solely shaped by the physics of the scene.
Collapse
Affiliation(s)
| | - Oliver Sussman
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
| | - Moritz F Wurm
- Center for Mind/Brain Sciences - CIMeC, University of Trento, 38068 Rovereto, Italy
| | - Alfonso Caramazza
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
- Center for Mind/Brain Sciences - CIMeC, University of Trento, 38068 Rovereto, Italy
| |
Collapse
|
10
|
Federico G, Osiurak F, Ciccarelli G, Ilardi CR, Cavaliere C, Tramontano L, Alfano V, Migliaccio M, Di Cecca A, Salvatore M, Brandimonte MA. On the functional brain networks involved in tool-related action understanding. Commun Biol 2023; 6:1163. [PMID: 37964121 PMCID: PMC10645930 DOI: 10.1038/s42003-023-05518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
Tool-use skills represent a significant cognitive leap in human evolution, playing a crucial role in the emergence of complex technologies. Yet, the neural mechanisms underlying such capabilities are still debated. Here we explore with fMRI the functional brain networks involved in tool-related action understanding. Participants viewed images depicting action-consistent (e.g., nail-hammer) and action-inconsistent (e.g., scarf-hammer) object-tool pairs, under three conditions: semantic (recognizing the tools previously seen in the pairs), mechanical (assessing the usability of the pairs), and control (looking at the pairs without explicit tasks). During the observation of the pairs, task-based left-brain functional connectivity differed within conditions. Compared to the control, both the semantic and mechanical conditions exhibited co-activations in dorsal (precuneus) and ventro-dorsal (inferior frontal gyrus) regions. However, the semantic condition recruited medial and posterior temporal areas, whereas the mechanical condition engaged inferior parietal and posterior temporal regions. Also, when distinguishing action-consistent from action-inconsistent pairs, an extensive frontotemporal neural circuit was activated. These findings support recent accounts that view tool-related action understanding as the combined product of semantic and mechanical knowledge. Furthermore, they emphasize how the left inferior parietal and anterior temporal lobes might be considered as hubs for the cross-modal integration of physical and conceptual knowledge, respectively.
Collapse
Affiliation(s)
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Bron, France
- Institut Universitaire de France, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vicovaro M. Grounding Intuitive Physics in Perceptual Experience. J Intell 2023; 11:187. [PMID: 37888419 PMCID: PMC10607174 DOI: 10.3390/jintelligence11100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
This review article explores the foundation of laypeople's understanding of the physical world rooted in perceptual experience. Beginning with a concise historical overview of the study of intuitive physics, the article presents the hypothesis that laypeople possess accurate internalized representations of physical laws. A key aspect of this hypothesis is the contention that correct representations of physical laws emerge in ecological experimental conditions, where the scenario being examined resembles everyday life experiences. The article critically examines empirical evidence both supporting and challenging this claim, revealing that despite everyday-life-like conditions, fundamental misconceptions often persist. Many of these misconceptions can be attributed to a domain-general heuristic that arises from the overgeneralization of perceptual-motor experiences with physical objects. To conclude, the article delves into ongoing controversies and highlights promising future avenues in the field of intuitive physics, including action-judgment dissociations, insights from developmental psychology, and computational models integrating artificial intelligence.
Collapse
Affiliation(s)
- Michele Vicovaro
- Department of General Psychology, University of Padua, 35122 Padua, Italy
| |
Collapse
|