1
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
2
|
Agrawal S, Garg A, Varshney V. Recent updates on applications of Lipid-based nanoparticles for site-specific drug delivery. Pharm Nanotechnol 2022; 10:24-41. [PMID: 35249522 DOI: 10.2174/2211738510666220304111848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Site-specific drug delivery is a widespread and demanding area nowadays. Lipid-based nanoparticulate drug delivery systems have shown promising effects for targeting drugs among lymphatic systems, brain tissues, lungs, and skin. Recently, lipid nanoparticles are used for targeting the brain via the mucosal route for local therapeutic effects. Lipid nanoparticles (LNPs) can help in enhancing the efficacy and lowering the toxicities of anticancer drugs to treat the tumors, particularly in lymph after metastases of tumors. LNPs contain a non-polar core that can improve the absorption of lipophilic drugs into the lymph node and treat tumors. Cellular uptake of drugs can also be enhanced using LNPs and therefore, LNPs are the ideal carrier for treating intracellular infections such as leishmaniasis, tuberculosis and parasitic infection in the brain, etc. Furthermore, specific surface modifications with molecules like mannose, or PEG could improve the macrophage uptake and hence effectively eradicate parasites hiding in macrophages. METHOD An electronic literature search was conducted to update the advancements in the field of site-specific drug delivery utilizing lipid-based nanoparticles. A search of the Scopus database (https://www.scopus.com/home.uri) was conducted using the following keywords: lipid-based nanoparticles; site specific delivery. CONCLUSION Solid lipid nanoparticles have shown site-specific targeted delivery to various organs including the liver, oral mucosa, brain, epidermis, pulmonary and lymphatic systems. These lipid-based systems showed improved bioavailability as well as reduced side effects. Therefore, the focus of this article is to review the recent research studies on LNPs for site-specific or targeting drug delivery.
Collapse
Affiliation(s)
- Shivanshu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, U.P., India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, U.P., India
| | - Vikas Varshney
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, U.P., India
| |
Collapse
|
3
|
Wauthoz N, Rosière R, Amighi K. Inhaled cytotoxic chemotherapy: clinical challenges, recent developments, and future prospects. Expert Opin Drug Deliv 2020; 18:333-354. [PMID: 33050733 DOI: 10.1080/17425247.2021.1829590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Since 1968, inhaled chemotherapy has been evaluated and has shown promising results up to phase II but has not yet reached the market. This is due to technological and clinical challenges that require to be overcome with the aim of optimizing the efficacy and the tolerance of drug to re-open new developments in this field. Moreover, recent changes in the therapeutic standard of care for treating the patient with lung cancer also open new opportunities to combine inhaled chemotherapy with standard treatments. AREAS COVERED Clinical and technological concerns are highlighted from the reported clinical trials made with inhaled cytotoxic chemotherapies. This work then focuses on new pharmaceutical developments using dry powder inhalers as inhalation devices and on formulation strategies based on controlled drug release and with sustained lung retention or based on nanomedicine. Finally, new clinical strategies are described in regard to the impact of the immunotherapy on the patient's standard of care. EXPERT OPINION The choice of the drug, inhalation device, and formulation strategy as well as the position of inhaled chemotherapy in the patient's clinical care are crucial factors in optimizing local tolerance and efficacy as well as in its scalability and applicability in clinical practice.
Collapse
Affiliation(s)
- Nathalie Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Université Libre De Bruxelles, Brussels, Belgium
| | - Rémi Rosière
- Unit of Pharmaceutics and Biopharmaceutics, Université Libre De Bruxelles, Brussels, Belgium
| | - Karim Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
Jarai BM, Stillman Z, Attia L, Decker GE, Bloch ED, Fromen CA. Evaluating UiO-66 Metal-Organic Framework Nanoparticles as Acid-Sensitive Carriers for Pulmonary Drug Delivery Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38989-39004. [PMID: 32805901 PMCID: PMC7719435 DOI: 10.1021/acsami.0c10900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Developing novel drug carriers for pulmonary delivery is necessary to achieve higher efficacy and consistency for treating pulmonary diseases while limiting off-target side effects that occur from alternative routes of administration. Metal-organic frameworks (MOFs) have recently emerged as a class of materials with characteristics well-suited for pulmonary drug delivery, with chemical tunability, high surface area, and pore size, which will allow for efficient loading of therapeutic cargo and deep lung penetration. UiO-66, a zirconium and terephthalic acid-based MOF, has displayed notable chemical and physical stability and potential biocompatibility; however, its feasibility for use as a pulmonary drug delivery vehicle has yet to be examined. Here, we evaluate the use of UiO-66 nanoparticles (NPs) as novel pulmonary drug delivery vehicles and assess the role of missing linker defects in their utility for this application. We determined that missing linker defects result in differences in NP aerodynamics but have minimal effects on the loading of model and therapeutic cargo, cargo release, biocompatibility, or biodistribution. This is a critical result, as it indicates the robust consistency of UiO-66, a critical feature for pulmonary drug delivery, which is plagued by inconsistent dosage because of variable properties. Not only that, but UiO-66 NPs also demonstrate pH-dependent stability, with resistance to degradation in extracellular conditions and breakdown in intracellular environments. Furthermore, the carriers exhibit high biocompatibility and low cytotoxicity in vitro and are well-tolerated in in vivo murine evaluations of orotracheally administered NPs. Following pulmonary delivery, UiO-66 NPs remain localized to the lungs before clearance over the course of seven days. Our results demonstrate the feasibility of using UiO-66 NPs as a novel platform for pulmonary drug delivery through their tunable NP properties, which allow for controlled aerodynamics and internalization-dependent cargo release while displaying remarkable pulmonary biocompatibility.
Collapse
Affiliation(s)
- Bader M. Jarai
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Lucas Attia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Gerald E. Decker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- corresponding author. Catherine A. Fromen, PhD, , 150 Academy St., Newark, DE 19716, (302) 831-3649
| |
Collapse
|
5
|
Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019; 10:1264. [PMID: 31708785 PMCID: PMC6823240 DOI: 10.3389/fphar.2019.01264] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
In recent years, various nanomaterials have emerged as an exciting tool in cancer theranostic applications due to their multifunctional property and intrinsic molecular property aiding effective diagnosis, imaging, and successful therapy. However, chemically synthesized nanoparticles have several issues related to the cost, toxicity and effectiveness. In this context, bio-inspired nanoparticles (NPs) held edges over conventionally synthesized nanoparticles due to their low cost, easy synthesis and low toxicity. In this present review article, a detailed overview of the cancer theranostics applications of various bio-inspired has been provided. This includes the recent examples of liposomes, lipid nanoparticles, protein nanoparticles, inorganic nanoparticles, and viral nanoparticles. Finally, challenges and the future scopes of these NPs in cancer therapy and diagnostics applications are highlighted.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Anubhab Mukherjee
- Department of Formulation, Sealink Pharmaceuticals, Hyderabad, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
6
|
Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current Trends in Cancer Nanotheranostics: Metallic, Polymeric, and Lipid-Based Systems. Pharmaceutics 2019; 11:E22. [PMID: 30625999 PMCID: PMC6359642 DOI: 10.3390/pharmaceutics11010022] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/28/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Theranostics has emerged in recent years to provide an efficient and safer alternative in cancer management. This review presents an updated description of nanotheranostic formulations under development for skin cancer (including melanoma), head and neck, thyroid, breast, gynecologic, prostate, and colon cancers, brain-related cancer, and hepatocellular carcinoma. With this focus, we appraised the clinical advantages and drawbacks of metallic, polymeric, and lipid-based nanosystems, such as low invasiveness, low toxicity to the surrounding healthy tissues, high precision, deeper tissue penetration, and dosage adjustment in a real-time setting. Particularly recognizing the increased complexity and multimodality in this area, multifunctional hybrid nanoparticles, comprising different nanomaterials and functionalized with targeting moieties and/or anticancer drugs, present the best characteristics for theranostics. Several examples, focusing on their design, composition, imaging and treatment modalities, and in vitro and in vivo characterization, are detailed herein. Briefly, all studies followed a common trend in the design of these theranostics modalities, such as the use of materials and/or drugs that share both inherent imaging (e.g., contrast agents) and therapeutic properties (e.g., heating or production reactive oxygen species). This rationale allows one to apparently overcome the heterogeneity, complexity, and harsh conditions of tumor microenvironments, leading to the development of successful targeted therapies.
Collapse
Affiliation(s)
- Catarina Oliveira Silva
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Jacinta Oliveira Pinho
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Joana Margarida Lopes
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - António J Almeida
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Catarina Reis
- iMedUlisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
- IBEB, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
7
|
Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, Shastri MD, Chellappan DK, Maurya PK, Satija S, Mehta M, Gulati M, Hansbro N, Collet T, Awasthi R, Gupta G, Hsu A, Hansbro PM. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: An emerging need for novel drug delivery systems. Chem Biol Interact 2018; 299:168-178. [PMID: 30553721 DOI: 10.1016/j.cbi.2018.12.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Oxidative stress is intensely involved in enhancing the severity of various chronic respiratory diseases (CRDs) including asthma, chronic obstructive pulmonary disease (COPD), infections and lung cancer. Even though there are various existing anti-inflammatory therapies, which are not enough to control the inflammation caused due to various contributing factors such as anti-inflammatory genes and antioxidant enzymes. This leads to an urgent need of novel drug delivery systems to combat the oxidative stress. This review gives a brief insight into the biological factors involved in causing oxidative stress, one of the emerging hallmark feature in CRDs and particularly, highlighting recent trends in various novel drug delivery carriers including microparticles, microemulsions, microspheres, nanoparticles, liposomes, dendrimers, solid lipid nanocarriers etc which can help in combating the oxidative stress in CRDs and ultimately reducing the disease burden and improving the quality of life with CRDs patients. These carriers improve the pharmacokinetics and bioavailability to the target site. However, there is an urgent need for translational studies to validate the drug delivery carriers for clinical administration in the pulmonary clinic.
Collapse
Affiliation(s)
- Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, India
| | - Ridhima Wadhwa
- Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Rapalli Vamshi Krishna
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, India
| | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Madhur D Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh District, 123031, Haryana, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Faculty of Applied Medical Sciences, Lovely Professional University, Phagwara, Punjab, 144441, India
| | - Nicole Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Trudi Collet
- Indigenous Medicines Group, Institute of Health & Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University, Sec. 125, Noida, 201303, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017, Jaipur, India
| | - Alan Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| |
Collapse
|
8
|
Jeong SH, Jang JH, Cho HY, Lee YB. Soft- and hard-lipid nanoparticles: a novel approach to lymphatic drug delivery. Arch Pharm Res 2018; 41:797-814. [PMID: 30074202 DOI: 10.1007/s12272-018-1060-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
With the current advance in nanotechnology, the development has accelerated of a number of nanoparticle-type drugs such as nano-emulsions, lipid emulsions, liposomes, and cell therapeutics. With these developments, attempts are being made to apply these new drugs to healing many intractable diseases related to antibody production, autoimmune disorders, cancer, and organ transplantation in both clinical and nonclinical trials. Drug delivery to the lymphatic system is indispensable for treating these diseases, but the core technologies related to the in vivo distribution characteristics and lymphatic delivery evaluation of these particle-type drugs have not yet been established. Additionally, the core technologies for setting up the pharmacotherapeutic aspects such as their usage and dosages in the development of new drugs do not meet the needs of the market. Therefore, it is necessary to consider dividing these particle-type drugs into soft-lipid nanoparticles that can change size in the process of body distribution and hard-lipid nanoparticles whose surfaces are hardened and whose sizes do not easily change in vivo; these soft- and hard-lipid nanoparticles likely possess different biodistribution characteristics including delivery to the lymphatic system. In this review, we summarize the different types, advantages, limitations, possible remedies, and body distribution characteristics of soft- and hard-lipid nanoparticles based on their administration routes. We also emphasize that it will be necessary to fully understand the differences in distribution between these soft- and hard-lipid nanoparticle-type drugs and to establish pharmacokinetic models for their more ideal lymphatic delivery.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
9
|
Dabbagh A, Abu Kasim NH, Yeong CH, Wong TW, Abdul Rahman N. Critical Parameters for Particle-Based Pulmonary Delivery of Chemotherapeutics. J Aerosol Med Pulm Drug Deliv 2017; 31:139-154. [PMID: 29022837 DOI: 10.1089/jamp.2017.1382] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Targeted delivery of chemotherapeutics through the respiratory system is a potential approach to improve drug accumulation in the lung tumor, while decreasing their negative side effects. However, elimination by the pulmonary clearance mechanisms, including the mucociliary transport system, and ingestion by the alveolar macrophages, rapid absorption into the blood, enzymatic degradation, and low control over the deposition rate and location remain the main complications for achieving an effective pulmonary drug delivery. Therefore, particle-based delivery systems have emerged to minimize pulmonary clearance mechanisms, enhance drug therapeutic efficacy, and control the release behavior. A successful implementation of a particle-based delivery system requires understanding the influential parameters in terms of drug carrier, inhalation technology, and health status of the patient's respiratory system. This review aims at investigating the parameters that significantly drive the clinical outcomes of various particle-based pulmonary delivery systems. This should aid clinicians in appropriate selection of a delivery system according to their clinical setting. It will also guide researchers in addressing the remaining challenges that need to be overcome to enhance the efficiency of current pulmonary delivery systems for aerosols.
Collapse
Affiliation(s)
- Ali Dabbagh
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- 1 Wellness Research Cluster, Institute of Research Management and Services, University of Malaya , Kuala Lumpur, Malaysia
| | - Chai Hong Yeong
- 2 Department of Biomedical Imaging, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Tin Wui Wong
- 3 Department of Pharmaceutics and Pharmaceutical Biotechnology, Faculty of Pharmacy, Universiti Teknologi MARA , Puncak Alam, Malaysia
| | - Noorsaadah Abdul Rahman
- 4 Department of Chemistry, Faculty of Science, University of Malaya , Kuala Lumpur, Malaysia .,5 Drug Design and Development Research Group (DDDRG), University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Biological voyage of solid lipid nanoparticles: a proficient carrier in nanomedicine. Ther Deliv 2016; 7:691-709. [DOI: 10.4155/tde-2016-0038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review projects the prospects and issues faced by solid lipid nanoparticles (SLNs) in current scenarios, specially related to its clinical implementation and effectiveness. We re-examine the basic concept of biobehavior and movement of SLNs as a nanomedicine carrier. The extensive survey of the uptake and absorption mechanism from different routes, distribution pattern, targeting efficiency, effect of surface functionalization on biodistribution, elimination pathways and toxic effects have been documented. In general, the objective of this review is to boost our knowledge about the interaction of SLNs with the bioenvironment, their movement in, and effect on, a living system and future prospects.
Collapse
|
11
|
|
12
|
Haque S, Whittaker MR, McIntosh MP, Pouton CW, Kaminskas LM. Disposition and safety of inhaled biodegradable nanomedicines: Opportunities and challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1703-24. [PMID: 27033834 DOI: 10.1016/j.nano.2016.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/22/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
The inhaled delivery of nanomedicines can provide a novel, non-invasive therapeutic strategy for the more localised treatment of lung-resident diseases and potentially also enable the systemic delivery of therapeutics that are otherwise administered via injection alone. However, the clinical translation of inhalable nanomedicine is being hampered by our lack of understanding about their disposition and clearance from the lungs. This review provides a comprehensive overview of the biodegradable nanomaterials that are currently being explored as inhalable drug delivery systems and our current understanding of their disposition within, and clearance from the lungs. The safety of biodegradable nanomaterials in the lungs is discussed and latest updates are provided on the impact of inflammation on the pulmonary pharmacokinetics of inhaled nanomaterials. Overall, the review provides an in-depth and critical assessment of the lung clearance mechanisms for inhaled biodegradable nanomedicines and highlights the opportunities and challenges for their translation into the clinic.
Collapse
Affiliation(s)
- Shadabul Haque
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michael R Whittaker
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michelle P McIntosh
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Colin W Pouton
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lisa M Kaminskas
- Drug Delivery Disposition and Dynamics Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:143-61. [DOI: 10.1016/j.nano.2015.09.004] [Citation(s) in RCA: 388] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/25/2022]
|
14
|
Seth A, Oh DB, Lim YT. Nanomaterials for enhanced immunity as an innovative paradigm in nanomedicine. Nanomedicine (Lond) 2015; 10:959-75. [PMID: 25867860 DOI: 10.2217/nnm.14.200] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since the advent of nanoparticle technology, novel and versatile properties of nanomaterials have been introduced, which has constantly expanded their applications in therapeutics. Introduction of nanomaterials for immunomodulation has opened up new avenues with tremendous potential. Interesting properties of nanoparticles, such as adjuvanticity, capability to enhance cross-presentation, polyvalent presentation, siRNA delivery for silencing of immunesuppressive gene, targeting and imaging of immune cells have been known to have immense utility in vaccination and immunotherapy. A thorough understanding of the merits associated with nanomaterials is crucial for designing of modular and versatile nanovaccines, for improved immune response. With the emerging prerequisites of vaccination, nanomaterial-based immune stimulation, seems to be capable of taking the field of immunization to a next higher level.
Collapse
Affiliation(s)
- Anushree Seth
- Graduate School of Analytical Science & Technology, Chungnam National University, Daejeon 305-764, South Korea
| | | | | |
Collapse
|
15
|
Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: In vitro and in vivo studies. J Colloid Interface Sci 2015; 445:219-230. [DOI: 10.1016/j.jcis.2014.12.092] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
|
16
|
Mancini G, Lopes RM, Clemente P, Raposo S, Gonçalves LMD, Bica A, Ribeiro HM, Almeida AJ. Lecithin and parabens play a crucial role in tripalmitin-based lipid nanoparticle stabilization throughout moist heat sterilization and freeze-drying. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Guiliana Mancini
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Rui M. Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Pierpaolo Clemente
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Sara Raposo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Lídia M. D. Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - António Bica
- Laboratório de Estudos Farmacêuticos (LEF); Barcarena Portugal
| | - Helena M. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|
17
|
Cipolla D, Shekunov B, Blanchard J, Hickey A. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev 2014; 75:53-80. [PMID: 24819218 DOI: 10.1016/j.addr.2014.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 12/31/2022]
Abstract
A number of lipid-based technologies have been applied to pharmaceuticals to modify their drug release characteristics, and additionally, to improve the drug loading for poorly soluble drugs. These technologies, including solid-state lipid microparticles, many of which are porous in nature, liposomes, solid lipid nanoparticles and nanostructured lipid carriers, are increasingly being developed for inhalation applications. This article provides a review of the rationale for the use of these technologies in the pulmonary delivery of drugs, and summarizes the manufacturing processes and their limitations, the in vitro and in vivo performance of these systems, the safety of these lipid-based systems in the lung, and their promise for commercialization.
Collapse
Affiliation(s)
- David Cipolla
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA.
| | - Boris Shekunov
- Shire Corporation, 725 Chesterbrook Blvd, Wayne, PA 19087, USA
| | - Jim Blanchard
- Aradigm Corporation, 3929 Point Eden Way, Hayward, CA 94545, USA
| | - Anthony Hickey
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
18
|
Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R, Jiang G, Yan B. Perturbation of physiological systems by nanoparticles. Chem Soc Rev 2014; 43:3762-809. [PMID: 24647382 DOI: 10.1039/c3cs60338e] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology is having a tremendous impact on our society. However, societal concerns about human safety under nanoparticle exposure may derail the broad application of this promising technology. Nanoparticles may enter the human body via various routes, including respiratory pathways, the digestive tract, skin contact, intravenous injection, and implantation. After absorption, nanoparticles are carried to distal organs by the bloodstream and the lymphatic system. During this process, they interact with biological molecules and perturb physiological systems. Although some ingested or absorbed nanoparticles are eliminated, others remain in the body for a long time. The human body is composed of multiple systems that work together to maintain physiological homeostasis. The unexpected invasion of these systems by nanoparticles disturbs normal cell signaling, impairs cell and organ functions, and may even cause pathological disorders. This review examines the comprehensive health risks of exposure to nanoparticles by discussing how nanoparticles perturb various physiological systems as revealed by animal studies. The potential toxicity of nanoparticles to each physiological system and the implications of disrupting the balance among systems are emphasized.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Andreozzi E, Wang P, Valenzuela A, Tu C, Gorin F, Dhenain M, Louie A. Size-Stable Solid Lipid Nanoparticles Loaded with Gd-DOTA for Magnetic Resonance Imaging. Bioconjug Chem 2013; 24:1455-67. [DOI: 10.1021/bc300605f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Erica Andreozzi
- Department of Biomedical Engineering, University of California Davis, Davis,
California 95616, United States
| | - Peter Wang
- Department of Biomedical Engineering, University of California Davis, Davis,
California 95616, United States
| | - Anthony Valenzuela
- Department of Neurology, School of Medicine, University of California Davis,
4860 Y Street, #3700, Sacramento, California 95817, United States
| | - Chuqiao Tu
- Department of Biomedical Engineering, University of California Davis, Davis,
California 95616, United States
| | - Fredric Gorin
- Department of Neurology, School of Medicine, University of California Davis,
4860 Y Street, #3700, Sacramento, California 95817, United States
| | - Marc Dhenain
- CNRS, URA CEA CNRS 2210, 18 route du Panorama, 92265 Fontenay aux Roses,
France
- CEA, DSV, I2BM, MIRCen, 18 Route du Panorama, 92265
Fontenay aux
Roses, France
| | - Angelique Louie
- Department of Biomedical Engineering, University of California Davis, Davis,
California 95616, United States
| |
Collapse
|
20
|
Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 2013; 86:7-22. [PMID: 24007657 DOI: 10.1016/j.ejpb.2013.08.013] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 01/04/2023]
Abstract
Drug delivery by inhalation is a noninvasive means of administration that has following advantages for local treatment for airway diseases: reaching the epithelium directly, circumventing first pass metabolism and avoiding systemic toxicity. Moreover, from the physiological point of view, the lung provides advantages for systemic delivery of drugs including its large surface area, a thin alveolar epithelium and extensive vasculature which allow rapid and effective drug absorption. Therefore, pulmonary application is considered frequently for both, the local and the systemic delivery of drugs. Lipid nanoparticles - Solid Lipid Nanoparticles and Nanostructured Lipid Carriers - are nanosized carrier systems in which solid particles consisting of a lipid matrix are stabilized by surfactants in an aqueous phase. Advantages of lipid nanoparticles for the pulmonary application are the possibility of a deep lung deposition as they can be incorporated into respirables carriers due to their small size, prolonged release and low toxicity. This paper will give an overview of the existing literature about lipid nanoparticles for pulmonary application. Moreover, it will provide the reader with some background information for pulmonary drug delivery, i.e., anatomy and physiology of the respiratory system, formulation requirements, application forms, clearance from the lung, pharmacological benefits and nanotoxicity.
Collapse
|
21
|
Wan F, Møller EH, Yang M, Jørgensen L. Formulation technologies to overcome unfavorable properties of peptides and proteins for pulmonary delivery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e71-e174. [PMID: 24064274 DOI: 10.1016/j.ddtec.2011.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
22
|
Andreozzi E, Seo JW, Ferrara K, Louie A. Novel method to label solid lipid nanoparticles with 64cu for positron emission tomography imaging. Bioconjug Chem 2011; 22:808-18. [PMID: 21388194 DOI: 10.1021/bc100478k] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Solid lipid nanoparticles (SLNs) are submicrometer (1-1000 nm) colloidal carriers developed in the past decade as an alternative system to traditional carriers (emulsions, liposomes, and polymeric nanoparticles) for intravenous applications. Because of their potential as drug carriers, there is much interest in understanding the in vivo biodistribution of SLNs following intravenous (i.v.) injection. Positron emission tomography (PET) is an attractive method for investigating biodistribution but requires a radiolabeled compound. In this work, we describe a method to radiolabel SLN for in vivo PET studies. A copper specific chelator, 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetradecane-N,N',N'',N'''-tetraacetic acid (BAT), conjugated with a synthetic lipid, was incorporated into the SLN. Following incubation with (64)CuCl(2) for 1 h at 25 °C in 0.1 M NH(4)OAc buffer (pH 5.5), the SLNs (∼150 nm) were successfully radiolabeled with (64)Cu (66.5% radiolabeling yield), exhibiting >95% radiolabeled particles following purification. The (64)Cu-SLNs were delivered intravenously to mice and imaged with PET at 0.5, 3, 20, and 48 h post injection. Gamma counting was utilized post imaging to confirm organ distributions. Tissue radioactivity (% injected dose/gram, %ID/g), obtained by quantitative analysis of the images, suggests that the (64)Cu-SLNs are circulating in the bloodstream after 3 h (blood half-life ∼1.4 h), but are almost entirely cleared by 48 h. PET and gamma counting demonstrate that approximately 5-7%ID/g (64)Cu-SLNs remain in the liver at 48 h post injection. Stability assays confirm that copper remains associated with the SLN over the 48 h time period and that the biodistribution patterns observed are not from free, dissociated copper. Our results indicate that SLNs can be radiolabeled with (64)Cu, and their biodistribution can be quantitatively evaluated by in vivo PET imaging and ex vivo gamma counting.
Collapse
Affiliation(s)
- Erica Andreozzi
- Department of Biomedical Engineering, University of California , Davis, California, United States
| | | | | | | |
Collapse
|
23
|
|
24
|
Zhao J, Castranova V. Toxicology of nanomaterials used in nanomedicine. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:593-632. [PMID: 22008094 DOI: 10.1080/10937404.2011.615113] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
With the development of nanotechnology, nanomaterials are being widely used in many industries as well as in medicine and pharmacology. Despite the many proposed advantages of nanomaterials, increasing concerns have been expressed on their potential adverse human health effects. In recent years, application of nanotechnology in medicine has been defined as nanomedicine. Techniques in nanomedicine make it possible to deliver therapeutic agents into targeted specific cells, cellular compartments, tissues, and organs by using nanoparticulate carriers. Because nanoparticles possess different physicochemical properties than their fine-sized analogues due to their extremely small size and large surface area, they need to be evaluated separately for toxicity and adverse health effects. In addition, in the field of nanomedicine, intravenous and subcutaneous injections of nanoparticulate carriers deliver exogenous nanoparticles directly into the human body without passing through the normal absorption process. These nanoparticulate carriers themselves may be responsible for toxicity and interaction with biological macromolecules within the human body. Second, insoluble nanoparticulate carriers may accumulate in human tissues or organs. Therefore, it is necessary to address the potential health and safety implications of nanomaterials used in nanomedicine. Toxicological studies for biosafety evaluation of these nanomaterials will be important for the continuous development of nanomedical science. This review summarizes the current knowledge on toxicology of nanomaterials, particularly on those used in nanomedicine.
Collapse
Affiliation(s)
- Jinshun Zhao
- Public Health Department of Medical School, Ningbo University, Ningbo, Zhejiang, P. R. China
| | | |
Collapse
|
25
|
Aillon KL, El-Gendy N, Dennis C, Norenberg JP, McDonald J, Berkland C. Iodinated NanoClusters as an inhaled computed tomography contrast agent for lung visualization. Mol Pharm 2010; 7:1274-82. [PMID: 20575527 DOI: 10.1021/mp1000718] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Improvements to contrast media formulations may be an effective way to increase the accuracy and effectiveness of thoracic computed tomography (CT) imaging in disease evaluation. To achieve contrast enhancement in the lungs, a relatively large localized concentration of contrast media must be delivered. Inhalation offers a noninvasive alternative to intrapleural injections for local lung delivery, but effective aerosolization may deter successful imaging strategies. Here, NanoCluster technology was applied to N1177, a diatrizoic acid derivative, to formulate low density nanoparticle agglomerates with aerodynamic diameters <or=5 microm. Excipient-free N1177 NanoCluster powders were delivered to rats by insufflation or inhalation and scanned using CT up to 1 h post dose. CT images after inhalation showed a approximately 120 (HU) Hounsfield units contrast increase in the lungs, which was more than sufficient contrast for thoracic CT imaging. Lung tissue histology demonstrated that N1177 NanoClusters did not damage the lungs. NanoCluster particle engineering technology offers a novel approach to safely and efficiently disseminate high concentrations of contrast agents to the lung periphery.
Collapse
Affiliation(s)
- Kristin L Aillon
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The lung is an attractive target for drug delivery due to noninvasive administration via inhalation aerosols, avoidance of first-pass metabolism, direct delivery to the site of action for the treatment of respiratory diseases, and the availability of a huge surface area for local drug action and systemic absorption of drug. Colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery offer many advantages such as the potential to achieve relatively uniform distribution of drug dose among the alveoli, achievement of improved solubility of the drug from its own aqueous solubility, a sustained drug release which consequently reduces dosing frequency, improves patient compliance, decreases incidence of side effects, and the potential of drug internalization by cells. This review focuses on the current status and explores the potential of colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery with special attention to their pharmaceutical aspects. Manufacturing processes, in vitro/in vivo evaluation methods, and regulatory/toxicity issues of nanomedicines in pulmonary delivery are also discussed.
Collapse
Affiliation(s)
- Heidi M Mansour
- University of Kentucky, College of Pharmacy, Division of Pharmaceutical Sciences-Drug Development Division, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
27
|
Nassimi M, Schleh C, Lauenstein HD, Hussein R, Lübbers K, Pohlmann G, Switalla S, Sewald K, Müller M, Krug N, Müller-Goymann CC, Braun A. Low cytotoxicity of solid lipid nanoparticles inin vitroandex vivolung models. Inhal Toxicol 2009; 21 Suppl 1:104-9. [DOI: 10.1080/08958370903005769] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Dickie R, Cormack M, Semmler-Behnke M, Kreyling WG, Tsuda A. Deep pulmonary lymphatics in immature lungs. J Appl Physiol (1985) 2009; 107:859-63. [PMID: 19556455 DOI: 10.1152/japplphysiol.90665.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we found that the translocation of inhaled nanoparticles from the air space to secondary organs is age dependent and substantially greater in neonates than in adults (J Respir Crit Care Med 177: A48, 2008). One reason for this difference might be age-dependent differences in alveolar barrier integrity. Because the neonate lung is undergoing morphogenetic and fluid balance changes, we hypothesize that the alveolar barrier of developing lungs is more easily compromised and susceptible to foreign material influx than that of adult lungs. On the basis of these hypotheses, we predict that the postnatally developing lung is also more likely to allow the translocation of some materials from the air space to the lymphatic lumens. To test this idea, we intratracheally instilled methyl methacrylate into immature and adult lungs and compared lymphatic filling between these two age groups. Scanning electron microscopy of the resultant corrosion casts revealed peribronchial saccular and conduit lymphatic architecture. Deep pulmonary lymphatic casts were present on the majority (58.5%) of airways in immature lungs, but lymphatic casting in adult lungs, as anticipated, was much more infrequent (21.6%). Thus the neonate lung appears to be more susceptible than the adult lung to the passage of instilled methyl methacrylate from the air space into the lymphatics. We speculate that this could imply greater probability of translocation of other materials, such as nanoparticles, from the immature lung as well.
Collapse
Affiliation(s)
- Renée Dickie
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Joshi MD, Müller RH. Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 2009; 71:161-72. [DOI: 10.1016/j.ejpb.2008.09.003] [Citation(s) in RCA: 319] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/26/2008] [Accepted: 09/02/2008] [Indexed: 11/28/2022]
|
30
|
Xie Y, Zeng P, Wiedmann TS. Disease guided optimization of the respiratory delivery of microparticulate formulations. Expert Opin Drug Deliv 2008; 5:269-89. [PMID: 18318650 DOI: 10.1517/17425247.5.3.269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Inhalation of microparticulate dosage forms can be effectively used in the treatment of respiratory and systemic diseases. OBJECTIVE Disease states investigated for treatment by inhalation of microparticles were reviewed along with the drugs' pharmacological, pharmacokinetic and physical chemical properties to identify the advantages of microparticulate inhalation formulations and to identify areas for further improvement. METHODS Microbial infections of the lung, asthma, diabetes, lung transplantation and lung cancer were examined, with a focus on those systems intended to provide a sustained release. CONCLUSION In developing microparticulate formulations for inhalation in the lung, there is a need to understand the pharmacology of the drug as the key to revealing the optimal concentration time profile, the disease state, and the pharmacokinetic properties of the pure drug as determined by IV administration and inhalation. Finally, in vitro release studies will allow better identification of the best dosing strategy to be used in efficacy and safety studies.
Collapse
Affiliation(s)
- Yuanyuan Xie
- University of Minnesota, Department of Pharmaceutics, 308 Harvard St SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|