1
|
Merino D. Embracing Nature's Clockwork: Crafting Plastics for Degradation in Plant Agricultural Systems. ACS MATERIALS AU 2024; 4:450-458. [PMID: 39280809 PMCID: PMC11393932 DOI: 10.1021/acsmaterialsau.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 09/18/2024]
Abstract
In the 21st century, global agriculture confronts the urgent challenge of increasing food production by 70% by 2050 while simultaneously addressing environmental and health concerns. Plastics, integral to agricultural innovation, present sustainability challenges due to their non-biodegradable nature and contribution to pollution. This perspective examines the transition to bioplastics, emphasizing their bio-based origin and their crucial characteristic of being readily biodegradable in the soil. Key bioplastics such as poly(lactic acid) (PLA), polyhydroxyalkanoates (PHAs), and biomass-derived polymers are discussed, particularly regarding the microplastic generation in soil resulting from their use in specific applications like mulch films, delivery systems, and soil conditioners. Embracing bioplastics signifies a significant step forward in achieving sustainable agriculture and addressing plastic waste. However, it is highlighted that while some bioplastics can be recovered and recycled, special applications where the plastic is in intimate contact with soil pose challenges for recovery. In these cases, that represent more than the 50% of plastics used in agriculture, meticulous design for biodegradation in soil synchronized with agricultural cycles is necessary. This approach ensures minimal environmental impact and promotes a circular approach to plastic use in agriculture.
Collapse
Affiliation(s)
- Danila Merino
- Basque Center for Macromolecular Design and Engineering (POLYMAT), University of the Basque Country (UPV/EHU), Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
2
|
Yu H, Li Y, Wang H, Zhang L, Suo P, Su T, Han Q. Preparation of a long-lasting tablet of spinosad microspheres and its residual insecticidal efficacy against the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae) larvae. PEST MANAGEMENT SCIENCE 2024; 80:3912-3921. [PMID: 38517127 DOI: 10.1002/ps.8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUNDS In order to provide a long-lasting formulation for spinosad (SP) targeting larval stages of Aedes aegypti (Linnaeus) and others alike, a SP tablet was developed based on microspheres, using polylactic acid as inside coating material. The microspheres were encapsulated using polyethylene glycol and 1-hexadecanol to form a sustained-release SP tablet. Micromorphology, active ingredient loading, structure identification, photolysis resistance and biological activity were evaluated in this report. RESULTS (i) The SP microspheres had an average particle size of 6.16 ± 2.28 μm, low adhesion and good dispersion as evaluated by scanning electron microscopy and morphology. (ii) The average active ingredient loading and encapsulation of SP microspheres were 32.80 ± 0.74% and 78.41 ± 2.22%, respectively. (iii) The chemical structure of encapsulated SP was confirmed by Fourier transform infrared and 1H-nuclear magnetic resonance. (iv) The photostability of the microspheres and the tablets were evaluated. The results showed that DT50 (time required to dissipate 50% of the mass originally present) of SP was 0.95 days in microspheres and 6.94 days in tablets. (v) The long-term insecticidal activity of SP tablets was investigated, and the tablet had a long-lasting activity against the mosquito larvae, showing 100% larval mortality for 63 days. CONCLUSIONS The study provided a new long-lasting formulation of SP, which displayed good efficacy in the control of Ae. aegypti larvae. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongxiao Yu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Yunqi Li
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Hong Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Lei Zhang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Penghui Suo
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Tianyun Su
- EcoZone International LLC, Riverside, California, USA
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
3
|
Jali P, Acharya S, Mahalik G. Antimicrobial efficacy of nano-particles for crop protection and sustainable agriculture. DISCOVER NANO 2024; 19:117. [PMID: 39009869 PMCID: PMC11250757 DOI: 10.1186/s11671-024-04059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Plant diseases cause colossal crop loss worldwide and are the major yield constraining component in agriculture. Nanotechnology, which has the possible to revolutionize numerous fields of science, innovation, drug, and agriculture. Nanotechnology can be utilized for combating the plant infectious diseases and nano-materials can be utilized as transporter of dynamic elements of pesticides, host defense etc. to the pathogens. The analysis of diseases, finding of pathogens may turn out to be substantially more precise and fast with the utilization of nanosensors. As worldwide demand for food production raises against an evolving atmosphere, nanotechnology could reasonably alleviate numerous challenges in disease managing by diminishing chemical inputs and advancing quick recognition of pathogens. The major goal of this review is to increase growth and productivity using supplements with nanoparticles. (i.e., metals, metal oxides, and carbon) to treat crop diseases and make agricultural practices more productive and sustainable. Prominently, this improved crop may not only be straight connected to the diminished occurrence of pathogenic microorganisms, yet in might possibly add nutritional benefits of the nanoparticles themselves, particularly for the micronutrients important for generating host resistance.
Collapse
Affiliation(s)
- Pallavi Jali
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Srinivas Acharya
- Department of Environmental Science, Government Autonomous College, Phulbani, Odisha, India.
| | - Gyanranjan Mahalik
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Jatani, Odisha, India.
| |
Collapse
|
4
|
Patil RD, Karandikar PS, Bendre RS. A greener approach for controlled release of Fenvalerate insecticide from renewable polymer thymol-formaldehyde-based encapsulated formulation. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Kumar R, Kumar N, Rajput VD, Mandzhieva S, Minkina T, Saharan BS, Kumar D, Sadh PK, Duhan JS. Advances in Biopolymeric Nanopesticides: A New Eco-Friendly/Eco-Protective Perspective in Precision Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223964. [PMID: 36432250 PMCID: PMC9692690 DOI: 10.3390/nano12223964] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 05/26/2023]
Abstract
Pesticides are essential to contemporary agriculture and are required to safeguard plants from hazardous pests, diseases, and weeds. In addition to harming the environment, overusing these pesticides causes pests to become resistant over time. Alternative methods and agrochemicals are therefore required to combat resistance. A potential solution to pesticide resistance and other issues may be found in nanotechnology. Due to their small size, high surface-area-to-volume ratio, and ability to offer novel crop protection techniques, nanoformulations, primarily biopolymer-based ones, can address specific agricultural concerns. Several biopolymers can be employed to load pesticides, including starch, cellulose, chitosan, pectin, agar, and alginate. Other biopolymeric nanomaterials can load pesticides for targeted delivery, including gums, carrageenan, galactomannans, and tamarind seed polysaccharide (TSP). Aside from presenting other benefits, such as reduced toxicity, increased stability/shelf life, and improved pesticide solubility, biopolymeric systems are also cost-effective; readily available; biocompatible; biodegradable; and biosafe (i.e., releasing associated active compounds gradually, without endangering the environment) and have a low carbon footprint. Additionally, biopolymeric nanoformulations support plant growth while improving soil aeration and microbial activity, which may favor the environment. The present review provides a thorough analysis of the toxicity and release behavior of biopolymeric nanopesticides for targeted delivery in precision crop protection.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Naresh Kumar
- Regional Forensic Science Laboratory, Mandi 175002, India
| | - Vishnu D. Rajput
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology, and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | | | - Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | | |
Collapse
|
6
|
Zhao J, Song R, Li H, Zheng Q, Li S, Liu L, Li X, Bai L, Liu K. New Formulation to Accelerate the Degradation of Pesticide Residues: Composite Nanoparticles of Imidacloprid and 24-Epibrassinolide. ACS OMEGA 2022; 7:29027-29037. [PMID: 36033692 PMCID: PMC9404473 DOI: 10.1021/acsomega.2c02820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Pest control effectiveness and residues of pesticides are contradictory concerns in agriculture and environmental conservation. On the premise of not affecting the insecticidal effect, the pesticide residues in the later stage should be degraded as fast as possible. In the present study, composite nanoparticles in a double-layer structure, consisting of imidacloprid (IMI) in the outer layer and plant hormone 24-epibrassinolide (24-EBL) in the inner layer, were prepared by the W/O/W solvent evaporation method using Eudragit RL/RS and polyhydroxyalkanoate as wall materials. The release of IMI in the outer layer was faster and reached the maximum within 24 h, while the release of 24-EBL in the inner layer was slower and reached the maximum within 96 h. The contact angle of the composite nanoparticles was half that of the 5% IMI emulsifiable concentrate (EC), and the deposition of composite nanoparticles on rice was twice that of 5% IMI EC, which increased the pesticide utilization efficiency. Compared with the common pesticide, 5% IMI EC, the insecticidal effect of the composite nanoparticles was stronger than that of planthoppers, with a much lower final residue amount on rice after 21 days. The composite nanoparticles prepared in this study to achieve sustained release of pesticides and, meanwhile, accelerate the degradation of pesticide residues have a strong application potential in agriculture for controlling pests and promoting crop growth.
Collapse
Affiliation(s)
- Jingyu Zhao
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Rong Song
- Institute
of Agricultural Environment and Ecology, Hunan academy of Agricultural Sciences, Changsha 410125, China
| | - Hui Li
- Department
of Crop and Soil Sciences, North Carolina
State University, Raleigh, North Carolina 27695, United States
| | - Qianqi Zheng
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Shaomei Li
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Lejun Liu
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Xiaogang Li
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
| | - Lianyang Bai
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
- Key
Laboratory for Biology and Control of Weeds, Hunan Agricultural Biotechnology
Research Institute, Hunan Academy of Agricultural
Sciences, Changsha 410125, China
| | - Kailin Liu
- College
of Plant Protection, Hunan Agricultural
University, Changsha 410128, China
- Key
Laboratory for Biology and Control of Weeds, Hunan Agricultural Biotechnology
Research Institute, Hunan Academy of Agricultural
Sciences, Changsha 410125, China
| |
Collapse
|
7
|
Liang W, Zhang J, Wurm FR, Wang R, Cheng J, Xie Z, Li X, Zhao J. Lignin-based non-crosslinked nanocarriers: A promising delivery system of pesticide for development of sustainable agriculture. Int J Biol Macromol 2022; 220:472-481. [PMID: 35987356 DOI: 10.1016/j.ijbiomac.2022.08.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Lignin sulfonate (LS), a waste material from the paper pulping, was modified with benzoic anhydride to obtain benzoylated lignin sulfonates of adjustable hydrophilicity (BLS). When BLS was combined with difenoconazole (Di), a broad-spectrum fungicide, lignin-based, non-crosslinked nanoparticles were obtained either by solvent exchange or solvent evaporation. When a mass ratio of 1:5 LS: benzoic anhydride was used, the Di release from Di@BLS5 after 1248 h was ca. 74 %, while a commercial difenoconazole microemulsion (Di ME) reached 100 % already after 96 h, proving the sustained release from the lignin nanocarriers. The formulation of Di in lignin-based nanocarriers also improved the UV stability and the foliar retention of Di compared to the commercial formulation of the fungicide. Bioactivity assay showed that Di@BLS5 exhibited high activities and duration against strawberry anthracnose (Colletotrichum gloeosporioides). Overall, the construction of fungicide delivery nano-platform using BLS via a simple non-crosslinked approach is a novel and promising way to develop new formulations for nanopesticide and the development of sustainable agriculture.
Collapse
Affiliation(s)
- Wenlong Liang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China; Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, the Netherlands
| | - Jiadong Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Frederik R Wurm
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, 7500 AE Enschede, the Netherlands
| | - Rong Wang
- Economic Specialty Technology Extension Center, Lanxi 321100, PR China
| | - Jingli Cheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengang Xie
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China
| | - Xianbin Li
- Institute for the Control of Agrochemicals, Ministry of Agriculture, Beijing 100125, PR China.
| | - Jinhao Zhao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
8
|
Shao C, Zhao H, Wang P. Recent development in functional nanomaterials for sustainable and smart agricultural chemical technologies. NANO CONVERGENCE 2022; 9:11. [PMID: 35235069 PMCID: PMC8891417 DOI: 10.1186/s40580-022-00302-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 05/27/2023]
Abstract
New advances in nanotechnology are driving a wave of technology revolution impacting a broad range of areas in agricultural production. The current work reviews nanopesticides, nano-fabricated fertilizers, and nano activity-based growth promoters reported in the last several years, focusing on mechanisms revealed for preparation and functioning. It appears to us that with many fundamental concepts have been demonstrated over last two decades, new advances in this area continue to expand mainly in three directions, i.e., efficiency improvement, material sustainability and environment-specific stimulation functionalities. It is also evident that environmental and health concerns associated with nano agrochemicals are the primary motivation and focus for most recent work. Challenges and perspectives for future development of nano agrochemicals are also discussed.
Collapse
Affiliation(s)
- Chen Shao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
- School of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Huawei Zhao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
- School of Food Engineering, Ludong University, Yantai, 264025, Shandong, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN, 55108, USA.
| |
Collapse
|
9
|
Volova TG, Kurachenko NL, Bopp VL, Thomas S, Demidenko AV, Kiselev EG, Baranovsky SV, Sukovatyi AG, Zhila NO, Shishatskaya EI. Assessment of the efficacy of slow-release formulations of the tribenuron-methyl herbicide in field-grown spring wheat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20249-20264. [PMID: 34727312 DOI: 10.1007/s11356-021-17195-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The efficacy of slow-release formulations of tribenuron-methyl (TBM) embedded in the matrix of degradable poly(3-hydroxybutyrate) blended with birch wood flour [polymer/wood flour/herbicide 50/30/20 wt.%] was compared with the efficacy of TBM as the active ingredient of the Mortira commercial formulation, which was applied as post-emergence spray to treat spring wheat cv. Novosibirskaya 15. The study was conducted in Central Siberia (in the environs of the city of Krasnoyarsk, Russia) from May to August 2020. The biological efficacy of the embedded TBM was 92.3%, which was considerably higher than the biological efficacy of the Mortira formulation used as the post-emergence spray (15.4%). The embedding of TBM into degradable blended matrix enabled long-duration functioning of this unstable herbicide in soil. The sensitivity of weed plants to TBM differed depending on the species. TBM was more effective against A. retroflexus and A. blitoides, which were killed at an earlier stage, than against C. album and G. aparine, whose percentage increased in the earlier stage and which were controlled by the herbicide less effectively and at later stages. On the plot treated with the embedded herbicide, the parameters of the wheat yield structure were the best, and the total yield was the highest: 3360 ± 40 kg/ha versus 3250 ± 50 kg/ha in the group of plants sprayed with the Mortira formulation. The grain produced in all groups was of high quality and was classified as Grade 1 food grain. The highest quality parameters (grain hectoliter mass, gluten, and protein contents) were obtained in the group of plants treated with the embedded herbicide. The study of the embedded TBM confirmed the high efficacy of the experimental formulation.
Collapse
Affiliation(s)
- Tatiana G Volova
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia.
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia.
| | | | - Valentina L Bopp
- Krasnoyarsk State Agrarian University, 90 Mir av., Krasnoyarsk, 660049, Russia
| | - Sabu Thomas
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Aleksey V Demidenko
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Evgeniy G Kiselev
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | | | - Aleksey G Sukovatyi
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Natalia O Zhila
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Ekaterina I Shishatskaya
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
10
|
Kutawa AB, Ahmad K, Ali A, Hussein MZ, Abdul Wahab MA, Adamu A, Ismaila AA, Gunasena MT, Rahman MZ, Hossain MI. Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review. BIOLOGY 2021; 10:881. [PMID: 34571758 PMCID: PMC8465907 DOI: 10.3390/biology10090881] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022]
Abstract
Approximately 15-18% of crops losses occur as a result of animal pests, while weeds and microbial diseases cause 34 and 16% losses, respectively. Fungal pathogens cause about 70-80% losses in yield. The present strategies for plant disease control depend transcendently on agrochemicals that cause negative effects on the environment and humans. Nanotechnology can help by reducing the negative impact of the fungicides, such as enhancing the solubility of low water-soluble fungicides, increasing the shelf-life, and reducing toxicity, in a sustainable and eco-friendly manner. Despite many advantages of the utilization of nanoparticles, very few nanoparticle-based products have so far been produced in commercial quantities for agricultural purposes. The shortage of commercial uses may be associated with many factors, for example, a lack of pest crop host systems usage and the insufficient number of field trials. In some areas, nanotechnology has been advanced, and the best way to be in touch with the advances in nanotechnology in agriculture is to understand the major aspect of the research and to address the scientific gaps in order to facilitate the development which can provide a rationale of different nanoproducts in commercial quantity. In this review, we, therefore, described the properties and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of (a) nanoparticles alone, that act as a protectant or (b) in the form of a nanocarrier for different fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications.
Collapse
Affiliation(s)
- Abdulaziz Bashir Kutawa
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Biological Sciences, Faculty of Life Science, Federal University Dutsin-Ma, Dutsin-ma P.M.B 5001, Nigeria
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Sustainable Agronomy and Crop Protection, Institute of Plantation Studies (IKP), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia
| | - Mohd Zobir Hussein
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Aswad Abdul Wahab
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
| | - Abdullahi Adamu
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Biological Sciences, Faculty of Science, Sokoto State University, Birnin Kebbi Road, Sokoto P.M.B 2134, Nigeria
| | - Abubakar A. Ismaila
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Integrated Science, School of Secondary Education (Science), Federal College of Education (Technical), Bichi P.M.B 3473, Nigeria
| | - Mahesh Tiran Gunasena
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Grain Legume and Oil Crop Research and Development Centre, Angunakolapelessa 82220, Sri Lanka
| | - Muhammad Ziaur Rahman
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Plant Pathology Division, Regional Agricultural Research Station (RARS), Bangladesh Agricultural Research Institute (BARI), Barishal 8211, Bangladesh
| | - Md Imam Hossain
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
| |
Collapse
|
11
|
Chen L, Lin Y, Zhou H, Hao L, Chen H, Zhou X. A stable polyamine-modified zein-based nanoformulation with high foliar affinity and lowered toxicity for sustained avermectin release. PEST MANAGEMENT SCIENCE 2021; 77:3300-3312. [PMID: 33763979 DOI: 10.1002/ps.6374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND A large amount of pesticides that are not deposited on desired locations due to drift and rolling, endangering the ecological environment and human health. Therefore, it is urgent to develop environmentally friendly and foliar affinity formulations. The design and construction of pesticide nano-delivery system is considered to be an effective way to solve this problem. RESULTS In this research, polyamine-modified zein (AM-zein) was synthesized by incorporating ethylenediamine-terminated polyethyleneimine into zein to improve its stability as a nanocarrier, enhance electrostatic force between the carrier and pesticides and plant foliage. Avermectin (AVM)-loaded nanoparticles, containing a high positive charge, were prepared by the anti-solvent method using AM-zein as carrier. The nanoparticles can be stored for 30 days without any significant change in the particle size and stably dispersed at pH 5-9. Compared to the commercial emulsifiable concentrate (EC), nanoparticles dispersions exhibited better leaf affinity, and the retention of dispersion increased from 7.82 to 13.86 mg/cm2 . Interestingly, we have discovered for the first time that the ultraviolet (UV) barrier effect of zein increases while prolonging the UV exposure time; 30.47% of the encapsulated AVM remained intact after exposure to UV for 60 min, compared to only 17.13% for the EC. Insecticidal activity of AVM nanoparticles did not improve compared to EC, but they demonstrated significantly lower toxicity against zebrafish. CONCLUSION This research opens up a new idea for improving the stability of zein nanoparticles, providing a novel path to deliver pesticides efficiently and eco-friendly. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Long Chen
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Yuanxiong Lin
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Hongjun Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Li Hao
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Huayao Chen
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Xinhua Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, P. R. China
| |
Collapse
|
12
|
Meena M, Zehra A, Swapnil P, Harish, Marwal A, Yadav G, Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem 2021; 9:613343. [PMID: 34113600 PMCID: PMC8185355 DOI: 10.3389/fchem.2021.613343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology has become a very advanced and popular form of technology with huge potentials. Nanotechnology has been very well explored in the fields of electronics, automobiles, construction, medicine, and cosmetics, but the exploration of nanotecnology's use in agriculture is still limited. Due to climate change, each year around 40% of crops face abiotic and biotic stress; with the global demand for food increasing, nanotechnology is seen as the best method to mitigate challenges in disease management in crops by reducing the use of chemical inputs such as herbicides, pesticides, and fungicides. The use of these toxic chemicals is potentially harmful to humans and the environment. Therefore, using NPs as fungicides/ bactericides or as nanofertilizers, due to their small size and high surface area with high reactivity, reduces the problems in plant disease management. There are several methods that have been used to synthesize NPs, such as physical and chemical methods. Specially, we need ecofriendly and nontoxic methods for the synthesis of NPs. Some biological organisms like plants, algae, yeast, bacteria, actinomycetes, and fungi have emerged as superlative candidates for the biological synthesis of NPs (also considered as green synthesis). Among these biological methods, endophytic microorganisms have been widely used to synthesize NPs with low metallic ions, which opens a new possibility on the edge of biological nanotechnology. In this review, we will have discussed the different methods of synthesis of NPs, such as top-down, bottom-up, and green synthesis (specially including endophytic microorganisms) methods, their mechanisms, different forms of NPs, such as magnesium oxide nanoparticles (MgO-NPs), copper nanoparticles (Cu-NPs), chitosan nanoparticles (CS-NPs), β-d-glucan nanoparticles (GNPs), and engineered nanoparticles (quantum dots, metalloids, nonmetals, carbon nanomaterials, dendrimers, and liposomes), and their molecular approaches in various aspects. At the molecular level, nanoparticles, such as mesoporous silica nanoparticles (MSN) and RNA-interference molecules, can also be used as molecular tools to carry genetic material during genetic engineering of plants. In plant disease management, NPs can be used as biosensors to diagnose the disease.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan, Mohanlal Sukhadia University, Udaipur, India
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
13
|
Maghsoudi S, Taghavi Shahraki B, Rabiee N, Fatahi Y, Dinarvand R, Tavakolizadeh M, Ahmadi S, Rabiee M, Bagherzadeh M, Pourjavadi A, Farhadnejad H, Tahriri M, Webster TJ, Tayebi L. Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review. Int J Nanomedicine 2020; 15:4363-4392. [PMID: 32606683 PMCID: PMC7314622 DOI: 10.2147/ijn.s252237] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
With continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and in vivo. These compounds come with a number of effective benefits for improving problems of targeted or controlled drug and gene delivery systems; thus, they have been extensively used in medical and pharmaceutical applications. Additionally, they are quite attractive for wound dressings, textiles, tissue engineering, and biomedical prostheses. In this sense, some important and workable natural polymers (namely, chitosan (CS), starch and cellulose) and some applicable synthetic ones (such as poly-lactic-co-glycolic acid (PLGA), poly(lactic acid) (PLA) and poly-glycolic acid (PGA)) have played an indispensable role over the last two decades for their therapeutic effects owing to their appealing and renewable biological properties. According to our data, this is the first review article highlighting CDDSs composed of diverse natural and synthetic nano biopolymers, blended for biological purposes, mostly over the past five years; other reviews have just briefly mentioned the use of such blended polymers. We, additionally, try to make comparisons between various nano blending systems in terms of improved sustained and controlled drug release behavior.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Medicinal Chemistry, Shiraz University of Technology, Shiraz, Iran
| | | | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Tavakolizadeh
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran11365-9516, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI53233, USA
| |
Collapse
|
14
|
Kiselev EG, Boyandin AN, Zhila NO, Prudnikova SV, Shumilova AA, Baranovskiy SV, Shishatskaya EI, Thomas S, Volova TG. Constructing sustained-release herbicide formulations based on poly-3-hydroxybutyrate and natural materials as a degradable matrix. PEST MANAGEMENT SCIENCE 2020; 76:1772-1785. [PMID: 31785186 DOI: 10.1002/ps.5702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND The purpose of the present study was to develop ecofriendly herbicide formulations. Its main aim was to develop and investigate slow-release formulations of herbicides (metribuzin, tribenuron-methyl, and fenoxaprop-P-ethyl) of different structure, solubility, and specificity, which were loaded into a degradable matrix of poly-3-hydroxybutyrate (P(3HB)) blended with available natural materials (peat, clay, and wood flour). RESULTS Differences in the structure and physicochemical properties of the formulations were studied depending on the type of the matrix. Herbicide release and accumulation in soil were associated with the solubility of the herbicide. Fourier-transform infrared spectroscopy showed that no chemical bonds were formed between the components in the experimental formulations. Degradation of the formulations in agro-transformed soil in laboratory conditions was chiefly influenced by the shape of the specimens (granules or pellets) while the effect of the type of filler (peat, clay, or wood flour) was insignificant. The use of granules enabled more rapid accumulation of the herbicides in soil: their peak concentrations were reached after 3 weeks of incubation while the concentrations of the herbicides released from the pellets were the highest after 5-7 weeks. Loading of the herbicides into the polymer matrix composed of the slowly degraded P(3HB) and natural materials enabled both sustained function of the formulations in soil (lasting between 1.5 and ≥3 months) and stable activity of the otherwise rapidly inactivated herbicides such as tribenuron-methyl and fenoxaprop-P-ethyl. CONCLUSION The experimental herbicide formulations enabled slow release of the active ingredients to soil. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Evgeniy G Kiselev
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| | - Anatoly N Boyandin
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| | - Natalia O Zhila
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| | - Svetlana V Prudnikova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Anna A Shumilova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Sergey V Baranovskiy
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Ekaterina I Shishatskaya
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| | - Sabu Thomas
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- International and Interuniversity Centre for Nano Science and Nano Technology, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Tatiana G Volova
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
- Federal Research Center "Krasnoyarsk Science Center SB RAS", Institute of Biophysics SB RAS, Krasnoyarsk, Russia
| |
Collapse
|
15
|
Volova T, Prudnikova S, Boyandin A, Zhila N, Kiselev E, Shumilova A, Baranovskiy S, Demidenko A, Shishatskaya E, Thomas S. Constructing Slow-Release Fungicide Formulations Based on Poly(3-hydroxybutyrate) and Natural Materials as a Degradable Matrix. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9220-9231. [PMID: 31347838 DOI: 10.1021/acs.jafc.9b01634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Slow-release fungicide formulations (azoxystrobin, epoxiconazole, and tebuconazole) shaped as pellets and granules in a matrix of biodegradable poly(3-hydroxybutyrate) and natural fillers (clay, wood flour, and peat) were constructed. Infrared spectroscopy showed no formation of chemical bonds between components in the experimental formulations. The formulations of pesticides had antifungal activity against Fusarium verticillioides in vitro. A study of biodegradation of the experimental fungicide formulations in the soil showed that the degradation process was mainly influenced by the type of formulation without significant influence of the type of filler. More active destruction of the granules led to a more rapid accumulation of fungicides in the soil. The content of fungicides present in the soil as a result of degradation of the formulations and fungicide release was determined by their solubility. Thus, all formulations are able to function in the soil for a long time, ensuring gradual and sustained delivery of fungicides.
Collapse
Affiliation(s)
- Tatiana Volova
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Svetlana Prudnikova
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
| | - Anatoly Boyandin
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Natalia Zhila
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Evgeniy Kiselev
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Anna Shumilova
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
| | - Sergey Baranovskiy
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
| | - Aleksey Demidenko
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Ekaterina Shishatskaya
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- Institute of Biophysics Siberian Branch of the Russian Academy of Sciences (SB RAS) , Federal Research Center "Krasnoyarsk Science Center SB RAS" , 50/50 Akademgorodok , Krasnoyarsk 660036 , Russia
| | - Sabu Thomas
- Siberian Federal University , 79 Svobodnyi Avenue , Krasnoyarsk 660041 , Russia
- International and Inter University Centre for Nanoscience and Nanotechnology , Mahatma Gandhi University , Priyadarshini Hills, Kottayam , Kerala 686560 , India
| |
Collapse
|
16
|
Abstract
Each year, 20%–40% of crops are lost due to plant pests and pathogens. Existing plant disease management relies predominantly on toxic pesticides that are potentially harmful to humans and the environment. Nanotechnology can offer advantages to pesticides, like reducing toxicity, improving the shelf-life, and increasing the solubility of poorly water-soluble pesticides, all of which could have positive environmental impacts. This review explores the two directions in which nanoparticles can be utilized for plant disease management: either as nanoparticles alone, acting as protectants; or as nanocarriers for insecticides, fungicides, herbicides, and RNA-interference molecules. Despite the several potential advantages associated with the use of nanoparticles, not many nanoparticle-based products have been commercialized for agricultural application. The scarcity of commercial applications could be explained by several factors, such as an insufficient number of field trials and underutilization of pest–crop host systems. In other industries, nanotechnology has progressed rapidly, and the only way to keep up with this advancement for agricultural applications is by understanding the fundamental questions of the research and addressing the scientific gaps to provide a rational and facilitate the development of commercial nanoproducts.
Collapse
|