1
|
Yang CH, Barbulescu DV, Marian L, Tung MC, Ou YC, Wu CH. High-Intensity Focus Ultrasound Ablation in Prostate Cancer: A Systematic Review. J Pers Med 2024; 14:1163. [PMID: 39728075 DOI: 10.3390/jpm14121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Prostate cancer (PCa) outcomes vary significantly across risk groups. In early-stage localized PCa, the functional outcomes following radical prostatectomy (RP) can be severe, prompting increased interest in focal therapy, particularly High-Intensity Focused Ultrasound (HIFU). This study is to summarize the current clinical trials of HIFU on PCa. Methods: We reviewed clinical trials from major databases, including PubMed, MEDLINE, Scopus, and EMBASE, to summarize the current research on HIFU in PCa treatment. Results: The literature highlights that HIFU may offer superior functional outcomes, particularly in continence recovery, compared to RP and radiation therapy. However, the oncological efficacy of HIFU remains inadequately supported by high-quality studies. Focal and hemigland ablations carry a risk of residual significant cancer, necessitating comprehensive patient counseling before treatment. For post-HIFU monitoring, we recommend 3T magnetic resonance imaging (MRI) with biopsy at 6 to 12 months to reassess the cancer status. Biochemical recurrence should be defined using the Phoenix criteria, and PSMA PET/CT can be considered for identifying recurrence in biopsy-negative patients. Conclusions: Whole-gland ablation is recommended as the general approach, as it provides a lower PSA nadir and avoids the higher positive biopsy rates observed after focal and hemigland ablation in both treated and untreated lobes. Future study designs should address heterogeneity, including variations in recurrence definitions and surveillance strategies, to provide more robust evidence for HIFU's oncological outcomes.
Collapse
Affiliation(s)
- Che-Hsueh Yang
- Department of Urology, Changbing Show Chwan Memorial Hospital, Changhua 505, Taiwan
| | | | - Lucian Marian
- Department of Urology, "Pius Brînzeu" County Emergency Clinical Hospital, 300723 Timisoara, Romania
| | - Min-Che Tung
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Yen-Chuan Ou
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Chi-Hsiang Wu
- Department of Urology, Changbing Show Chwan Memorial Hospital, Changhua 505, Taiwan
| |
Collapse
|
2
|
Chen K, Kong D, Yuan J, Hu Y, Li J, Ma J, Wen J. Asymmetric-Backed Multi-Frequency Ultrasonic Transducer for Conformal Tumor Ablation. IEEE Trans Biomed Eng 2024; 71:2432-2441. [PMID: 38457328 DOI: 10.1109/tbme.2024.3374722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
OBJECTIVE Minimally invasive ultrasound ablation transducers have been widely studied. However, conventional designs are limited by the single working frequency, restricting their conformal ablation ability (i.e., ablation size and shape controllability). METHODS New multi-frequency ultrasonic transducer design method is proposed based on the asymmetric backing layer, which divides the transducer into non-backing-layer region (i.e., front-piezoelectric region) and backing-layer region (i.e., front-piezoelectric-backing region) with multiple local thickness mode resonant frequencies. Ablation zone can be controlled by exciting the local resonance within or between the regions, and its control flexibility is further enhanced by driven under a frequency modulation signal. Experiments and calculations are combined for verifying the proposal. RESULTS The fabricated transducer with a Y-direction asymmetric backing layer shows five resonances, with two in each region and one resonance excited in both regions. Spatial ultrasound emission is demonstrated by acoustic measurements. Tissue ablation experiments verified spatial ablation zone control, and frequency modulation driving method enables the spatial transition of ablation zone from one region to the other, generating different ablation sizes and shapes. Finally, patient-specific simulations verified the effectiveness of conformal ablation. CONCLUSION The proposed transducer enables flexible control of ablation zone. SIGNIFICANCE This study demonstrates a new method for conformal tumor ablation.
Collapse
|
3
|
Gupta P, Heffter T, Zubair M, Hsu IC, Burdette EC, Diederich CJ. Treatment Planning Strategies for Interstitial Ultrasound Ablation of Prostate Cancer. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:362-375. [PMID: 38899026 PMCID: PMC11186654 DOI: 10.1109/ojemb.2024.3397965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE To develop patient-specific 3D models using Finite-Difference Time-Domain (FDTD) simulations and pre-treatment planning tools for the selective thermal ablation of prostate cancer with interstitial ultrasound. This involves the integration with a FDA 510(k) cleared catheter-based ultrasound interstitial applicators and delivery system. METHODS A 3D generalized "prostate" model was developed to generate temperature and thermal dose profiles for different applicator operating parameters and anticipated perfusion ranges. A priori planning, based upon these pre-calculated lethal thermal dose and iso-temperature clouds, was devised for iterative device selection and positioning. Full 3D patient-specific anatomic modeling of actual placement of single or multiple applicators to conformally ablate target regions can be applied, with optional integrated pilot-point temperature-based feedback control and urethral/rectum cooling. These numerical models were verified against previously reported ex-vivo experimental results obtained in soft tissues. RESULTS For generic prostate tissue, 360 treatment schemes were simulated based on the number of transducers (1-4), applied power (8-20 W/cm2), heating time (5, 7.5, 10 min), and blood perfusion (0, 2.5, 5 kg/m3/s) using forward treatment modelling. Selectable ablation zones ranged from 0.8-3.0 cm and 0.8-5.3 cm in radial and axial directions, respectively. 3D patient-specific thermal treatment modeling for 12 Cases of T2/T3 prostate disease demonstrate applicability of workflow and technique for focal, quadrant and hemi-gland ablation. A temperature threshold (e.g., Tthres = 52 °C) at the treatment margin, emulating placement of invasive temperature sensing, can be applied for pilot-point feedback control to improve conformality of thermal ablation. Also, binary power control (e.g., Treg = 45 °C) can be applied which will regulate the applied power level to maintain the surrounding temperature to a safe limit or maximum threshold until the set heating time. CONCLUSIONS Prostate-specific simulations of interstitial ultrasound applicators were used to generate a library of thermal-dose distributions to visually optimize and set applicator positioning and directivity during a priori treatment planning pre-procedure. Anatomic 3D forward treatment planning in patient-specific models, along with optional temperature-based feedback control, demonstrated single and multi-applicator implant strategies to effectively ablate focal disease while affording protection of normal tissues.
Collapse
Affiliation(s)
- Pragya Gupta
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCA94115USA
| | | | - Muhammad Zubair
- Department of Neurology and Neurological SciencesStanford UniversityStanfordCA94305USA
| | - I-Chow Hsu
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCA94115USA
| | | | - Chris J. Diederich
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCA94115USA
| |
Collapse
|
4
|
Mehkri Y, Pierre K, Woodford SJ, Davidson CG, Urhie O, Sriram S, Hernandez J, Hanna C, Lucke-Wold B. Surgical Management of Brain Tumors with Focused Ultrasound. Curr Oncol 2023; 30:4990-5002. [PMID: 37232835 DOI: 10.3390/curroncol30050377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Focused ultrasound is a novel technique for the treatment of aggressive brain tumors that uses both mechanical and thermal mechanisms. This non-invasive technique can allow for both the thermal ablation of inoperable tumors and the delivery of chemotherapy and immunotherapy while minimizing the risk of infection and shortening the time to recovery. With recent advances, focused ultrasound has been increasingly effective for larger tumors without the need for a craniotomy and can be used with minimal surrounding soft tissue damage. Treatment efficacy is dependent on multiple variables, including blood-brain barrier permeability, patient anatomical features, and tumor-specific features. Currently, many clinical trials are currently underway for the treatment of non-neoplastic cranial pathologies and other non-cranial malignancies. In this article, we review the current state of surgical management of brain tumors using focused ultrasound.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Kevin Pierre
- Department of Radiology, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32608, USA
| | - Samuel Joel Woodford
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Caroline Grace Davidson
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Ogaga Urhie
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Sai Sriram
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Chadwin Hanna
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| |
Collapse
|
5
|
Mezzacappa FM, Menousek J, Avecillas-Chasin JM. Ultrasound as a Therapy for Brain Tumors. World Neurosurg 2022; 164:237-238. [PMID: 35609729 DOI: 10.1016/j.wneu.2022.05.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Frank M Mezzacappa
- Department of Neurological Surgery, University of Nebraska Medical Center, 988437 Nebraska Medical Center, Omaha, NE, USA 68198-8437.
| | - Joseph Menousek
- Department of Neurological Surgery, University of Nebraska Medical Center, 988437 Nebraska Medical Center, Omaha, NE, USA 68198-8437.
| | - Josue M Avecillas-Chasin
- Department of Neurological Surgery, University of Nebraska Medical Center, 988437 Nebraska Medical Center, Omaha, NE, USA 68198-8437.
| |
Collapse
|
6
|
Kim H, Kim J, Wu H, Zhang B, Dayton PA, Jiang X. A multi-pillar piezoelectric stack transducer for nanodroplet mediated intravascular sonothrombolysis. ULTRASONICS 2021; 116:106520. [PMID: 34274742 DOI: 10.1016/j.ultras.2021.106520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/24/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
We aim to develop a nanodroplet (ND)-mediated intravascular ultrasound (US) transducer for deep vein thrombosis treatments. The US device, having an efficient forward directivity of the acoustic beam, is capable of expediting the clot dissolution rate by activating cavitation of NDs injected onto a thrombus. We designed and prototyped a multi-pillar piezoelectric stack (MPPS) transducer composed of four piezoelectric stacks. Each stack was made of five layers of PZT-4 plates, having a dimension of 0.85 × 0.85 × 0.2 mm3. The transducer was characterized by measuring the electrical impedance and acoustic pressure, compared to simulation results. Next, in-vitro tests were conducted in a blood flow mimicking system using the transducer equipped with an ND injecting tube. The miniaturized transducer, having an aperture size of 2.8 mm, provided a high mechanical index of 1.52 and a relatively wide focal zone of 3.4 mm at 80 Vpp, 0.96 MHz electric input. The mass-reduction rate of the proposed method (NDs + US) was assessed to be 4.1 and 4.6 mg/min with and without the flow model, respectively. The rate was higher than that (1.3-2.7 mg/min) of other intravascular ultrasound modalities using micron-sized bubble agents. The ND-mediated intravascular sonothrombolysis using MPPS transducers was demonstrated with an unprecedented lysis rate, which may offer a new clinical option for DVT treatments. The MPPS transducer generated a high acoustic pressure (~3.1 MPa) at a distance of approximately 2.2 wavelengths from the small aperture, providing synergistic efficacy with nanodroplets for thrombolysis without thrombolytic agents.
Collapse
Affiliation(s)
- Howuk Kim
- The Department of Mechanical and Aerospace Engineering at North Carolina State University, Raleigh, NC 27695, USA
| | - Jinwook Kim
- The Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Huaiyu Wu
- The Department of Mechanical and Aerospace Engineering at North Carolina State University, Raleigh, NC 27695, USA
| | - Bohua Zhang
- The Department of Mechanical and Aerospace Engineering at North Carolina State University, Raleigh, NC 27695, USA
| | - Paul A Dayton
- The Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Xiaoning Jiang
- The Department of Mechanical and Aerospace Engineering at North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Zubair M, Adams MS, Diederich CJ. Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia. Int J Hyperthermia 2021; 38:1188-1204. [PMID: 34376103 DOI: 10.1080/02656736.2021.1936216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To investigate the design of an endoluminal deployable ultrasound applicator for delivering volumetric hyperthermia to deep tissue sites as a possible adjunct to radiation and chemotherapy. METHOD This study considers an ultrasound applicator consisting of two tubular transducers situated at the end of a catheter assembly, encased within a distensible conical shaped balloon-based reflector that redirects acoustic energy distally into the tissue. The applicator assembly can be inserted endoluminally or laparoscopically in a compact form and expanded after delivery to the target site. Comprehensive acoustic and biothermal simulations and parametric studies were employed in generalized 3D and patient-specific pancreatic head and body tumor models to characterize the acoustic performance and evaluate heating capabilities of the applicator by investigating the device at a range of operating frequencies, tissue acoustic and thermal properties, transducer configurations, power modulation, applicator positioning, and by analyzing the resultant 40, 41, and 43 °C isothermal volumes and penetration depth of the heating volume. Intensity distributions and volumetric temperature contours were calculated to define moderate hyperthermia boundaries. RESULTS Parametric studies demonstrated the frequency selection to control volume and depth of therapeutic heating from 62 to 22 cm3 and 4 to 2.6 cm as frequency ranges from 1 MHz to 4.7 MHz, respectively. Width of the heating profile tracks closely with the aperture. Water cooling within the reflector balloon was effective in controlling temperature to 37 °C maximum within the luminal wall. Patient-specific studies indicated that applicators with extended OD in the range of 3.6-6.2 cm with 0.5-1 cm long and 1 cm OD transducers can heat volumes of 1.1-7 cm3, 3-26 cm3, and 3.3-37.4 cm3 of pancreatic body and head tumors above 43, 41, and 40 °C, respectively. CONCLUSION In silico studies demonstrated the feasibility of combining endoluminal ultrasound with an integrated expandable balloon reflector for delivering volumetric hyperthermia in regions adjacent to body lumens and cavities.
Collapse
Affiliation(s)
- Muhammad Zubair
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew S Adams
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Chris J Diederich
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Zeng Z, Liu JB, Peng CZ. Phase-changeable nanoparticle-mediated energy conversion promotes highly efficient high-intensity focused ultrasound ablation. Curr Med Chem 2021; 29:1369-1378. [PMID: 34238143 DOI: 10.2174/0929867328666210708085110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
This review describes how phase-changeable nanoparticles enable highly efficient high-intensity focused ultrasound ablation (HIFU). HIFU is effective in the clinical treatment of solid malignant tumors. However, it has intrinsic disadvantages for treating some deep lesions, such as damage to surrounding normal tissues. When phase-changeable nanoparticles are used in HIFU treatment, they could serve as good synergistic agents because they are transported in the blood and permeated and accumulated effectively in tissues. HIFU's thermal effects can trigger nanoparticles to undergo a special phase transition, thus enhancing HIFU ablation efficiency. Nanoparticles can also carry anticancer agents and release them in the targeted area to achieve chemo-synergistic therapy response. Although the formation of nanoparticles is complicated and HIFU applications are still in an early stage, the potential for their use in synergy with HIFU treatment shows promising results.
Collapse
Affiliation(s)
- Zeng Zeng
- Department of Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, United States
| | - Cheng-Zhong Peng
- Department of Ultrasound, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Gandomi KY, Carvalho PAWG, Tarasek M, Fiveland EW, Bhushan C, Williams E, Neubauer P, Zhao Z, Pilitsis J, Yeo D, Nycz CJ, Burdette E, Fischer GS. Modeling of Interstitial Ultrasound Ablation for Continuous Applicator Rotation With MR Validation. IEEE Trans Biomed Eng 2021; 68:1838-1846. [PMID: 32924937 PMCID: PMC8189669 DOI: 10.1109/tbme.2020.3023849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The primary objective of cancer intervention is the selective removal of malignant cells while conserving surrounding healthy tissues. However, the accessibility, size and shape of the cancer can make achieving appropriate margins a challenge. One minimally invasive treatment option for these clinical cases is interstitial needle based therapeutic ultrasound (NBTU). In this work, we develop a finite element model (FEM) capable of simulating continuous rotation of a directional NBTU applicator. The developed model was used to simulate the thermal deposition for different rotation trajectories. The actual thermal deposition patterns for the simulated trajectories were then evaluated using magnetic resonance thermal imaging (MRTI) in a porcine skin gelatin phantom. An MRI-compatible robot was used to control the rotation motion profile of the physical NBTU applicator to match the simulated trajectory. The model showed agreement when compared to experimental measurements with Pearson correlation coefficients greater than 0.839 when comparing temperature fields within an area of 12.6 mm radius from the ultrasound applicator. The average temperature error along a 6.3 mm radius profile from the applicator was 1.27 °C. The model was able to compute 1 s of thermal deposition by the applicator in 0.2 s on average with a 0.1 mm spatial resolution and 0.5 s time steps. The developed simulation demonstrates performance suitable for real-time control which may enable robotically-actuated closed-loop conformal tumor ablation.
Collapse
|
10
|
Daunizeau L, Nguyen A, Le Garrec M, Chapelon JY, N'Djin WA. Robot-assisted ultrasound navigation platform for 3D HIFU treatment planning: Initial evaluation for conformal interstitial ablation. Comput Biol Med 2020; 124:103941. [PMID: 32818742 DOI: 10.1016/j.compbiomed.2020.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Interstitial Ultrasound-guided High Intensity Focused Ultrasound (USgHIFU) therapy has the potential to deliver ablative treatments which conform to the target tumor. In this study, a robot-assisted US-navigation platform has been developed for 3D US guidance and planning of conformal HIFU ablations. The platform was used to evaluate a conformal therapeutic strategy associated with an interstitial dual-mode USgHIFU catheter prototype (64 elements linear-array, measured central frequency f = 6.5 MHz), developed for the treatment of HepatoCellular Carcinoma (HCC). The platform included a 3D navigation environment communicating in real-time with an open research dual-mode US scanner/HIFU generator and a robotic arm, on which the USgHIFU catheter was mounted. 3D US-navigation was evaluated in vitro for guiding and planning conformal HIFU ablations using a tumor-mimic model in porcine liver. Tumor-mimic volumes were then used as targets for evaluating conformal HIFU treatment planning in simulation. Height tumor-mimics (ovoid- or disc-shaped, sizes: 3-29 cm3) were created and visualized in liver using interstitial 2D US imaging. Robot-assisted spatial manipulation of these images and real-time 3D navigation allowed reconstructions of 3D B-mode US images for accurate tumor-mimic volume estimation (relative error: 4 ± 5%). Sectorial and full-revolution HIFU scanning (angular sectors: 88-360°) could both result in conformal ablations of the tumor volumes, as soon as their radii remained ≤ 24 mm. The presented US navigation-guided HIFU procedure demonstrated advantages for developing conformal interstitial therapies in standard operative rooms. Moreover, the modularity of the developed platform makes it potentially useful for developing other HIFU approaches.
Collapse
Affiliation(s)
- L Daunizeau
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France.
| | - A Nguyen
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - M Le Garrec
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - J Y Chapelon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| | - W A N'Djin
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003, Lyon, France
| |
Collapse
|
11
|
Izadifar Z, Izadifar Z, Chapman D, Babyn P. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J Clin Med 2020; 9:jcm9020460. [PMID: 32046072 PMCID: PMC7073974 DOI: 10.3390/jcm9020460] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/22/2022] Open
Abstract
Ultrasound can penetrate deep into tissues and interact with human tissue via thermal and mechanical mechanisms. The ability to focus an ultrasound beam and its energy onto millimeter-size targets was a significant milestone in the development of therapeutic applications of focused ultrasound. Focused ultrasound can be used as a non-invasive thermal ablation technique for tumor treatment and is being developed as an option to standard oncologic therapies. High-intensity focused ultrasound has now been used for clinical treatment of a variety of solid malignant tumors, including those in the pancreas, liver, kidney, bone, prostate, and breast, as well as uterine fibroids and soft-tissue sarcomas. Magnetic resonance imaging and Ultrasound imaging can be combined with high intensity focused ultrasound to provide real-time imaging during ablation. Magnetic resonance guided focused ultrasound represents a novel non-invasive method of treatment that may play an important role as an alternative to open neurosurgical procedures for treatment of a number of brain disorders. This paper briefly reviews the underlying principles of HIFU and presents current applications, outcomes, and complications after treatment. Recent applications of Focused ultrasound for tumor treatment, drug delivery, vessel occlusion, histotripsy, movement disorders, and vascular, oncologic, and psychiatric applications are reviewed, along with clinical challenges and potential future clinical applications of HIFU.
Collapse
Affiliation(s)
- Zahra Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-7827; Fax: +1-306-966-4651
| | - Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Dean Chapman
- Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, Saskatoon, SK S7N 0W8, Canada
| |
Collapse
|
12
|
Kim H, Wu H, Cho N, Zhong P, Mahmood K, Lyerly HK, Jiang X. Miniaturized Intracavitary Forward-Looking Ultrasound Transducer for Tissue Ablation. IEEE Trans Biomed Eng 2019; 67:2084-2093. [PMID: 31765299 DOI: 10.1109/tbme.2019.2954524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This paper aims to develop a miniaturized forward-looking ultrasound transducer for intracavitary tissue ablation, which can be used through an endoscopic device. The internal ultrasound (US) delivery is capable of directly interacting with the target tumor, resolving adverse issues of currently available US devices, such as unintended tissue damage and insufficient delivery of acoustic power. METHODS To transmit a high acoustic pressure from a small aperture (<3 mm), a double layer transducer (1.3 MHz) was designed and fabricated based on numerical simulations. The electric impedance and the acoustic pressure of the actual device was characterized with an impedance analyzer and a hydrophone. Ex vivo tissue ablation tests and temperature monitoring were then conducted with porcine livers. RESULTS The acoustic intensity of the transducer was 37.1 W/cm2 under 250 Vpp and 20% duty cycle. The tissue temperature was elevated to 51.8 °C with a 67 Hz pulse-repetition frequency. The temperature profile in the tissue indicated that ultrasound energy was effectively absorbed inside the tissue. During a 5-min sonification, an approximate tissue volume of 2.5 × 2.5 × 1.0 mm3 was ablated, resulting in an irreversible lesion. CONCLUSION This miniaturized US transducer is a promising medical option for the precise tissue ablation, which can reduce the risk of unintended tissue damage found in noninvasive US treatments. SIGNIFICANCE Having a small aperture (2 mm), the intracavitary device is capable of ablating a bio tissue in 5 min with a relatively low electric power (<17 W).
Collapse
|
13
|
Adams MS, Scott SJ, Salgaonkar VA, Sommer G, Diederich CJ. Thermal therapy of pancreatic tumours using endoluminal ultrasound: Parametric and patient-specific modelling. Int J Hyperthermia 2016; 32:97-111. [PMID: 27097663 DOI: 10.3109/02656736.2015.1119892] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The aim of this study is to investigate endoluminal ultrasound applicator configurations for volumetric thermal ablation and hyperthermia of pancreatic tumours using 3D acoustic and biothermal finite element models. MATERIALS AND METHODS Parametric studies compared endoluminal heating performance for varying applicator transducer configurations (planar, curvilinear-focused, or radial-diverging), frequencies (1-5 MHz), and anatomical conditions. Patient-specific pancreatic head and body tumour models were used to evaluate feasibility of generating hyperthermia and thermal ablation using an applicator positioned in the duodenal or stomach lumen. Temperature and thermal dose were calculated to define ablation (> 240 EM(43 °C)) and moderate hyperthermia (40-45 °C) boundaries, and to assess sparing of sensitive tissues. Proportional-integral control was incorporated to regulate maximum temperature to 70-80 °C for ablation and 45 °C for hyperthermia in target regions. RESULTS Parametric studies indicated that 1-3 MHz planar transducers are the most suitable for volumetric ablation, producing 5-8 cm(3) lesion volumes for a stationary 5-min sonication. Curvilinear-focused geometries produce more localised ablation to 20-45 mm depth from the GI tract and enhance thermal sparing (T(max) < 42 °C) of the luminal wall. Patient anatomy simulations show feasibility in ablating 60.1-92.9% of head/body tumour volumes (4.3-37.2 cm(3)) with dose < 15 EM(43 °C) in the luminal wall for 18-48 min treatment durations, using 1-3 applicator placements in GI lumen. For hyperthermia, planar and radial-diverging transducers could maintain up to 8 cm(3) and 15 cm(3) of tissue, respectively, between 40-45 °C for a single applicator placement. CONCLUSIONS Modelling studies indicate the feasibility of endoluminal ultrasound for volumetric thermal ablation or hyperthermia treatment of pancreatic tumour tissue.
Collapse
Affiliation(s)
- Matthew S Adams
- a Thermal Therapy Research Group, University of California , San Francisco , California .,b University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering , California , and
| | - Serena J Scott
- a Thermal Therapy Research Group, University of California , San Francisco , California
| | - Vasant A Salgaonkar
- a Thermal Therapy Research Group, University of California , San Francisco , California
| | - Graham Sommer
- c Stanford Medical Center , Stanford , California , USA
| | - Chris J Diederich
- a Thermal Therapy Research Group, University of California , San Francisco , California .,b University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering , California , and
| |
Collapse
|
14
|
Abstract
Although a surgical procedure is performed by visual inspection with histopathological assessment of the excised tumor and margins, percutaneous and noninvasive thermal ablation is performed strictly with the aid of imaging. Applicator guidance into the target zone, treatment monitoring and verification, and clinical follow-up rely on effective imaging. Detailed discussion of imaging is beyond the scope of this article, but the influence of imaging on the choice of thermal ablation or procedural approach will be discussed as needed. More information on imaging for interventional therapies can be found in other articles in this issue of IEEE Pulse.
Collapse
|
15
|
Salgaonkar VA, Diederich CJ. Catheter-based ultrasound technology for image-guided thermal therapy: current technology and applications. Int J Hyperthermia 2015; 31:203-15. [PMID: 25799287 DOI: 10.3109/02656736.2015.1006269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Catheter-based ultrasound (CBUS) is applied to deliver minimally invasive thermal therapy to solid cancer tumours, benign tissue growth, vascular disease, and tissue remodelling. Compared to other energy modalities used in catheter-based surgical interventions, unique features of ultrasound result in conformable and precise energy delivery with high selectivity, fast treatment times, and larger treatment volumes. We present a concise review of CBUS technology being currently utilized in animal and clinical studies or being developed for future applications. CBUS devices have been categorised into interstitial, endoluminal and endovascular/cardiac applications. Basic applicator designs, site-specific evaluations and possible treatment applications have been discussed in brief. Particular emphasis has been given to ablation studies that incorporate image guidance for applicator placement, therapy monitoring, feedback control, and post-procedure assessment. Examples of devices included here span the entire spectrum of the development cycle from preliminary simulation-based design studies to implementation in clinical investigations. The use of CBUS under image guidance has the potential for significantly improving precision and applicability of thermal therapy delivery.
Collapse
Affiliation(s)
- Vasant A Salgaonkar
- Department of Radiation Oncology, University of California , San Francisco, California , USA
| | | |
Collapse
|
16
|
Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, Chen MH, Choi BI, de Baère T, Dodd GD, Dupuy DE, Gervais DA, Gianfelice D, Gillams AR, Lee FT, Leen E, Lencioni R, Littrup PJ, Livraghi T, Lu DS, McGahan JP, Meloni MF, Nikolic B, Pereira PL, Liang P, Rhim H, Rose SC, Salem R, Sofocleous CT, Solomon SB, Soulen MC, Tanaka M, Vogl TJ, Wood BJ, Goldberg SN. Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update. J Vasc Interv Radiol 2014; 25:1691-705.e4. [PMID: 25442132 PMCID: PMC7660986 DOI: 10.1016/j.jvir.2014.08.027] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/11/2014] [Accepted: 03/26/2014] [Indexed: 12/12/2022] Open
Abstract
Image-guided tumor ablation has become a well-established hallmark of local cancer therapy. The breadth of options available in this growing field increases the need for standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison among treatments that use different technologies, such as chemical (eg, ethanol or acetic acid) ablation, thermal therapies (eg, radiofrequency, laser, microwave, focused ultrasound, and cryoablation) and newer ablative modalities such as irreversible electroporation. This updated consensus document provides a framework that will facilitate the clearest communication among investigators regarding ablative technologies. An appropriate vehicle is proposed for reporting the various aspects of image-guided ablation therapy including classification of therapies, procedure terms, descriptors of imaging guidance, and terminology for imaging and pathologic findings. Methods are addressed for standardizing reporting of technique, follow-up, complications, and clinical results. As noted in the original document from 2003, adherence to the recommendations will improve the precision of communications in this field, leading to more accurate comparison of technologies and results, and ultimately to improved patient outcomes.
Collapse
Affiliation(s)
- Muneeb Ahmed
- Department of Radiology, Beth Israel Deaconess Medical Center 1 Deaconess Rd, WCC-308B, Boston, MA 02215.
| | - Luigi Solbiati
- Department of Radiology, Ospedale Generale, Busto Arsizio, Italy
| | - Christopher L Brace
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - David J Breen
- Department of Radiology, Southampton University Hospitals, Southampton, England
| | | | | | - Min-Hua Chen
- Department of Ultrasound, School of Oncology, Peking University, Beijing, China
| | - Byung Ihn Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Thierry de Baère
- Department of Imaging, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Gerald D Dodd
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Damian E Dupuy
- Department of Diagnostic Radiology, Rhode Island Hospital, Providence, Rhode Island
| | - Debra A Gervais
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Gianfelice
- Medical Imaging, University Health Network, Laval, Quebec, Canada
| | | | - Fred T Lee
- Department of Radiology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Edward Leen
- Department of Radiology, Royal Infirmary, Glasgow, Scotland
| | - Riccardo Lencioni
- Department of Diagnostic Imaging and Intervention, Cisanello Hospital, Pisa University Hospital and School of Medicine, University of Pisa, Pisa, Italy
| | - Peter J Littrup
- Department of Radiology, Karmonos Cancer Institute, Wayne State University, Detroit, Michigan
| | | | - David S Lu
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John P McGahan
- Department of Radiology, Ambulatory Care Center, UC Davis Medical Center, Sacramento, California
| | | | - Boris Nikolic
- Department of Radiology, Albert Einstein Medical Center, Philadelphia, Pennsylvania
| | - Philippe L Pereira
- Clinic of Radiology, Minimally-Invasive Therapies and Nuclear Medicine, Academic Hospital Ruprecht-Karls-University Heidelberg, Heilbronn, Germany
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Hyunchul Rhim
- Department of Diagnostic Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Steven C Rose
- Department of Radiology, University of California, San Diego, San Diego, California
| | - Riad Salem
- Department of Radiology, Northwestern University, Chicago, Illinois
| | | | - Stephen B Solomon
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael C Soulen
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Thomas J Vogl
- Institute for Diagnostic and Interventional Radiology, University Hospital Frankfurt, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Bradford J Wood
- Radiology and Imaging Science, National Institutes of Health, Bethesda, Maryland
| | - S Nahum Goldberg
- Department of Radiology, Image-Guided Therapy and Interventional Oncology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
17
|
Goharrizi AY, Kwong RH, Chopra R. A self-tuning adaptive controller for 3-D image-guided ultrasound cancer therapy. IEEE Trans Biomed Eng 2014; 61:911-9. [PMID: 24557692 DOI: 10.1109/tbme.2013.2292559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
One of the challenges in MRI-controlled hyperthermia cancer treatment for localized tumor is that the tissue properties are dynamic and difficult to measure. Therefore, tuning the optimal gains for a constant gain controller can be challenging. In this paper, a new multi-input single-output adaptive controller strategy is proposed to address these problems. The inputs to the controller block are the frequency, rotation rate, and applied power level of an interstitial applicator, and the output is the boundary temperature during treatment. The time-varying gains of the new controller are updated over time using Lyapunov-based stability analysis. The robustness of the new controller to changes in the parameters of the tissue is investigated and compared to a constant gain controller through simulation studies. Simulations take into account changes in tissue properties and other conditions that may be encountered in a practical clinical situation. Finally, the effectiveness of the proposed controller is validated through an experimental study.
Collapse
|
18
|
Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, Chen MH, Choi BI, de Baère T, Dodd GD, Dupuy DE, Gervais DA, Gianfelice D, Gillams AR, Lee FT, Leen E, Lencioni R, Littrup PJ, Livraghi T, Lu DS, McGahan JP, Meloni MF, Nikolic B, Pereira PL, Liang P, Rhim H, Rose SC, Salem R, Sofocleous CT, Solomon SB, Soulen MC, Tanaka M, Vogl TJ, Wood BJ, Goldberg SN. Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update. Radiology 2014; 273:241-60. [PMID: 24927329 DOI: 10.1148/radiol.14132958] [Citation(s) in RCA: 842] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Image-guided tumor ablation has become a well-established hallmark of local cancer therapy. The breadth of options available in this growing field increases the need for standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison among treatments that use different technologies, such as chemical (eg, ethanol or acetic acid) ablation, thermal therapies (eg, radiofrequency, laser, microwave, focused ultrasound, and cryoablation) and newer ablative modalities such as irreversible electroporation. This updated consensus document provides a framework that will facilitate the clearest communication among investigators regarding ablative technologies. An appropriate vehicle is proposed for reporting the various aspects of image-guided ablation therapy including classification of therapies, procedure terms, descriptors of imaging guidance, and terminology for imaging and pathologic findings. Methods are addressed for standardizing reporting of technique, follow-up, complications, and clinical results. As noted in the original document from 2003, adherence to the recommendations will improve the precision of communications in this field, leading to more accurate comparison of technologies and results, and ultimately to improved patient outcomes. Online supplemental material is available for this article .
Collapse
Affiliation(s)
- Muneeb Ahmed
- Department of Radiology, Beth Israel Deaconess Medical Center 1 Deaconess Rd, WCC-308B, Boston, MA 02215 (M.A.); Department of Radiology, Ospedale Generale, Busto Arsizio, Italy (L.S.); Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wis (C.L.B.); Department of Radiology, Southampton University Hospitals, Southampton, England (D.J.B.); Department of Radiology, Mayo Clinic, Rochester, Minn (M.R.C., J.W.C.); Department of Ultrasound, School of Oncology, Peking University, Beijing, China (M.H.C.); Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (B.I.C.); Department of Imaging, Institut de Cancérologie Gustave Roussy, Villejuif, France (T.d.B.); Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo (G.D.D.); Department of Diagnostic Radiology, Rhode Island Hospital, Providence, RI (D.E.D.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (D.A.G.); Medical Imaging, University Health Network, Laval, Quebec, Canada (D.G.); Imaging Department, the London Clinic, London, England (A.R.G.); Department of Radiology, University of Wisconsin Hospital and Clinics, Madison, Wis (F.T.L.); Department of Radiology, Royal Infirmary, Glasgow, Scotland (E.L.); Department of Diagnostic Imaging and Intervention, Cisanello Hospital, Pisa University Hospital and School of Medicine, University of Pisa, Pisa, Italy (R.L.); Department of Radiology, Karmonos Cancer Institute, Wayne State University, Detroit, Mich (P.J.L.); Busto Arsizio, Italy (T.L.); Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, Calif (D.S.L.); Department of Radiology, Ambulatory Care Center, UC Davis Medical Center, Sacramento, Calif (J.P.M.); Department of Radiology, Ospedale Valduce, Como, Italy (M.F.M.); Department of Radiology, Albert Einstein Medical Center, Phil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Scott SJ, Prakash P, Salgaonkar V, Jones PD, Cam RN, Han M, Rieke V, Burdette EC, Diederich CJ. Approaches for modelling interstitial ultrasound ablation of tumours within or adjacent to bone: theoretical and experimental evaluations. Int J Hyperthermia 2014; 29:629-42. [PMID: 24102393 DOI: 10.3109/02656736.2013.841327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The objectives of this study were to develop numerical models of interstitial ultrasound ablation of tumours within or adjacent to bone, to evaluate model performance through theoretical analysis, and to validate the models and approximations used through comparison to experiments. METHODS 3D transient biothermal and acoustic finite element models were developed, employing four approximations of 7-MHz ultrasound propagation at bone/soft tissue interfaces. The various approximations considered or excluded reflection, refraction, angle-dependence of transmission coefficients, shear mode conversion, and volumetric heat deposition. Simulations were performed for parametric and comparative studies. Experiments within ex vivo tissues and phantoms were performed to validate the models by comparison to simulations. Temperature measurements were conducted using needle thermocouples or magnetic resonance temperature imaging (MRTI). Finite element models representing heterogeneous tissue geometries were created based on segmented MR images. RESULTS High ultrasound absorption at bone/soft tissue interfaces increased the volumes of target tissue that could be ablated. Models using simplified approximations produced temperature profiles closely matching both more comprehensive models and experimental results, with good agreement between 3D calculations and MRTI. The correlation coefficients between simulated and measured temperature profiles in phantoms ranged from 0.852 to 0.967 (p-value < 0.01) for the four models. CONCLUSIONS Models using approximations of interstitial ultrasound energy deposition around bone/soft tissue interfaces produced temperature distributions in close agreement with comprehensive simulations and experimental measurements. These models may be applied to accurately predict temperatures produced by interstitial ultrasound ablation of tumours near and within bone, with applications toward treatment planning.
Collapse
Affiliation(s)
- Serena J Scott
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California , San Francisco , California
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys 2014; 40:080901. [PMID: 23927296 DOI: 10.1118/1.4811136] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20∕20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice.
Collapse
Affiliation(s)
- David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Canney MS, Chavrier F, Tsysar S, Chapelon JY, Lafon C, Carpentier A. A multi-element interstitial ultrasound applicator for the thermal therapy of brain tumors. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1647-1655. [PMID: 23927205 DOI: 10.1121/1.4812883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interstitial thermal therapy is a minimally invasive treatment modality that has been used clinically for ablating both primary and secondary brain tumors. Here a multi-element interstitial ultrasound applicator is described that allows for increased spatial control during thermal ablation of tumors as compared to existing clinical devices. The device consists of an array of 56 ultrasound elements operating at 6 MHz, oriented on the seven faces of a 3.2 mm flexible catheter. The device was first characterized using the acoustic holography method to examine the functioning of the array. Then experiments were performed to measure heating in tissue-mimicking gel phantoms and ex vivo tissue samples using magnetic resonance imaging-based thermometry. Experimental measurements were compared with results obtained using numerical simulations. Last, simulations were performed to study the feasibility of using the device for thermal ablation in the brain. Experimental results show that the device can be used to induce a temperature rise of greater than 20 °C in ex vivo tissue samples and numerical simulations further demonstrate that tumors with diameters of greater than 30-mm could potentially be treated.
Collapse
Affiliation(s)
- Michael S Canney
- CarThéra, Brain and Spine Institute, Pitié Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
22
|
Prakash P, Salgaonkar VA, Diederich CJ. Modelling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications for device design, feedback control and treatment planning. Int J Hyperthermia 2013; 29:296-307. [PMID: 23738697 PMCID: PMC4087028 DOI: 10.3109/02656736.2013.800998] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in device design and optimisation, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modelling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimisation of inverse treatment plans are presented.
Collapse
Affiliation(s)
- Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
23
|
Prakash P, Salgaonkar VA, Clif Burdette E, Diederich CJ. Multiple applicator hepatic ablation with interstitial ultrasound devices: theoretical and experimental investigation. Med Phys 2013; 39:7338-49. [PMID: 23231283 DOI: 10.1118/1.4765459] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To evaluate multiple applicator implant configurations of interstitial ultrasound devices for large volume ablation of liver tumors. METHODS A 3D bioacoustic-thermal model using the finite element method was implemented to assess multiple applicator implant configurations for thermal ablation with interstitial ultrasound energy. Interstitial applicators consist of linear arrays of up to four 10 mm-long tubular ultrasound transducers, each under separate and dynamic power control, enclosed within a water-cooled delivery catheter (2.4 mm OD). The authors considered parallel implants with two and three applicators (clustered configuration), spaced 2-3 cm apart, to simulate open surgical placement. In addition, the authors considered two applicator implants with applicators converging and diverging at angles of ∼20°, 30°, and 45° to simulate percutaneous placement. Heating experiments (10-15 min) were performed and compared against simulations employing the same experimental parameters. To estimate the performance of parallel, multiple applicator configurations in an in vivo setting, simulations were performed taking into account a range of blood perfusion levels (0, 5, 12, and 15 kg m(-3) s(-1)) that may occur in tumors of varying vascularity. The impact of tailoring the power supplied to individual transducer elements along the length of applicators is explored for applicators inserted in non-parallel (converging and diverging) configurations. Thermal dose (t(43) > 240 min) and temperature thresholds (T > 52 °C) were used to define the ablation zones, with dynamic changes to tissue acoustic and thermal properties incorporated within the model. RESULTS Experiments in ex vivo bovine liver yielded ablation zones ranging between 4.0-5.6 cm × 3.2-4.9 cm, in cross section. Ablation zone dimensions predicted by simulations with similar parameters to the experiments were in close agreement (within 5 mm). Simulations of in vivo heating showed that 15 min heating and interapplicator spacing less than 3 cm are required to obtain contiguous, complete ablation zones. The ability to create complete ablation zone profiles for nonparallel implants was illustrated by tailoring applied power levels along the length of applicators. CONCLUSIONS Parallel implants consisting of three interstitial ultrasound applicators in a triangular configuration yield complete ablation zones measuring up to 6.2 cm × 5.7 cm after 15 min heating. At larger interapplicator spacing, the level of blood perfusion in the tumor may yield indentations along the periphery of the ablation zone. Tailoring applied power along the length of the applicator can accommodate for nonparallel implants, without compromising safety.
Collapse
Affiliation(s)
- Punit Prakash
- Department of Radiation Oncology, University of California, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
24
|
Goharrizi AY, N'Djin WA, Kwong R, Chopra R. Development of a new control strategy for 3D MRI-controlled interstitial ultrasound cancer therapy. Med Phys 2013; 40:033301. [DOI: 10.1118/1.4793261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Prakash P, Diederich CJ. Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control. Int J Hyperthermia 2012; 28:69-86. [PMID: 22235787 DOI: 10.3109/02656736.2011.630337] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To determine the impact of including dynamic changes in tissue physical properties during heating on feedback controlled thermal ablation with catheter-based ultrasound. Additionally, we compared the impact of several indicators of thermal damage on predicted extents of ablation zones for planning and monitoring ablations with this modality. METHODS A 3D model of ultrasound ablation with interstitial and transurethral applicators incorporating temperature-based feedback control was used to simulate thermal ablations in prostate and liver tissue. We investigated five coupled models of heat dependent changes in tissue acoustic attenuation/absorption and blood perfusion of varying degrees of complexity. Dimensions of the ablation zone were computed using temperature, thermal dose, and Arrhenius thermal damage indicators of coagulative necrosis. A comparison of the predictions by each of these models was illustrated on a patient-specific anatomy in the treatment planning setting. RESULTS Models including dynamic changes in blood perfusion and acoustic attenuation as a function of thermal dose/damage predicted near-identical ablation zone volumes (maximum variation < 2.5%). Accounting for dynamic acoustic attenuation appeared to play a critical role in estimating ablation zone size, as models using constant values for acoustic attenuation predicted ablation zone volumes up to 50% larger or 47% smaller in liver and prostate tissue, respectively. Thermal dose (t(43) ≥ 240 min) and thermal damage (Ω ≥ 4.6) thresholds for coagulative necrosis are in good agreement for all heating durations, temperature thresholds in the range of 54°C for short (<5 min) duration ablations and 50°C for long (15 min) ablations may serve as surrogates for determination of the outer treatment boundary. CONCLUSIONS Accounting for dynamic changes in acoustic attenuation/absorption appeared to play a critical role in predicted extents of ablation zones. For typical 5-15 min ablations with this modality, thermal dose and Arrhenius damage measures of ablation zone dimensions are in good agreement, while appropriately selected temperature thresholds provide a computationally cheaper surrogate.
Collapse
Affiliation(s)
- Punit Prakash
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California-San Francisco, CA 94143, USA.
| | | |
Collapse
|
26
|
N'djin WA, Burtnyk M, Bronskill M, Chopra R. Investigation of power and frequency for 3D conformal MRI-controlled transurethral ultrasound therapy with a dual frequency multi-element transducer. Int J Hyperthermia 2012; 28:87-104. [PMID: 22235788 DOI: 10.3109/02656736.2011.622343] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transurethral ultrasound therapy uses real-time magnetic resonance (MR) temperature feedback to enable the 3D control of thermal therapy accurately in a region within the prostate. Previous canine studies showed the feasibility of this method in vivo. The aim of this study was to reduce the procedure time, while maintaining targeting accuracy, by investigating new combinations of treatment parameters. Simulations and validation experiments in gel phantoms were used, with a collection of nine 3D realistic target prostate boundaries obtained from previous preclinical studies, where multi-slice MR images were acquired with the transurethral device in place. Acoustic power and rotation rate were varied based on temperature feedback at the prostate boundary. Maximum acoustic power and rotation rate were optimised interdependently, as a function of prostate radius and transducer operating frequency. The concept of dual frequency transducers was studied, using the fundamental frequency or the third harmonic component depending on the prostate radius. Numerical modelling enabled assessment of the effects of several acoustic parameters on treatment outcomes. The range of treatable prostate radii extended with increasing power, and tended to narrow with decreasing frequency. Reducing the frequency from 8 MHz to 4 MHz or increasing the surface acoustic power from 10 to 20 W/cm(2) led to treatment times shorter by up to 50% under appropriate conditions. A dual frequency configuration of 4/12 MHz with 20 W/cm(2) ultrasound intensity exposure can treat entire prostates up to 40 cm(3) in volume within 30 min. The interdependence between power and frequency may, however, require integrating multi-parametric functions in the controller for future optimisations.
Collapse
Affiliation(s)
- William Apoutou N'djin
- Imaging Research, Sunnybrook Health Sciences Centre, and Department of Medical Biophysics, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
27
|
Mast TD, Barthe PG, Makin IRS, Slayton MH, Karunakaran CP, Burgess MT, Alqadah A, Rudich SM. Treatment of rabbit liver cancer in vivo using miniaturized image-ablate ultrasound arrays. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1609-21. [PMID: 21821349 DOI: 10.1016/j.ultrasmedbio.2011.05.850] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 05/09/2023]
Abstract
In the preclinical studies reported here, VX2 cancer within rabbit liver has been treated by bulk ultrasound ablation employing miniaturized image-ablate arrays. Array probes were constructed with 32 elements in a 2.3 × 20 mm(2) aperture, packaged within a 3.1 mm stainless steel tube with a cooling and coupling balloon for in vivo use. The probes were measured capable of 50% fractional bandwidth for pulse-echo imaging (center frequency 4.4 MHz) with >110 W/cm(2) surface intensity available at sonication frequencies 3.5 and 4.8 MHz. B-scan imaging performance of the arrays was measured to be comparable to larger diagnostic linear arrays, although nearfield image quality was reduced by ringdown artifacts. A series of in vivo ablation procedures was performed using an unfocused 32-element aperture firing at 4.8 MHz with exposure durations 20-70.5 s and in situ spatial average, temporal average intensities 22.4-38.5 W/cm(2). Ablation of a complete tumor cross-section was confirmed by vital staining in seven of 12 exposures, with four exposures ablating an additional margin >1 mm beyond the tumor in all directions. Analysis suggests a threshold ablation effect, with complete ablation of tumor cross-sections for exposures with delivery of >838 J acoustic energy. The results show feasibility for in vivo liver cancer ablation using miniaturized image-ablate arrays suitable for interstitial deployment.
Collapse
Affiliation(s)
- T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45267-0586, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sciubba DM, Burdette EC, Cheng JJ, Pennant WA, Noggle JC, Petteys RJ, Alix C, Diederich CJ, Fichtinger G, Gokaslan ZL, Murphy KP. Percutaneous computed tomography fluoroscopy–guided conformal ultrasonic ablation of vertebral tumors in a rabbit tumor model. J Neurosurg Spine 2010; 13:773-9. [DOI: 10.3171/2010.5.spine09266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Radiofrequency ablation (RFA) has proven to be effective for treatment of malignant and benign tumors in numerous anatomical sites outside the spine. The major challenge of using RFA for spinal tumors is difficulty protecting the spinal cord and nerves from damage. However, conforming ultrasound energy to match the exact anatomy of the tumor may provide successful ablation in such sensitive locations. In a rabbit model of vertebral body tumor, the authors have successfully ablated tumors using an acoustic ablator placed percutaneously via computed tomography fluoroscopic (CTF) guidance.
Methods
Using CTF guidance, 12 adult male New Zealand White rabbits were injected with VX2 carcinoma cells in the lowest lumbar vertebral body. At 21 days, a bone biopsy needle was placed into the geographical center of the lesion, down which an acoustic ablator was inserted. Three multisensor thermocouple arrays were placed around the lesion to provide measurement of tissue temperature during ablation, at thermal doses ranging from 100 to 1,000,000 TEM (thermal equivalent minutes at 43°C), and tumor volumes were given a tumoricidal dose of acoustic energy. Animals were monitored for 24 hours and then sacrificed. Pathological specimens were obtained to determine the extent of tumor death and surrounding tissue damage. Measured temperature distributions were used to reconstruct volumetric doses of energy delivered to tumor tissue, and such data were correlated with pathological findings.
Results
All rabbits were successfully implanted with VX2 cells, leading to a grossly apparent spinal and paraspinal tissue mass. The CTF guidance provided accurate placement of the acoustic ablator in all tumors, as corroborated through gross and microscopic histology. Significant tumor death was noted in all specimens without collateral damage to nearby nerve tissue. Tissue destruction just beyond the margin of the tumor was noted in some but not all specimens. No neurological deficits occurred in response to ablation. Reconstruction of measured temperature data allowed accurate assessment of volumetric dose delivered to tissues.
Conclusions
Using a rabbit intravertebral tumor model, the authors have successfully delivered tumoricidal doses of acoustic energy via a therapeutic ultrasound ablation probe placed percutaneously with CTF guidance. The authors have thus established the first technical and preclinical feasibility study of controlled ultrasound ablation of spinal tumors in vivo.
Collapse
Affiliation(s)
| | - E. Clif Burdette
- 3Systems Research Division, Acoustic MedSystems, Inc., Champaign, Illinois
| | | | | | | | | | - Christopher Alix
- 3Systems Research Division, Acoustic MedSystems, Inc., Champaign, Illinois
| | - Chris J. Diederich
- 4Department of Radiation Oncology, University of California, San Francisco, California; and
| | - Gabor Fichtinger
- 5Department of Computing, Queen's University, Kingston, Ontario, Canada
| | | | - Kieran P. Murphy
- 1Departments of Neurosurgery and
- 2Interventional Radiology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
29
|
Experiment on enhancing antitumor effect of intravenous epirubicin hydrochloride by acoustic cavitation in situ combined with phospholipid-based microbubbles. Cancer Chemother Pharmacol 2010; 68:343-8. [DOI: 10.1007/s00280-010-1489-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 10/05/2010] [Indexed: 11/30/2022]
|
30
|
MRI-guided transurethral ultrasound therapy of the prostate gland using real-time thermal mapping: initial studies. Urology 2010; 76:1506-11. [PMID: 20709381 DOI: 10.1016/j.urology.2010.04.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/31/2010] [Accepted: 04/24/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To confirm the correlation between planning and thermal injury of the prostate as determined by magnetic resonance imaging (MRI) and histology in canine and humans treated with transurethral ultrasound. MATERIAL AND METHODS Canine studies: 2 sets of in vivo studies were performed under general anesthesia in 1.5 T clinical MRI. Nine dogs were treated using single transducer; 8 dogs were treated using urethral applicator with multiple transducers. Rectal cooling was maintained. After initial imaging, a target boundary was selected and high-intensity ultrasound energy delivered. The spatial temperature distribution was measured continuously every 5 seconds with MR thermometry using the proton-resonant frequency shift method. The goal was to achieve 55 °C at the target boundary. After treatment, the prostate was harvested and fixed with adjoining tissue, including rectum. Temperature maps, anatomical images, and histologic sections were registered to each other and compared. Human studies: To date, 5 patients with localized prostate cancer have been treated immediately before radical prostatectomy. Approximately 30% of the gland volume was targeted. RESULTS A continuous pattern of thermal coagulation was successfully achieved within the target region, with an average spatial precision of 1-2 mm. Radical prostatectomy was routine, with an uncomplicated postoperative course in all patients. The correlation between anatomical, thermal, and histologic images was ≤3 mm. Treatment time was <30 minutes. No thermal damage to rectal tissue was observed. CONCLUSIONS Thermal ablation within the prescribed target of the prostate has been successfully demonstrated in canine studies. The treatment is also feasible in humans.
Collapse
|
31
|
Krafft AJ, Jenne JW, Maier F, Stafford RJ, Huber PE, Semmler W, Bock M. A long arm for ultrasound: a combined robotic focused ultrasound setup for magnetic resonance-guided focused ultrasound surgery. Med Phys 2010; 37:2380-93. [PMID: 20527572 DOI: 10.1118/1.3377777] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Focused ultrasound surgery (FUS) is a highly precise noninvasive procedure to ablate pathogenic tissue. FUS therapy is often combined with magnetic resonance (MR) imaging as MR imaging offers excellent target identification and allows for continuous monitoring of FUS induced temperature changes. As the dimensions of the ultrasound (US) focus are typically much smaller than the targeted volume, multiple sonications and focus repositioning are interleaved to scan the focus over the target volume. Focal scanning can be achieved electronically by using phased-array US transducers or mechanically by using dedicated mechanical actuators. In this study, the authors propose and evaluate the precision of a combined robotic FUS setup to overcome some of the limitations of the existing MRgFUS systems. Such systems are typically integrated into the patient table of the MR scanner and thus only provide an application of the US wave within a limited spatial range from below the patient. METHODS The fully MR-compatible robotic assistance system InnoMotion (InnoMedic GmbH, Herxheim, Germany) was originally designed for MR-guided interventions with needles. It offers five pneumatically driven degrees of freedom and can be moved over a wide range within the bore of the magnet. In this work, the robotic system was combined with a fixed-focus US transducer (frequency: 1.7 MHz; focal length: 68 mm, and numerical aperture: 0.44) that was integrated into a dedicated, in-house developed treatment unit for FUS application. A series of MR-guided focal scanning procedures was performed in a polyacrylamide-egg white gel phantom to assess the positioning accuracy of the combined FUS setup. In animal experiments with a 3-month-old domestic pig, the system's potential and suitability for MRgFUS was tested. RESULTS In phantom experiments, a total targeting precision of about 3 mm was found, which is comparable to that of the existing MRgFUS systems. Focus positioning could be performed within a few seconds. During in vivo experiments, a defined pattern of single thermal lesions and a therapeutically relevant confluent thermal lesion could be created. The creation of local tissue necrosis by coagulation was confirmed by post-FUS MR imaging and histological examinations on the treated tissue sample. During all sonications in phantom and in vivo, reliable MR imaging and online MR thermometry could be performed without compromises due to operation of the combined robotic FUS setup. CONCLUSIONS Compared to the existing MRgFUS systems, the combined robotic FUS approach offers a wide range of spatial flexibility so that highly flexible application of the US wave would be possible, for example, to avoid risk structures within the US field. The setup might help to realize new ways of patient access in MRgFUS therapy. The setup is compatible with any closed-bore MR system and does not require an especially designed patient table.
Collapse
Affiliation(s)
- Axel J Krafft
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Bouchoux G, Owen N, Chavrier F, Berriet R, Fleury G, Chapelon JY, Lafon C. Interstitial thermal ablation with a fast rotating dual-mode transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2010; 57:1086-1095. [PMID: 20442018 DOI: 10.1109/tuffc.2010.1520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Interstitial ultrasound applicators can be a minimally invasive alternative for treating targets that are unresectable or are inaccessible by extracorporeal methods. Dual-mode transducers for ultrasound imaging and therapy were developed to address the constraints of a miniaturized applicator and real-time treatment monitoring. We propose an original treatment strategy that combines ultrasound imaging and therapy using a dual-mode transducer rotating at 8 revolutions per second. Real-time B-mode imaging was interrupted to emit high-intensity ultrasound over a selected therapy aperture. A full 360 degrees image was taken every 8th rotation to image the therapy aperture. Numerical simulations were performed to study the effect of rotation on tissue heating, and to study the effect of the treatment sequence on transducer temperature. With the time-averaged transducer surface intensity held at 12 W/cm(2) to maintain transducer temperature below 66 degrees C, higher field intensities and deeper lesions were produced by narrower therapy apertures. A prototype system was built and tested using in vitro samples of porcine liver. Lesions up to 8 mm were produced using a time-averaged transducer surface intensity of 12 W/cm(2) applied for a period of 240 s over a therapy aperture of 40 degrees. Apparent strain imaging of the therapy aperture improved the contrast between treated and spared tissues, which could not be differentiated on B-mode images. With appropriate limits on the transducer output, real-time imaging and deep thermal ablation are feasible and sustainable using a rotating dual-mode transducer.
Collapse
Affiliation(s)
- Guillaume Bouchoux
- Institut National de la Sante et de la Recherche Medicale (Inserm), U556 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Owen NR, Bouchoux G, Seket B, Murillo-Rincon A, Merouche S, Birer A, Paquet C, Delabrousse E, Chapelon JY, Berriet R, Fleury G, Lafon C. In vivo evaluation of a mechanically oscillating dual-mode applicator for ultrasound imaging and thermal ablation. IEEE Trans Biomed Eng 2009; 57:80-92. [PMID: 19497808 DOI: 10.1109/tbme.2009.2023994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Unresectable liver tumors are often treated with interstitial probes that modify tissue temperature, and efficacious treatment relies on image guidance for tissue targeting and assessment. Here, we report the in vivo evaluation of an interstitial applicator with a mechanically oscillating five-element dual-mode transducer. After thoroughly characterizing the transducer, tissue response to high-intensity ultrasound was numerically calculated to select parameters for experimentation in vivo. Using perfused porcine liver, B-mode sector images were formed before and after a 120-s therapy period, and M-mode imaging monitored the therapy axis during therapy. The time-averaged transducer surface intensity was 21 or 27 W/cm (2). Electroacoustic conversion efficiency was maximally 72 +/- 3% and impulse response length was 295 +/- 1.0 ns at -6 dB. The depth of thermal damage measured by gross histology ranged from 10 to 25 mm for 13 insertion sites. For six sites, M-mode data exhibited a reduction in gray-scale intensity that was interpreted as the temporal variation of coagulation necrosis. Contrast ratio analysis indicated that the gray-scale intensity dropped by 7.8 +/- 3.3 dB, and estimated the final lesion depth to an accuracy of 2.3 +/- 2.4 mm. This paper verified that the applicator could induce coagulation necrosis in perfused liver and demonstrated the feasibility of real-time monitoring.
Collapse
|
34
|
Percutaneous Sonographically Guided Interstitial US Ablation: Experimentation in an In Vivo Pig Liver Model. J Vasc Interv Radiol 2008; 19:1749-56. [DOI: 10.1016/j.jvir.2008.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 09/10/2008] [Accepted: 09/14/2008] [Indexed: 11/21/2022] Open
|
35
|
Shaw A, Hodnett M. Calibration and measurement issues for therapeutic ultrasound. ULTRASONICS 2008; 48:234-52. [PMID: 18234261 DOI: 10.1016/j.ultras.2007.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/21/2007] [Accepted: 10/26/2007] [Indexed: 05/11/2023]
Abstract
This review paper examines some of the issues relating to calibration and measurement of therapeutic medical ultrasonic equipment (MUE). This is not intended to be an all-encompassing review of all aspects of characterising therapeutic ultrasound. Instead it concentrates on issues related to the acoustic output of two applications: physiotherapy and high intensity focused ultrasound surgery (HIFUS or HIFU; also referred to as high intensity therapeutic ultrasound, HITU). Physiotherapy has a well-established standards infrastructure for calibration: the requirements are small in number and well-defined. The issue for physiotherapy is not so much 'How to calibrate?' but rather, 'How to ensure that equipment IS calibrated?' The situation in the much newer area of HIFU is very different: the first steps towards writing standards are just starting and even the very basic questions of what to measure and with what type of sensor are open for debate. Readers whose main interest is in other ultrasound therapies will find ideas of relevance to their own specialty.
Collapse
Affiliation(s)
- Adam Shaw
- Quality of Life Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW110LW, UK.
| | | |
Collapse
|
36
|
Delabrousse E, Mithieux F, Birer A, Salomir R, Chapelon J, Lafon C. [Ultrasound interstitial mini invasive probes for thermal ablation in liver: feasibility study in vivo]. ACTA ACUST UNITED AC 2008; 88:1817-22. [PMID: 18065946 DOI: 10.1016/s0221-0363(07)73961-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High intensity ultrasounds are routinely used for thermal ablation of some cancers. However, for treating hepatic tumours with physical agents, RF applicators and cryoprobes are still preferred. The goal of the present study was to demonstrate the feasibility of using interstitial ultrasound probes in liver following two approaches: percutaneous and intra-tissular or endo vascular. In vivo trials on a porcine model demonstrated the minimally invasive nature of both procedures. Homogeneous and reproducible thermal lesions, up to 20 mm deep, were obtained. The work on these two original approaches deserves to be completed with more extended prospective studies. The association with an imaging method will have to be studied before proceeding to clinical trials.
Collapse
Affiliation(s)
- E Delabrousse
- Inserm, U556, Université de Lyon, 151 Cours Albert Thomas, 69424 Lyon, Cedex 03, France
| | | | | | | | | | | |
Collapse
|