1
|
Murad HY, Sabol RA, Nyiramana J, Twizeyimana A, Bortz EP, Matossian MD, Hong S, Kelly CA, Burow ME, Bunnell BA, Khismatullin DB. Mechanical Disruption by Focused Ultrasound Re-sensitizes ER+ Breast Cancer Cells to Hormone Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1885-1892. [PMID: 39277462 DOI: 10.1016/j.ultrasmedbio.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Tamoxifen is the most used agent to treat estrogen receptor-positive (ER+) breast cancer (BC). While it decreases the risk of cancer recurrence by 50%, many patients develop resistance to this treatment, culminating in highly aggressive disease. Tamoxifen resistance comes from the repression of ER transcriptional activity that switches the cancer cells to proliferation via nonhormonal signaling pathways. Here, we evaluate a potential strategy to overcome tamoxifen resistance by focused ultrasound (FUS), a noninvasive approach for the mechanical excitation of cancer cells. METHODS Resistant and nonresistant ER+ BC cells and xenografts from patients with ER+ BC were treated with tamoxifen, FUS or their combination. The apoptosis, proliferation rate, gene expression and activity of estrogen receptor, and morphological changes were measured in treated cells and tissues. RESULTS FUS caused the mechanical disruption of tamoxifen-resistant BC cells that in turn led to the upregulation of ERα-encoding gene expression and long-term re-sensitization of the cells to tamoxifen. Patient-derived xenografts treated with Tamoxifen and FUS demonstrated a significant reduction in tumor viability and proliferation and a strong structural damage to tumor cells and extracellular matrix. CONCLUSION FUS can improve ER+ BC treatment by re-sensitizing the cancer cells to tamoxifen.
Collapse
Affiliation(s)
- Hakm Y Murad
- Department of Biomedical Engineering, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Rachel A Sabol
- Tulane Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA, USA
| | - Jeannette Nyiramana
- Department of Biomedical Engineering, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Aimee Twizeyimana
- Department of Biomedical Engineering, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Emma P Bortz
- Department of Biomedical Engineering, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Margarite D Matossian
- Department of Medicine, Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shirley Hong
- Department of Biomedical Engineering, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Charles A Kelly
- Department of Biomedical Engineering, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology & Medical Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bruce A Bunnell
- Tulane Center for Stem Cell Research and Regenerative Medicine, New Orleans, LA, USA; Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Damir B Khismatullin
- Department of Biomedical Engineering, Tulane University School of Science and Engineering, New Orleans, LA, USA.
| |
Collapse
|
2
|
Engelen Y, Krysko DV, Effimova I, Breckpot K, Versluis M, De Smedt S, Lajoinie G, Lentacker I. Optimizing high-intensity focused ultrasound-induced immunogenic cell-death using passive cavitation mapping as a monitoring tool. J Control Release 2024; 375:389-403. [PMID: 39293525 DOI: 10.1016/j.jconrel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Over the past decade, ultrasound (US) has gathered significant attention and research focus in the realm of medical treatments, particularly within the domain of anti-cancer therapies. This growing interest can be attributed to its non-invasive nature, precision in delivery, availability, and safety. While the conventional objective of US-based treatments to treat breast, prostate, and liver cancer is the ablation of target tissues, the introduction of the concept of immunogenic cell death (ICD) has made clear that inducing cell death can take different non-binary pathways through the activation of the patient's anti-tumor immunity. Here, we investigate high-intensity focused ultrasound (HIFU) to induce ICD by unraveling the underlying physical phenomena and resulting biological effects associated with HIFU therapy using an automated and fully controlled experimental setup. Our in-vitro approach enables the treatment of adherent cancer cells (B16F10 and CT26), analysis for ICD hallmarks and allows to monitor and characterize in real time the US-induced cavitation activity through passive cavitation detection (PCD). We demonstrate HIFU-induced cell death, CRT exposure, HMGB1 secretion and antigen release. This approach holds great promise in advancing our understanding of the therapeutic potential of HIFU for anti-cancer strategies.
Collapse
Affiliation(s)
- Yanou Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Dmitri V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Iuliia Effimova
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Xiong X, Zhou H, Xu X, Fu Q, Wan Y, Cao Y, Tang R, Li F, Zhang J, Li P. Ultrasound Molecular Imaging Enhances High-Intensity Focused Ultrasound Ablation on Liver Cancer With B7-H3-Targeted Microbubbles. Cancer Med 2024; 13:e70341. [PMID: 39431644 PMCID: PMC11492419 DOI: 10.1002/cam4.70341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/11/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND High-intensity focused ultrasound (HIFU) is a promising minimally invasive treatment for liver cancer; however, its efficacy is often limited by the attenuation of ultrasonic energy. This study investigates the effectiveness of B7-H3-targeted microbubbles (T-MBs) in enhancing HIFU ablation of liver cancer and explores their potential for clinical translation. METHODS T-MBs and isotype control microbubbles (I-MBs) were synthesized through the conjugation of biotinylated anti-B7-H3 antibody and isotype control antibody to the microbubble surface, respectively. Contrast-enhanced ultrasound imaging was performed to compare the accumulation of T-MBs and I-MBs in liver cancer at various time points. The efficacy of T-MBs in enhancing HIFU treatment was evaluated by measuring the immediate tumor ablation rate and long-term tumor growth suppression. Additionally, the induced antitumor immune response was assessed through cytokine quantification in serum and tumor tissue, along with immunofluorescence staining conducted on days 1, 3, and 7 post-treatment. RESULTS T-MBs demonstrated superior liver cancer-specific accumulation, characterized by higher concentrations and prolonged retention compared to I-MBs. The combination of T-MBs with HIFU resulted in significantly enhanced tumor ablation rates and superior tumor growth suppression. Post-treatment analysis revealed a gradual uptick in cytokine levels within the tumor microenvironment, along with progressive infiltration of antitumor immune cells. CONCLUSION T-MBs effectively enhance the therapeutic efficacy of HIFU for liver cancer treatment while simultaneously promoting an antitumor immune response. These findings provide a strong experimental foundation for the clinical translation of ultrasound molecular imaging combined with HIFU as a novel approach for tumor therapy.
Collapse
Affiliation(s)
- Xialin Xiong
- State Key Laboratory of Ultrasound in Medicine and EngineeringInstitute of Ultrasound ImagingThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Hang Zhou
- State Key Laboratory of Ultrasound in Medicine and EngineeringInstitute of Ultrasound ImagingThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
- Department of Ultrasound MedicineChongqing University Cancer HospitalChongqingChina
| | - Xinzhi Xu
- Department of Ultrasound MedicineChongqing University Cancer HospitalChongqingChina
| | - Qihuan Fu
- Department of Ultrasound MedicineChongqing University Cancer HospitalChongqingChina
| | - Yujie Wan
- Department of Ultrasound MedicineChongqing University Cancer HospitalChongqingChina
| | - Yuting Cao
- State Key Laboratory of Ultrasound in Medicine and EngineeringInstitute of Ultrasound ImagingThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Rui Tang
- State Key Laboratory of Ultrasound in Medicine and EngineeringInstitute of Ultrasound ImagingThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Fang Li
- Department of Ultrasound MedicineChongqing University Cancer HospitalChongqingChina
| | - Jun Zhang
- Clinical Center for Tumor TherapyThe Second Affiliated Hospital, Chongqing Medical UniversityChongqingChina
| | - Pan Li
- State Key Laboratory of Ultrasound in Medicine and EngineeringInstitute of Ultrasound ImagingThe Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
He T, Yang Y, Chen XB. Propulsion mechanisms of micro/nanorobots: a review. NANOSCALE 2024; 16:12696-12734. [PMID: 38940742 DOI: 10.1039/d4nr01776e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Micro/nanomotors (MNMs) are intelligent, efficient and promising micro/nanorobots (MNR) that can respond to external stimuli (e.g., chemical energy, temperature, light, pH, ultrasound, magnetic, biosignals, ions) and perform specific tasks. The MNR can adapt to different external stimuli and transform into various functional forms to match different application scenarios. So far, MNR have found extensive application in targeted therapy, drug delivery, tissue engineering, environmental remediation, and other fields. Despite the promise of MNR, there are few reviews that focus on them. To shed new light on the further development of the field, it is necessary to provide an overview of the current state of development of these MNR. Therefore, this paper reviews the research progress of MNR in terms of propulsion mechanisms, and points out the pros and cons of different stimulus types. Finally, this paper highlights the current challenges faced by MNR and proposes possible solutions to facilitate the practical application of MNR.
Collapse
Affiliation(s)
- Tao He
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Yonghui Yang
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Xue-Bo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
5
|
Xu Z, Piao X, Wang M, Pichardo S, Cheng B. Microbubble-enhanced transcranial MR-guided focused ultrasound brain hyperthermia: heating mechanism investigation using finite element method. ULTRASONICS SONOCHEMISTRY 2024; 107:106889. [PMID: 38702233 PMCID: PMC11214346 DOI: 10.1016/j.ultsonch.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Recently, our group developed a synergistic brain drug delivery method to achieve simultaneous transcranial hyperthermia and localized blood-brain barrier opening via MR-guided focused ultrasound (MRgFUS). In a rodent model, we demonstrated that the ultrasound power required for transcranial MRgFUS hyperthermia was significantly reduced by injecting microbubbles (MBs). However, the specific mechanisms underlying the power reduction caused by MBs remain unclear. The present study aims to elucidate the mechanisms of MB-enhanced transcranial MRgFUS hyperthermia through numerical studies using the finite element method. The microbubble acoustic emission (MAE) and the viscous dissipation (VD) were hypothesized to be the specific mechanisms. Acoustic wave propagation was used to model the FUS propagation in the brain tissue, and a bubble dynamics equation for describing the dynamics of MBs with small shell thickness was used to model the MB oscillation under FUS exposures. A modified bioheat transfer equation was used to model the temperature in the rodent brain with different heat sources. A theoretical model was used to estimate the bubble shell's surface tension, elasticity, and viscosity losses. The simulation reveals that MAE and VD caused a 40.5% and 52.3% additional temperature rise, respectively. Compared with FUS only, MBs caused a 64.0% temperature increase, which is consistent with our previous animal experiments. Our investigation showed that MAE and VD are the main mechanisms of MB-enhanced transcranial MRgFUS hyperthermia.
Collapse
Affiliation(s)
- Zhouyang Xu
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Xiangkun Piao
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Mingyu Wang
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Samuel Pichardo
- Department of Radiology, University of Calgary, Calgary, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Bingbing Cheng
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
6
|
Li XJ, Hossain MM, Lee SA, Saharkhiz N, Konofagou E. Harmonic Motion Imaging-Guided Focused Ultrasound Ablation: Comparison of Three Focused Ultrasound Interference Filtering Methods. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:119-127. [PMID: 37872031 PMCID: PMC10697091 DOI: 10.1016/j.ultrasmedbio.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/19/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE Harmonic motion imaging (HMI) is an acoustic radiation force-based elasticity imaging technique, which can be used to monitor changes in tissue mechanical properties caused by focused ultrasound (FUS)-induced thermal ablation. In conventional HMI, the amplitude-modulated FUS sequence and imaging pulse are transmitted simultaneously. With this method, the high-amplitude FUS signal must be separated from the imaging data for tissue displacement estimation. Frequency domain notch filtering and bandpass filtering were previously used to filter FUS interference from imaging data. However, FUS interference becomes more pronounced at the increased intensities and durations necessary for thermal ablation, rendering frequency domain filtering challenging. In this study, three methods for FUS interference filtering during HMI-guided FUS ablation (HMIgFUS) were compared. The methods were notch filtering; interleaved HMIgFUS, with interleaved FUS and imaging pulses; and FUS-net, a convolutional neural network-based U-Net autoencoder developed by our group for FUS interference filtering in radiofrequency data. FUS-net was applied here for the first time for the purpose of ablation displacement monitoring. METHODS The three filtering methods were tested during 20 HMIgFUS acquisitions in an ex vivo canine liver using a range of peak positive pressures from 11 to 18 MPa and durations ranging from 60 to 180 seconds. The B-mode mean squared errors (MSEs) and displacement amplitude contrast-to-noise ratios (CNRs) of the three methods were calculated and compared. RESULTS The interleaved method for HMIgFUS was found to be significantly robust in avoiding FUS interference in all tested cases for FUS ablation monitoring, especially cases with high FUS pressure and long durations, as opposed to traditional notch filtering and FUS-net filtering. CNRs obtained from displacement amplitude maps in the interleaved data set were significantly higher in all cases than those obtained from the notch filtered and FUS-net data sets. There was not a significant trend in displacement CNR between the FUS-net and notch filtered data sets. However, B-mode MSE was found to be significantly higher when comparing the FUS-net and interleaved data sets as opposed to the notch filtered and interleaved data sets, suggesting further potential of FUS-net as an FUS interference filtering method. CONCLUSION These findings indicate the robustness of interleaved HMIgFUS in avoiding FUS interference during HMIgFUS monitoring and the advantages, limitations and future potential of FUS-net and notch filtering.
Collapse
Affiliation(s)
- Xiaoyue Judy Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Md Murad Hossain
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Niloufar Saharkhiz
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Zhou H, Li F, Luo L, Xiong X, Zhou K, Zhu H, Zhang J, Li P. Safety of Sonazoid in Assisting High-Intensity Focused Ultrasound Ablation Therapy for Advanced Liver Malignant Lesions: A Single-Arm Clinical Study. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:134-141. [PMID: 37865612 DOI: 10.1016/j.ultrasmedbio.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE The aim of the study described here was to evaluate the safety of Sonazoid-assisted high-intensity focused ultrasound (HIFU) in the treatment of advanced malignant liver lesions. METHODS A single-arm study was designed to enroll participants who were diagnosed with advanced primary liver cancer or liver metastases and proposed to receive Sonazoid assistance during HIFU treatment. Serological examination was conducted within 1 wk, and side effects in each patient were monitored for 1 mo. To evaluate therapeutic efficacy, the contrast-enhanced magnetic resonance imaging was performed 1 mo after treatment, and short-term follow-up was conducted a year later. RESULTS A total of 17 participants (12 male, 5 female) with an average age of 58 y (range: 46-73 y) were enrolled, including 11 patients with hepatocellular carcinoma, 2 patients with hepatic metastasis and 4 patients with cholangiocarcinoma. The total volume of tumor mass was 111.82 (11.01-272.30) cm3. The average total ablation time for a patient was 2021 ± 1030 s, and the energy efficiency factor was 5979.7 (3108.0, 45634.5) J/cm3. Immediately after HIFU treatment, 1 patient (5.9%) achieved complete response (CR), 4 patients (23.5%) had a moderate response, 8 patients (47.1%) had partial reperfusion and 4 patients (23.5%) had stable disease (SD). The average ablation rate for all the tumors was 51.5 ± 26.7%. The level of glutamic-pyruvic transaminase (ALT) was mildly increased in 71.6% (12/17) of patients after HIFU therapy. Mean ALT values before and after treatment were 22 (14, 35) U/L and 36 (25, 41) U/L, respectively (Z = 1.947, p = 0.051). Mild or obvious edema in skin and subcutaneous soft tissues were observed in 76.5% of patients, but no serious side effects were found. Twelve months after treatment, the follow-up results revealed that 1 patient (5.8%) achieved a CR, 8 patients (47.1%) had SD and 8 patients (47.1%) had progressive disease. The estimated median time to progression was 11 mo after treatment, with a 95% confidence interval of 6, 11 for all involved patients. CONCLUSION Use of Sonazoid is safe and feasible for improving HIFU ablation efficiency during the treatment of advanced malignant liver lesions. The therapeutic efficacy of Sonazoid-assisted HIFU needs to be explored in additional controlled clinical investigations.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Ultrasound & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
| | - Fang Li
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
| | - Li Luo
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing, China
| | - Xialin Xiong
- Department of Ultrasound & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun Zhou
- Clinical Center for Tumor Therapy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Zhu
- Clinical Center for Tumor Therapy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Clinical Center for Tumor Therapy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Pan Li
- Department of Ultrasound & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Joshi S, Agarkoti C, Gogate PR. Mapping of 20 L capacity ultrasonic reactor using cavitation activity meter and dye degradation. ULTRASONICS SONOCHEMISTRY 2023; 101:106688. [PMID: 37952469 PMCID: PMC10665945 DOI: 10.1016/j.ultsonch.2023.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Mapping of a novel 20 L capacity ultrasonic (US) reactor having a total of 44 transducers was done by measuring the local cavitation intensity using a cavitation activity meter at different horizontal planes and subsequent validation based on dye degradation. A fixed frequency of 33 kHz and temperature of 30 °C was used during the mapping performed at two different power levels of 250 W and 400 W. In addition, the mapping of specific plane 2 was also performed with transducers operating on walls 1 and 3, while switching the transducers on walls 2 and 4 off and vice versa so as to establish the role of using multiple transducers. Degradation of RO4 dye was also measured at the plane 2 at various powers as 250 W, 400 W, and 1000 W. The degradation of the RO4 dye directly correlated to the cavitation intensity measured at the various location inside the US reactor. The average cavitation intensity was 265.38, 317.25, 185, and 300.5 Cavins for power dissipations of 250 W, 400 W, 250 W (wall 1 and 3 transducers in operation), and 400 W (wall 2 and 4 transducers in operation), respectively. Correspondingly, the average degradation was 10.35 %, 13.03 %, 5.52 %, and 8.9 % for same sequence of operational power and transducers. The investigation amply illustrated dependency of the cavitational activity on the location, power dissipation, and operating mode elucidating important design related information useful for scale up of sonochemical reactors.
Collapse
Affiliation(s)
- Shubham Joshi
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 40019, India
| | - Chandrodai Agarkoti
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 40019, India
| | - Parag R Gogate
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 40019, India.
| |
Collapse
|
9
|
Zhou Y, Ye M, Hu C, Qian H, Nelson BJ, Wang X. Stimuli-Responsive Functional Micro-/Nanorobots: A Review. ACS NANO 2023; 17:15254-15276. [PMID: 37534824 DOI: 10.1021/acsnano.3c01942] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Stimuli-responsive functional micro-/nanorobots (srFM/Ns) are a class of intelligent, efficient, and promising microrobots that can react to external stimuli (such as temperature, light, ultrasound, pH, ion, and magnetic field) and perform designated tasks. Through adaptive transformation into the corresponding functional forms, they can perfectly match the demands depending on different applications, which manifest extremely important roles in targeted therapy, biological detection, tissue engineering, and other fields. Promising as srFM/Ns can be, few reviews have focused on them. It is therefore necessary to provide an overview of the current development of these intelligent srFM/Ns to provide clear inspiration for further development of this field. Hence, this review summarizes the current advances of stimuli-responsive functional microrobots regarding their response mechanism, the achieved functions, and their applications to highlight the pros and cons of different stimuli. Finally, we emphasize the existing challenges of srFM/Ns and propose possible strategies to help accelerate the study of this field and promote srFM/Ns toward actual applications.
Collapse
Affiliation(s)
- Yan Zhou
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Min Ye
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Chengzhi Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huihuan Qian
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
- Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Bradley J Nelson
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Xiaopu Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| |
Collapse
|
10
|
Cacaccio J, Durrani FA, Kumar I, Dukh M, Camacho S, Fayazi Z, Sumlin A, Kauffman E, Guru K, Pandey RK. Excitation of a Single Compound by Light and Ultrasound Enhanced the Long-Term Cure of Mice Bearing Prostate Tumors. Int J Mol Sci 2023; 24:10624. [PMID: 37445799 DOI: 10.3390/ijms241310624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Current treatment for prostate cancer is dependent on the stages of the cancer, recurrence, and genetic factors. Treatment varies from active surveillance or watchful waiting to prostatectomy, chemotherapy, and radiation therapy in combination or alone. Although radical prostate cancer therapy reduces the advancement of the disease and its mortality, the increased disease treatment associated morbidity, erectile dysfunction, and incontinence affect the quality of life of cancer survivors. To overcome these problems, photodynamic therapy (PDT) has previously been investigated using PhotofrinTM as a photosensitizer (PS). However, Photofrin-PDT has shown limitations in treating prostate cancer due to its limited tumor-specificity and the depth of light penetration at 630 nm (the longest wavelength absorption of PhotofrinTM). The results presented herein show that this limitation can be solved by using a near infrared (NIR) compound as a photosensitizer (PS) for PDT and the same agent also acts as a sonosensitizer for SDT (using ultrasound to activate the compound). Compared to light, ultrasound has a stronger penetration ability in biological tissues. Exposing the PS (or sonosensitizer) to ultrasound (US) initiates an electron-transfer process with a biological substrate to form radicals and radical ions (type I reaction). In contrast, exposure of the PS to light (PDT) generates singlet oxygen (type II reaction). Therefore, the reactive oxygen species (ROS) produced by SDT and PDT follow two distinct pathways, i.e., type I (oxygen independent) and type II (oxygen dependent), respectively, and results in significantly enhanced destruction of tumor cells. The preliminary in vitro and in vivo results in a PC3 cell line and tumor model indicate that the tumor specificality of the therapeutic agent(s) can be increased by targeting galectin-1 and galectin-3, known for their overexpression in prostate cancer.
Collapse
Affiliation(s)
- Joseph Cacaccio
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Farukh A Durrani
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ishaan Kumar
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mykhaylo Dukh
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Susan Camacho
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Zahra Fayazi
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Adam Sumlin
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Eric Kauffman
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Khurshid Guru
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ravindra K Pandey
- PDT Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
11
|
Wang M, Nguyen VP, Singh R, Mossallam B, Yang X, Wang X, Paulus YM. Choroidal neovascularization removal with photo-mediated ultrasound therapy. Med Phys 2023; 50:3661-3670. [PMID: 37029733 PMCID: PMC10330868 DOI: 10.1002/mp.16404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a major cause of irreversible central vision loss. The main reason for lost vision due to AMD is choroidal neovascularization (CNV). In the clinic, current treatments for CNV include photodynamic therapy, laser photocoagulation, and anti-vascular endothelial growth factor (VEGF) therapy. PURPOSE This study evaluates a novel treatment technique combining synchronized nanosecond laser pulses and ultrasound bursts, namely photo-mediated ultrasound therapy (PUT) as a potential treatment method for CNV, for its efficacy and safety in the treatment of CNV via the experiments in a clinically-relevant rabbit model in vivo. METHODS CNV was created by subretinal injection of Matrigel and vascular endothelial growth factor (M&V) in 10 New Zealand white rabbits. Six rabbits were used in the PUT group. In the control groups, two rabbits were treated by laser-only, and two rabbits were treated by ultrasound-only. The treatment efficacy was evaluated through fundus photography and fluorescein angiography (FA) longitudinally for up to 4 weeks. Rabbits were sacrificed for histopathology 3 months after treatment to examine the safety of PUT. RESULTS The fluorescein leakage on FA was quantified to longitudinally evaluate treatment outcome. Compared with baseline, the relative intensity index was reduced by 26.57% ± 8.66% at 3 days after treatment, 27.24% ± 6.21% at 1 week after treatment, 27.79% ± 2.61% at 2 weeks after treatment, and 32.12% ± 3.23% at 4 weeks after treatment, all with a statistically significant difference of p < 0.01. The comparison between the relative intensity indexes from the two control groups (laser-only treatment and ultrasound-only treatment) did not show any statistically significant difference at all time points. Safety evaluation at 3 months with histopathology demonstrated that the PUT did not result in morphologic changes to the neurosensory retina. CONCLUSIONS This study introduces PUT for the first time for the treatment of CNV. The results demonstrated good efficacy and safety of PUT to treat CNV in a clinically-relevant rabbit model. With a single session of treatment, PUT can safely reduce the leakage of CNV for at least 1 month after treatment.
Collapse
Affiliation(s)
- Mingyang Wang
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109 USA
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan Ann Arbor, MI, 48105 USA
| | - Rohit Singh
- Institute for Bioengineering Research and Department of Mechanical Engineering, University of Kansas, Lawrence, KS, 66045 USA
| | - Basheer Mossallam
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109 USA
| | - Xinmai Yang
- Institute for Bioengineering Research and Department of Mechanical Engineering, University of Kansas, Lawrence, KS, 66045 USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109 USA
| | - Yannis M. Paulus
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109 USA
- Department of Ophthalmology and Visual Sciences, University of Michigan Ann Arbor, MI, 48105 USA
| |
Collapse
|
12
|
Özsoy Ç, Lafci B, Reiss M, Deán-Ben XL, Razansky D. Real-time assessment of high-intensity focused ultrasound heating and cavitation with hybrid optoacoustic ultrasound imaging. PHOTOACOUSTICS 2023; 31:100508. [PMID: 37228577 PMCID: PMC10203775 DOI: 10.1016/j.pacs.2023.100508] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
High-intensity focused ultrasound (HIFU) enables localized ablation of biological tissues by capitalizing on the synergistic effects of heating and cavitation. Monitoring of those effects is essential for improving the efficacy and safety of HIFU interventions. Herein, we suggest a hybrid optoacoustic-ultrasound (OPUS) approach for real-time assessment of heating and cavitation processes while providing an essential anatomical reference for accurate localization of the HIFU-induced lesion. Both effects could clearly be observed by exploiting the temperature dependence of optoacoustic (OA) signals and the strong contrast of gas bubbles in pulse-echo ultrasound (US) images. The differences in temperature increase and its rate, as recorded with a thermal camera for different HIFU pressures, evinced the onset of cavitation at the expected pressure threshold. The estimated temperatures based on OA signal variations were also within 10-20 % agreement with the camera readings for temperatures below the coagulation threshold (∼50 °C). Experiments performed in excised tissues as well as in a post-mortem mouse demonstrate that both heating and cavitation effects can be effectively visualized and tracked using the OPUS approach. The good sensitivity of the suggested method for HIFU monitoring purposes was manifested by a significant increase in contrast-to-noise ratio within the ablated region by > 10 dB and > 5 dB for the OA and US images, respectively. The hybrid OPUS-based monitoring approach offers the ease of handheld operation thus can readily be implemented in a bedside setting to benefit several types of HIFU treatments used in the clinics.
Collapse
Affiliation(s)
- Çağla Özsoy
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Berkan Lafci
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Michael Reiss
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
13
|
Chen X, Cvetkovic D, Chen L, Ma CM. An in-vivo study of the combined therapeutic effects of pulsed non-thermal focused ultrasound and radiation for prostate cancer. Int J Radiat Biol 2023; 99:1716-1723. [PMID: 37191462 DOI: 10.1080/09553002.2023.2214204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE The purpose of this study was to investigate the in vivo combined effects of pulsed focused ultrasound (pFUS) and radiation (RT) for prostate cancer treatment. MATERIALS AND METHODS An animal prostate tumor model was developed by implanting human LNCaP tumor cells in the prostates of nude mice. Tumor-bearing mice were treated with pFUS, RT or both (pFUS + RT) and compared with a control group. Non-thermal pFUS treatment was delivered by keeping the body temperature below 42 °C as measured real-time by MR thermometry and using a pFUS protocol (1 MHz, 25 W focused ultrasound; 1 Hz pulse rate with a 10% duty cycle for 60 sec for each sonication). Each tumor was covered entirely using 4-8 sonication spots. RT treatment with a dose of 2 Gy was delivered using an external beam (6 MV photon energy with dose rate 300MU/min). Following the treatment, mice were scanned weekly with MRI for tumor volume measurement. RESULTS The results showed that the tumor volume in the control group increased exponentially to 142 ± 6%, 205 ± 12%, 286 ± 22% and 410 ± 33% at 1, 2, 3 and 4 weeks after treatment, respectively. In contrast, the pFUS group was 29% (p < 0.05), 24% (p < 0.05), 8% and 9% smaller, the RT group was 7%, 10%, 12% and 18% smaller, and the pFUS + RT group was 32%, 39%, 41% and 44% (all with p < 0.05) smaller than the control group at 1, 2, 3, and 4 weeks post treatment, respectively. Tumors treated by pFUS showed an early response (i.e. the first 2 weeks), while the RT group showed a late response. The combined pFUS + RT treatment showed consistent response throughout the post-treatment weeks. CONCLUSIONS These results suggest that RT combined with non-thermal pFUS can significantly delay the tumor growth. The mechanism of tumor cell killing between pFUS and RT may be different. Pulsed FUS shows early tumor growth delay, while RT contributes to the late effect on tumor growth delay. The addition of pFUS to RT significantly enhanced the therapeutic effect for prostate cancer treatment.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Dusica Cvetkovic
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lili Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - C-M Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
14
|
Smith MR, Khan S, Curiel L. Comparing Phantom and Animal Metrics Applied in the Determination of Focused Ultrasound Stable and Inertial Cavitation Levels. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1118-1128. [PMID: 36732151 DOI: 10.1016/j.ultrasmedbio.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The opening of the blood-brain barrier (BBB) to allow therapeutic drug passage can be achieved by inducing microbubble cavitation using focused ultrasound (FUS). This approach can be monitored through analysis of the received signal to distinguish between stable cavitation associated with safe BBB opening and inertial cavitation associated with blood vessel damage. In this study, FUS phantom and animal studies were used to evaluate the experimental conditions that generate several cross-consistent metrics having the potential to be combined for the reliable, automatic control of cavitation levels. METHODS Typical metrics for cavitation monitoring involve observing changes in the spectrum generated by applying the discrete Fourier transform (DFT) to the time domain signal detected using a hydrophone during FUS. A confocal hydrophone was used to capture emissions during a 10 ms FUS burst, sampled at 32 ns intervals, to produce 321,500 points and a high-resolution spectrum when transformed. The FUS spectra were analyzed to show the impact that equipment-transients and well-known DFT-related distortions had on the metrics used for cavitation control. A new approach, physical sparsification (PH-SP), was introduced to sharpen FUS spectral peaks and minimize the effect of these distortions. DISCUSSION It was demonstrated that the general spectral signal-to-noise ratio (SNR) could be improved by removing the initial noisy phantom hydrophone signal transient. Minor changes in the transient length digitally removed from the sampled values significantly changed the spectral bandwidths of all the harmonically related FUS signals. We evaluated signal processing techniques to minimize the impact these DFT-related distortions on area-under-the-curve (AUC) metric calculations, and we identified the advantages of using PH-SP and proposed new metrics when characterizing FUS spectral properties. The results show many second, third and sub-harmonic metrics provide cross-consistent evidence of changes between stable and inertial cavitation levels. Removing the first harmonic signal component with a hardware low-pass filter allowed the hydrophone gain to be boosted without introducing distortion, leading to an improved analysis of the sub-harmonic signal orders of magnitude smaller in intensity. Metrics that optimized the energy in the real component of the complex-valued PH-SP spectra provided a 32% increase in the sub-harmonic sensitivity compared to standard metrics. CONCLUSION A preliminary investigation of existing and proposed metrics showed that system noise could be large enough to mask the transition between stable and inertial cavitation. Strong narrowing of sub-harmonic peak shapes on applying physical sparsification (PH-SP) were seen in both phantom and animal studies. However, validating equivalent trends of the metrics with pressure were limited by the increased system noise level in the animal study combined with the natural variability between subjects studied. The combined use of hardware low-pass filters and physical sparsification to selectively removing distortions in the spectrum allowed the optimization of metrics for cavitation monitoring by improving the sub-harmonic sensitivity.
Collapse
Affiliation(s)
- Michael R Smith
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| | - Sonia Khan
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Laura Curiel
- Department of Biometrical Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada
| |
Collapse
|
15
|
Chung WT, Mekhemer IM, Mohamed MG, Elewa AM, EL-Mahdy AF, Chou HH, Kuo SW, Wu KCW. Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
16
|
Andrés D, Rivens I, Mouratidis P, Jiménez N, Camarena F, ter Haar G. Holographic Focused Ultrasound Hyperthermia System for Uniform Simultaneous Thermal Exposure of Multiple Tumor Spheroids. Cancers (Basel) 2023; 15:2540. [PMID: 37174005 PMCID: PMC10177503 DOI: 10.3390/cancers15092540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Hyperthermia is currently used to treat cancer due to its ability to radio- and chemo-sensitize and to stimulate the immune response. While ultrasound is non-ionizing and can induce hyperthermia deep within the body non-invasively, achieving uniform and volumetric hyperthermia is challenging. This work presents a novel focused ultrasound hyperthermia system based on 3D-printed acoustic holograms combined with a high-intensity focused ultrasound (HIFU) transducer to produce a uniform iso-thermal dose in multiple targets. The system is designed with the aim of treating several 3D cell aggregates contained in an International Electrotechnical Commission (IEC) tissue-mimicking phantom with multiple wells, each holding a single tumor spheroid, with real-time temperature and thermal dose monitoring. System performance was validated using acoustic and thermal methods, ultimately yielding thermal doses in three wells that differed by less than 4%. The system was tested in vitro for delivery of thermal doses of 0-120 cumulative equivalent minutes at 43 °C (CEM43) to spheroids of U87-MG glioma cells. The effects of ultrasound-induced heating on the growth of these spheroids were compared with heating using a polymerase chain reaction (PCR) thermocycler. Results showed that exposing U87-MG spheroids to an ultrasound-induced thermal dose of 120 CEM43 shrank them by 15% and decreased their growth and metabolic activity more than seen in those exposed to a thermocycler-induced heating. This low-cost approach of modifying a HIFU transducer to deliver ultrasound hyperthermia opens new avenues for accurately controlling thermal dose delivery to complex therapeutic targets using tailored acoustic holograms. Spheroid data show that thermal and non-thermal mechanisms are implicated in the response of cancer cells to non-ablative ultrasound heating.
Collapse
Affiliation(s)
- Diana Andrés
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Ian Rivens
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| | - Petros Mouratidis
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| | - Noé Jiménez
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Francisco Camarena
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Gail ter Haar
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| |
Collapse
|
17
|
Liu D, Shen G, Tang N, Lu H, Wei B. Robotic system for magnetic resonance imaging-guided high-intensity focus ultrasound application: Feasibility of breast fibroadenoma treatment. Int J Med Robot 2023:e2519. [PMID: 37081747 DOI: 10.1002/rcs.2519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE This paper presents a high-intensity focus ultrasound (HIFU) robotic system for treating breast fibroadenoma under the guidance of magnetic resonance imaging (MRI). Based on the thermal and mechanical effects of ultrasound, the system aims to deliver ultrasound energy to a target precisely without damaging the normal tissue. The temperature elevation can be monitored in real time by MRI, and the treatment plan can be adjusted during the procedure. The requirements, design specifications, control system and registration of the robotic system are specified. METHODS The robotic system was designed with a 3 degrees of freedom manipulator with limit switches and encoders, a customised MRI-compatible breast coil, a water bladder with sets of breast-conforming brackets, and a probe capable of generating ultrasound. Twenty volunteers were recruited for this study, and their data were analysed to provide more precise data for the design. The accuracy of the robot was evaluated in free space using a coordinate measuring machine, phantom and ex vivo porcine tissue in MRI room. The study also verified the signal-to-noise ratio (SNR) of the MRI with the effect of the robotic system. RESULTS The research findings revealed that the manipulator exhibited a translational precision of 0.10 ± 0.14 mm, a rotational fidelity around the X direction of 0.11 ± 0.09°, and an oscillatory exactness around the Y direction of 0.10 ± 0.08°. The investigation of positioning accuracy demonstrated that the robot's error in free space was 0.26 ± 0.07 mm. When subjected to MRI room with agar-silica phantom and ex vivo porcine tissue, the positioning accuracy amounted to 1.11 ± 0.47 mm and 1.57 ± 0.52 mm. In the presence of the robotic system, the SNR of the MRI experienced a 4.2% reduction, which had a negligible impact on image quality. CONCLUSIONS The conducted experiments validate the efficacy of the proposed MRI-guided HIFU robotic system in executing agar-silica phantom and ex vivo porcine tissue investigations with adequate positioning accuracy. Consequently, this system exhibits certain feasibility for the treatment of breast fibroadenomas.
Collapse
Affiliation(s)
- Depeng Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guofeng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Na Tang
- Shanghai General Hospital, Shanghai, China
| | - Huaxin Lu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Wei
- Shanghai Shende Medical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
18
|
Xia L, Chen J, Xie Y, Zhang S, Xia W, Feng W, Chen Y. Photo-/piezo-activated ultrathin molybdenum disulfide nanomedicine for synergistic tumor therapy. J Mater Chem B 2023; 11:2895-2903. [PMID: 36919643 DOI: 10.1039/d3tb00209h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Molybdenum disulfide (MoS2), as a transition metal dichalcogenide, has attracted tremendous attention owing to its remarkable electronic, physical, and chemical properties. In this study, based on the energy-converting nanomedicine, we report multifunctional two-dimensional (2D) MoS2 nanosheets with inherent plasmonic property and piezocatalytic activity for imaging-guided synergistic tumor therapy. MoS2 nanosheets display strong plasmon resonances in the near-infrared (NIR) region, especially in the second NIR biological window, possessing a notable light energy to heat effect under 1064 nm laser irradiation, which not only serves as a robust photothermal agent for cancer cell ablation but also acts as a contrast-enhanced agent for thermal imaging and photoacoustic imaging. Meanwhile, MoS2 nanosheets feature a remarkable piezotronic effect, exhibiting mechanical vibration energy to electricity under the stimulation of ultrasound-mediated microscopic pressure for reactive oxygen species generation to further kill cancer cells. The new function for old materials may open up the in-depth exploration of MoS2-based functional biomaterials in the future clinical application of imaging-guided photothermal and piezocatalytic synergetic treatment.
Collapse
Affiliation(s)
- Lili Xia
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.
| | - Junjie Chen
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Weiwei Xia
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China. .,Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China. .,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China. .,Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
19
|
Enhancement of the in vitro anticancer photo-sonodynamic combination therapy activity of cationic thiazole-phthalocyanines using gold and silver nanoparticles. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Taha A, Mehany T, Pandiselvam R, Anusha Siddiqui S, Mir NA, Malik MA, Sujayasree OJ, Alamuru KC, Khanashyam AC, Casanova F, Xu X, Pan S, Hu H. Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Crit Rev Food Sci Nutr 2023; 64:6016-6054. [PMID: 36591874 DOI: 10.1080/10408398.2022.2161464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Department of Chemistry, University of La Rioja, Logroño, Spain
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- DIL e.V.-German Institute of Food Technologies, Quakenbrück, Germany
| | - Nisar A Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Mohali, India
| | - Mudasir Ahmad Malik
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, India
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
21
|
Huang W, Ning C, Zhang R, Xu J, Chen B, Li Z, Cui Y, Shao W. Evaluation of the dual-frequency transducer for controlling thermal ablation morphology using frequency shift keying signal. Int J Hyperthermia 2022; 39:1344-1357. [PMID: 36223887 DOI: 10.1080/02656736.2022.2130999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
PURPOSE The catheter-based ultrasound (CBUS) can reach the target tissue directly and achieve rapid treatment. The frequency shift keying (FSK) signal is proposed to regulate and evaluate tumor ablation by a miniaturized dual-frequency transducer. METHODS A dual-frequency transducer prototype (3 × 7 × 0.4 mm) was designed and fabricated for the CBUS applicator (OD: 3.8 mm) based on the fundamental frequency of 5.21 MHz and the third harmonic frequency of 16.88 MHz. Then, the acoustic fields and temperature field distributions using the FSK signals (with 0, 25, 50, 75, and 100% third harmonic frequency duty ratios) were simulated by finite element analysis. Finally, tissue ablation and temperature monitoring were performed in phantom and ex vivo tissue, respectively. RESULTS At the same input electrical power (20 W), the output acoustic power of the fundamental frequency of the transducer was 10.03 W (electroacoustic efficiencies: 50.1%), and that of the third harmonic frequency was 6.19 W (30.6%). As the third harmonic frequency duty ratios increased, the shape of thermal lesions varied from strip to droplet in simulated and phantom experimental results. The same trend was observed in ex vivo tests. CONCLUSION Dual-frequency transducers excited by the FSK signal can control the morphology of lesions. SIGNIFICANCE The acoustic power deposition of CBUS was optimized to achieve precise ablation.
Collapse
Affiliation(s)
- Wenchang Huang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Chuanlong Ning
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, Jiangsu, China
| | - Rui Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Jie Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Beiyi Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China.,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Zhangjian Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yaoyao Cui
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Weiwei Shao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| |
Collapse
|
22
|
Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels 2022; 8:554. [PMID: 36135267 PMCID: PMC9498906 DOI: 10.3390/gels8090554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive hydrogel drug delivery systems are designed to release a payload when prompted by an external stimulus. These platforms have become prominent in the field of drug delivery due to their ability to provide spatial and temporal control for drug release. Among the different external triggers that have been used, ultrasound possesses several advantages: it is non-invasive, has deep tissue penetration, and can safely transmit acoustic energy to a localized area. This review summarizes the current state of understanding about ultrasound-responsive hydrogels used for drug delivery. The mechanisms of inducing payload release and activation using ultrasound are examined, along with the latest innovative formulations and hydrogel design strategies. We also report on the most recent applications leveraging ultrasound activation for both cancer treatment and tissue engineering. Finally, the future perspectives offered by ultrasound-sensitive hydrogels are discussed.
Collapse
Affiliation(s)
- Tyus J. Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Julien H. Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Daniel J. Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| |
Collapse
|
23
|
Shockwaves Increase In Vitro Resilience of Rhizopus oryzae Biofilm under Amphotericin B Treatment. Int J Mol Sci 2022; 23:ijms23169226. [PMID: 36012494 PMCID: PMC9409157 DOI: 10.3390/ijms23169226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acoustical biophysical therapies, including ultrasound, radial pressure waves, and shockwaves, have been shown to harbor both a destructive and regenerative potential depending on physical treatment parameters. Despite the clinical relevance of fungal biofilms, little work exits comparing the efficacy of these modalities on the destruction of fungal biofilms. This study evaluates the impact of acoustical low-frequency ultrasound, radial pressure waves, and shockwaves on the viability and proliferation of in vitro Rhizopus oryzae biofilm under Amphotericin B induced apoptosis. In addition, the impact of a fibrin substrate in comparison with a traditional polystyrene well-plate one is explored. We found consistent, mechanically promoted increased Amphotericin B efficacy when treating the biofilm in conjunction with low frequency ultrasound and radial pressure waves. In contrast, shockwave induced effects of mechanotransduction results in a stronger resilience of the biofilm, which was evident by a marked increase in cellular viability, and was not observed in the other types of acoustical pressure waves. Our findings suggest that fungal biofilms not only provide another model for mechanistical investigations of the regenerative properties of shockwave therapies, but warrant future investigations into the clinical viability of the therapy.
Collapse
|
24
|
Smith M, Khan S, Curiel L. Investigation of hardware and software techniques to enhance the characteristics of focused ultrasound (FUS) spectra. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Microbubble cavitation generated by focused ultrasound (FUS) can induce safe blood-brain-barrier (BBB) opening allowing therapeutic drug passage. Spectral changes in the hydrophone sensor signal are currently used to distinguish stable cavitation from inertial cavitation that can damage the BBB. Gibbs’ ringing, peak intensity loss and peak width increase are well-known distortions evident when using the discrete Fourier transform (DFT) to transform data containing a few hundred points. We investigate overcoming the fact that FUS time signals (10 ms providing 312 500 points sampled at 32 ns intervals) can generate such sharp spectral peaks that variations in their DFT-related distortions can significantly impact the values of the key metrics used for cavitation characterization. Approach. We introduce low-pass filter hardware to improve how the analogue to digital convertor handles high-frequency noise components and the orders of magnitude differences between FUS harmonic intensities. We investigate the enhanced FUS spectral stability and resolution obtained from a new technique, physical sparsification (PH-SP), customized to the a-priori information that all key FUS components are harmonically related. Results are compared with standard DFT optimizations involving time data windowing and Fourier interpolation. Main results. A new simulation model showed peak intensity, widths and metrics modified by small changes in the transformed signal’s length when removing the noisy starting transient of the FUS hydrophone signal or following minor excitation frequency or sampling rate adjustments. 25%–60% area-under-the-curve changes occurred in phantom studies at different pressure levels. Spectral peak sharpness was best optimized and stabilized with PH-SP. Significance. Special FUS characteristics mean starting transients and minor variations in experimental procedures lead to significant changes in the spectral metrics used to monitor cavitation levels. Customizing PH-SP to these characteristics led to sharper, more stable spectra with the potential to track the impact of microbubble environment changes.
Collapse
|
25
|
Jung O, Thomas A, Burks SR, Dustin ML, Frank JA, Ferrer M, Stride E. Neuroinflammation associated with ultrasound-mediated permeabilization of the blood-brain barrier. Trends Neurosci 2022; 45:459-470. [PMID: 35461727 PMCID: PMC9117477 DOI: 10.1016/j.tins.2022.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022]
Abstract
The blood-brain barrier (BBB) continues to represent one of the most significant challenges for successful drug-based treatments of neurological disease. Mechanical modulation of the BBB using focused ultrasound (FUS) and microbubbles (MBs) has shown considerable promise in enhancing the delivery of therapeutics to the brain, but questions remain regarding possible long-term effects of such forced disruption. This review examines the evidence for inflammation associated with ultrasound-induced BBB disruption and potential strategies for managing such inflammatory effects to improve both the efficacy and safety of therapeutic ultrasound in neurological applications.
Collapse
Affiliation(s)
- Olive Jung
- Biomedical Ultrasonics, Biotherapy, and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, University of Oxford, Oxford, UK; 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Alec Thomas
- Biomedical Ultrasonics, Biotherapy, and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Scott R Burks
- The Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael L Dustin
- Nuffield Department of Orthopedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Joseph A Frank
- The Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Eleanor Stride
- Biomedical Ultrasonics, Biotherapy, and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| |
Collapse
|
26
|
Foglietta F, Canaparo R, Cossari S, Panzanelli P, Dosio F, Serpe L. Ultrasound Triggers Hypericin Activation Leading to Multifaceted Anticancer Activity. Pharmaceutics 2022; 14:1102. [PMID: 35631688 PMCID: PMC9146189 DOI: 10.3390/pharmaceutics14051102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
The use of ultrasound (US) in combination with a responsive chemical agent (sonosensitizer) can selectively trigger the agent's anticancer activity in a process called sonodynamic therapy (SDT). SDT shares some properties with photodynamic therapy (PDT), which has been clinically approved, but sets itself apart because of its use of US rather than light to achieve better tissue penetration. SDT provides anticancer effects mainly via the sonosensitizer-mediated generation of reactive oxygen species (ROS), although the precise nature of the underpinning mechanism is still under debate. This work investigates the SDT anticancer activity of hypericin (Hyp) in vitro in two- (2D) and three-dimensional (3D) HT-29 colon cancer models, and uses PDT as a yardstick due to its well-known Hyp phototoxicity. The cancer cell uptake and cellular localization of Hyp were investigated first to determine the proper noncytotoxic concentration and incubation time of Hyp for SDT. Furthermore, ROS production, cell proliferation, and cell death were evaluated after Hyp was exposed to US. Since cancer relapse and transporter-mediated multidrug resistance (MDR) are important causes of cancer treatment failure, the US-mediated ability of Hyp to elicit immunogenic cell death (ICD) and overcome MDR was also investigated. SDT showed strong ROS-mediated anticancer activity 48 h after treatment in both the HT-29 models. Specific damage-associated molecular patterns that are consistent with ICD, such as calreticulin (CRT) exposure and high-mobility group box 1 protein (HMGB1) release, were observed after SDT with Hyp. Moreover, the expression of the ABC transporter, P-glycoprotein (P-gp), in HT-29/MDR cells was not able to hinder cancer cell responsiveness to SDT with Hyp. This work reveals, for the first time, the US responsiveness of Hyp with significant anticancer activity being displayed, making it a full-fledged sonosensitizer for the SDT of cancer.
Collapse
Affiliation(s)
- Federica Foglietta
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Simone Cossari
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, 10125 Torino, Italy;
| | - Franco Dosio
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| |
Collapse
|
27
|
Field RD, Jakus MA, Chen X, Human K, Zhao X, Chitnis PV, Sia SK. Ultrasound-Responsive Aqueous Two-Phase Microcapsules for On-Demand Drug Release. Angew Chem Int Ed Engl 2022; 61:e202116515. [PMID: 35233907 DOI: 10.1002/anie.202116515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Traditional implanted drug delivery systems cannot easily change their release profile in real time to respond to physiological changes. Here we present a microfluidic aqueous two-phase system to generate microcapsules that can release drugs on demand as triggered by focused ultrasound (FUS). The biphasic microcapsules are made of hydrogels with an outer phase of mixed molecular weight (MW) poly(ethylene glycol) diacrylate that mitigates premature payload release and an inner phase of high MW dextran with payload that breaks down in response to FUS. Compound release from microcapsules could be triggered as desired; 0.4 μg of payload was released across 16 on-demand steps over days. We detected broadband acoustic signals amidst low heating, suggesting inertial cavitation as a key mechanism for payload release. Overall, FUS-responsive microcapsules are a biocompatible and wirelessly triggerable structure for on-demand drug delivery over days to weeks.
Collapse
Affiliation(s)
- Rachel D Field
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Margaret A Jakus
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kelia Human
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Parag V Chitnis
- Department of Bioengineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
28
|
Wu H, Zhou H, Zhang W, Jin P, Shi Q, Miao Z, Wang H, Zha Z. Three birds with one stone: co-encapsulation of diclofenac and DL-menthol for realizing enhanced energy deposition, glycolysis inhibition and anti-inflammation in HIFU surgery. J Nanobiotechnology 2022; 20:215. [PMID: 35524259 PMCID: PMC9074192 DOI: 10.1186/s12951-022-01437-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/25/2022] [Indexed: 01/12/2023] Open
Abstract
Despite attracting increasing attention in clinic, non-invasive high-intensity focused ultrasound (HIFU) surgery still commonly suffers from tumor recurrence and even matastasis due to the generation of thermo-resistance in non-apoptotic tumor cells and adverse therapy-induced inflammation with enhanced secretion of growth factors in irradiated region. In this work, inspired by the intrinsic property that the expression of thermo-resistant heat shock proteins (HSPs) is highly dependent with adenosine triphosphate (ATP), dual-functionalized diclofenac (DC) with anti-inflammation and glycolysis-inhibition abilities was successfully co-encapsulated with phase-change dl-menthol (DLM) in poly(lactic-co-glycolic acid) nanoparticles (DC/DLM@PLGA NPs) to realize improved HIFU surgery without causing adverse inflammation. Both in vitro and in vivo studies demonstrated the great potential of DC/DLM@PLGA NPs for serving as an efficient synergistic agent for HIFU surgery, which can not only amplify HIFU ablation efficacy through DLM vaporization-induced energy deposition but also simultaneously sensitize tumor cells to hyperthermia by glycolysis inhibition as well as diminished inflammation. Thus, our study provides an efficient strategy for simultaneously improving the curative efficiency and diminishing the harmful inflammatory responses of clinical HIFU surgery.
Collapse
Affiliation(s)
- Haitao Wu
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Hu Zhou
- Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, Guangdong, China
| | - Wenjie Zhang
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Ping Jin
- Shenzhen Maternity and Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen, 518028, Guangdong, China.
| | - Qianqian Shi
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Zhaohua Miao
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China
| | - Hua Wang
- Department of Oncology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Anhui, 230009, Hefei, China.
| |
Collapse
|
29
|
Kang Z, Yang M, Feng X, Liao H, Zhang Z, Du Y. Multifunctional Theranostic Nanoparticles for Enhanced Tumor Targeted Imaging and Synergistic FUS/Chemotherapy on Murine 4T1 Breast Cancer Cell. Int J Nanomedicine 2022; 17:2165-2187. [PMID: 35592098 PMCID: PMC9113557 DOI: 10.2147/ijn.s360161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Triple negative breast cancer (TNBC) is challenging for effective remission due to its very aggressive, extremely metastatic and resistant to conventional chemotherapy. Herein, a multifunctional theranostic nanoparticle was fabricated to enhance tumor targeted imaging and promote focused ultrasound (FUS) ablation and chemotherapy and sonodynamic therapy (SDT). A multi-modal synergistic therapy can improve the therapeutic efficacy and prognosis of TNBC. Methods AS1411 aptamer modified PEG@PLGA nanoparticles encapsulated with perfluorohexane (PFH) and anti-cancer drug doxorubicin (DOX) were constructed (AS1411-DOX/PFH-PEG@PLGA) to enhance tumor targeted imaging to guide ablation and synergistic effect of FUS/chemotherapy. FUS was utilized to trigger the co-release of doxorubicin and simultaneously PFH phase transition and activate DOX for SDT effect. The physicochemical, phase-changeable imaging capability, biosafety of nanoparticles and multi-mode synergistic effects on growth of TNBC were thoroughly evaluated in vivo and in vitro. Results The synthesized AS1411-DOX/PFH-PEG@PLGA (A-DPPs) nanoparticles are uniformly round with an average diameter of 306.03 ± 5.35 nm and the zeta potential of −4.05 ± 0.13 mV, displaying high biosafety and FUS-responsive drug release in vitro and in vivo. AS1411 modified NPs specifically bind to 4T1 cells and elevate the ultrasound contrast agent (UCA) image contrast intensity via PFH phase-transition after FUS exposure. Moreover, the combined treatment of A-DPPs nanoparticles with FUS exhibited significantly higher apoptosis rate, stronger inhibitory effect on 4T1 cell invasion in vitro, induced more reactive oxygen species (ROS), and enhanced anti-tumor effect compared to a single therapy (p < 0.05). Additionally, the joint strategy resulted in more intense cavitation effect and larger ablated areas and reduced energy efficiency factor (EEF) both in vitro and in vivo. Conclusion The multifunctional AS1411-DOX/PFH-PEG@PLGA nanoparticles can perform as a marvelous synergistic agent for enhanced FUS/chemotherapy, promote real-time contrast enhanced US imaging and improve the therapeutic efficacy and prognosis of TNBC.
Collapse
Affiliation(s)
- Zhengyue Kang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Min Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xiaoling Feng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Hongjian Liao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhifei Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yonghong Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Yonghong Du, State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People’s Republic of China, Tel/Fax +86-23-68485021, Email
| |
Collapse
|
30
|
Alphandéry E. Ultrasound and nanomaterial: an efficient pair to fight cancer. J Nanobiotechnology 2022; 20:139. [PMID: 35300712 PMCID: PMC8930287 DOI: 10.1186/s12951-022-01243-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/02/2022] [Indexed: 01/12/2023] Open
Abstract
Ultrasounds are often used in cancer treatment protocols, e.g. to collect tumor tissues in the right location using ultrasound-guided biopsy, to image the region of the tumor using more affordable and easier to use apparatus than MRI and CT, or to ablate tumor tissues using HIFU. The efficacy of these methods can be further improved by combining them with various nano-systems, thus enabling: (i) a better resolution of ultrasound imaging, allowing for example the visualization of angiogenic blood vessels, (ii) the specific tumor targeting of anti-tumor chemotherapeutic drugs or gases attached to or encapsulated in nano-systems and released in a controlled manner in the tumor under ultrasound application, (iii) tumor treatment at tumor site using more moderate heating temperatures than with HIFU. Furthermore, some nano-systems display adjustable sizes, i.e. nanobubbles can grow into micro-bubbles. Such dual size is advantageous since it enables gathering within the same unit the targeting properties of nano bubbles via EPR effect and the enhanced ultrasound contrasting properties of micro bubbles. Interestingly, the way in which nano-systems act against a tumor could in principle also be adjusted by accurately selecting the nano-system among a large choice and by tuning the values of the ultrasound parameters, which can lead, due to their mechanical nature, to specific effects such as cavitation that are usually not observed with purely electromagnetic waves and can potentially help destroying the tumor. This review highlights the clinical potential of these combined treatments that can improve the benefit/risk ratio of current cancer treatments.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS, 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de. Cosmochimie, IMPMC, 75005, Paris, France. .,Nanobacterie SARL, 36 boulevard Flandrin, 75116, Paris, France. .,Institute of Anatomy, UZH University of Zurich, Instiute of Anatomy, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
31
|
Field RD, Jakus MA, Chen X, Human K, Zhao X, Chitnis PV, Sia SK. Ultrasound‐Responsive Aqueous Two‐Phase Microcapsules for On‐Demand Drug Release. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rachel D. Field
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| | - Margaret A. Jakus
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| | - Xiaoyu Chen
- Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Kelia Human
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Parag V. Chitnis
- Department of Bioengineering George Mason University 4400 University Drive Fairfax VA 22030 USA
| | - Samuel K. Sia
- Department of Biomedical Engineering Columbia University 351 Engineering Terrace, 1210 Amsterdam Avenue New York NY 10027 USA
| |
Collapse
|
32
|
Xin Y, Zhang A, Xu LX, Fowlkes JB. Numerical Study of Bubble Cloud and Thermal Lesion Evolution During Acoustic Droplet Vaporization Enhanced HIFU Treatment. J Biomech Eng 2022; 144:1119457. [PMID: 34505142 DOI: 10.1115/1.4052374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/08/2022]
Abstract
Acoustic droplet vaporization (ADV) has been proven to enhance high intensity focused ultrasound (HIFU) thermal ablation of tumor. It has also been demonstrated that triggering droplets before HIFU exposure could be a potential way to control both the size and the shape of the thermal lesion. In this paper, a numerical model is proposed to predict the thermal lesion created in ADV enhanced HIFU treatment. Bubble oscillation was coupled into a viscoelastic medium in the model to more closely represent real applications in tissues. Several physical processes caused by continuous wave ultrasound and elevated temperature during the HIFU exposure were considered, including rectified diffusion, gas solubility variation with temperature in the medium, and boiling. Four droplet concentrations spanning two orders of magnitude were calculated. The bubble cloud formed from triggering of the droplets by the pulse wave ultrasound, along with the evolution of the shape and location of the bubble cloud and thermal lesion during the following continuous wave exposure was obtained. The increase of bubble void fraction caused by continuous wave exposure was found to be consistent with the experimental observation. With the increase of droplet concentration, the predicted bubble cloud shapes vary from tadpole to triangular and double triangular, while the thermal lesions move toward the transducer. The results show that the assumptions used in this model increased the accuracy of the results. This model may be used for parametrical study of ADV enhanced HIFU treatment and be further used for treatment planning and optimization in the future.
Collapse
Affiliation(s)
- Ying Xin
- School of Biomedical Engineering, Shanghai Jiao Tong University, 400 Med-X Research Institute, 1954 Huashan Road, Shanghai 200030, China
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 400 Med-X Research Institute, 1954 Huashan Road, Shanghai 200030, China
| | - Lisa X Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan Health System, 3226C, Medical Sciences Building I, 1301 Catherine Street, Ann Arbor, MI 48109
| |
Collapse
|
33
|
Zhang X, Li F, Wang C, Guo J, Mo R, Hu J, Chen S, He J, Liu H. Radial oscillation and translational motion of a gas bubble in a micro-cavity. ULTRASONICS SONOCHEMISTRY 2022; 84:105957. [PMID: 35203000 PMCID: PMC8866885 DOI: 10.1016/j.ultsonch.2022.105957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
According to classical nucleation theory, a gas nucleus can grow into a cavitation bubble when the ambient pressure is negative. Here, the growth process of a gas nucleus in a micro-cavity was simplified to two "events", and the full confinement effect of the surrounding medium of the cavity was considered by including the bulk modulus in the equation of state. The Rayleigh-Plesset-like equation of the cavitation bubble in the cavity was derived to model the radial oscillation and translational motion of the cavitation bubble in the local acoustic field. The numerical results show that the nucleation time of the cavitation bubble is sensitive to the initial position of the gas nucleus. The cavity size affects the duration of the radial oscillation of the cavitation bubble, where the duration is shorter for smaller cavities. The equilibrium radius of a cavitation bubble grown from a gas nucleus increases with increasing size of the cavity. There are two possible types of translational motion: reciprocal motion around the center of the cavity and motion toward the cavity wall. The growth process of gas nuclei into cavitation bubbles is also dependent on the compressibility of the surrounding medium and the magnitude of the negative pressure. Therefore, gas nuclei in a liquid cavity can be excited by acoustic waves to form cavitation bubbles, and the translational motion of the cavitation bubbles can be easily observed owing to the confining influence of the medium outside the cavity.
Collapse
Affiliation(s)
- Xianmei Zhang
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Fan Li
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Chenghui Wang
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China.
| | - Jianzhong Guo
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China.
| | - Runyang Mo
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Hu
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Shi Chen
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Jiaxin He
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Honghan Liu
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
34
|
Schoen S, Dash P, Arvanitis CD. Experimental Demonstration of Trans-Skull Volumetric Passive Acoustic Mapping With the Heterogeneous Angular Spectrum Approach. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:534-542. [PMID: 34748486 PMCID: PMC10243207 DOI: 10.1109/tuffc.2021.3125670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Real-time, 3-D, passive acoustic mapping (PAM) of microbubble dynamics during transcranial focused ultrasound (FUS) is essential for optimal treatment outcomes. The angular spectrum approach (ASA) potentially offers a very efficient method to perform PAM, as it can reconstruct specific frequency bands pertinent to microbubble dynamics and may be extended to correct aberrations caused by the skull. Here, we experimentally assess the abilities of heterogeneous ASA (HASA) to perform trans-skull PAM. Our experimental investigations demonstrate that the 3-D PAMs of a known 1-MHz source, constructed with HASA through an ex vivo human skull segment, reduced both the localization error (from 4.7 ± 2.3 to 2.3 ± 1.6 mm) and the number, size, and energy of spurious lobes caused by aberration, with the modest additional computational expense. While further improvements in the localization errors are expected with arrays with denser elements and larger aperture, our analysis revealed that experimental constraints associated with the array pitch and aperture (here, 1.8 mm and 2.5 cm, respectively) can be ameliorated by interpolation and peak finding techniques. Beyond the array characteristics, our analysis also indicated that errors in the registration (translation and rotation of ±5 mm and ±5°, respectively) of the skull segment to the array can lead to peak localization errors of the order of a few wavelengths. Interestingly, errors in the spatially dependent speed of sound in the skull (±20%) caused only subwavelength errors in the reconstructions, suggesting that registration is the most important determinant of point source localization accuracy. Collectively, our findings show that HASA can address source localization problems through the skull efficiently and accurately under realistic conditions, thereby creating unique opportunities for imaging and controlling the microbubble dynamics in the brain.
Collapse
|
35
|
Wegierak D, Fishbein G, Abenojar E, De Leon A, Zhu J, Wang Y, Ferworn C, Exner AA, Kolios MC. Effects of shell-integrated Sudan Black dye on the acoustic activity and ultrasound imaging properties of lipid-shelled nanoscale ultrasound contrast agents. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:016501. [PMID: 35064656 PMCID: PMC8781525 DOI: 10.1117/1.jbo.27.1.016501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE An effective contrast agent for concurrent multimodal photoacoustic (PA) and ultrasound (US) imaging must have both high optical absorption and high echogenicity. Integrating a highly absorbing dye into the lipid shell of gas core nanobubbles (NBs) adds PA contrast to existing US contrast agents but may impact agent ultrasonic response. AIM We report on the development and ultrasonic characterization of lipid-shell stabilized C3F8 NBs with integrated Sudan Black (SB) B dye in the shell as dual-modal PA-US contrast agents. APPROACH Perfluoropropane NBs stabilized with a lipid shell including increasing concentrations of SB B dye were formulated by amalgamation (SBNBs). Physical properties of SBNBs were characterized using resonant mass measurement, transmission electron microscopy and pendant drop tensiometry. Concentrated bubble solutions were imaged for 8 min to assess signal decay. Diluted bubble solutions were stimulated by a focused transducer to determine the response of individual NBs to long cycle (30 cycle) US. For assessment of simultaneous multimodal contrast, bulk populations of SBNBs were imaged using a PA and US imaging platform. RESULTS We produced high agent yield (∼1011) with a mean diameter of ∼200 to 300 nm depending on SB loading. A 40% decrease in bubble yield was measured for solutions with 0.3 and 0.4 mg / ml SB. The addition of SB to the shell did not substantially affect NB size despite an increase in surface tension by up to 8 mN / m. The bubble decay rate increased after prolonged exposure (8 min) by dyed bubbles in comparison to their undyed counterparts (2.5-fold). SB in bubble shells increased gas exchange across the shell for long cycle US. PA imaging of these agents showed an increase in power (up to 10 dB) with increasing dye. CONCLUSIONS We added PA contrast function to NBs. The addition of SB increased gas exchange across the NB shell. This has important implications in their use as multimodal agents.
Collapse
Affiliation(s)
- Dana Wegierak
- Ryerson University, Faculty of Science, Department of Physics, Toronto, Canada
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, United States
| | - Grace Fishbein
- Ryerson University, Faculty of Science, Department of Physics, Toronto, Canada
| | - Eric Abenojar
- Case Western Reserve University, Department of Radiology, Cleveland, United States
| | - Al De Leon
- Case Western Reserve University, Department of Radiology, Cleveland, United States
| | - Jinle Zhu
- Case Western Reserve University, Department of Radiology, Cleveland, United States
| | - Yanjie Wang
- Ryerson University, Faculty of Science, Department of Physics, Toronto, Canada
| | - Charlotte Ferworn
- Ryerson University, Faculty of Science, Department of Physics, Toronto, Canada
| | - Agata A. Exner
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, United States
- Case Western Reserve University, Department of Radiology, Cleveland, United States
| | - Michael C. Kolios
- Ryerson University, Faculty of Science, Department of Physics, Toronto, Canada
| |
Collapse
|
36
|
Jiang Z, Sujarittam K, Yildiz BI, Dickinson RJ, Choi JJ. Passive Cavitation Detection With a Needle Hydrophone Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:233-240. [PMID: 34648439 DOI: 10.1109/tuffc.2021.3120263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Therapeutic ultrasound and microbubble technologies seek to drive systemically administered microbubbles into oscillations that safely manipulate tissue or release drugs. Such procedures often detect the unique acoustic emissions from microbubbles with the intention of using this feedback to control the microbubble activity. However, most sensor systems reported introduce distortions to the acoustic signal. Acoustic shockwaves, a key emission from microbubbles, are largely absent in reported recording, possibly due to the sensors being too large or too narrowband, or having strong phase distortions. Here, we built a sensor array that countered such limitations with small, broadband sensors and a low-phase distorting material. We built eight needle hydrophones with polyvinylidene fluoride (PVDF, diameter: 2 mm) then fit them into a 3-D-printed scaffold in a two-layered, staggered arrangement. Using this array, we monitored microbubbles exposed to therapeutically relevant ultrasound pulses (center frequency: 0.5 MHz, peak-rarefactional pressure: 130-597 kPa, pulselength: four cycles). Our tests revealed that the hydrophones were broadband with the best having a sensitivity of -224.8 dB ± 3.2 dB re 1 V/ μ Pa from 1 to 15 MHz. The array was able to capture shockwaves generated by microbubbles. The signal-to-noise ratio (SNR) of the array was approximately two times higher than individual hydrophones. Also, the array could localize microbubbles (-3 dB lateral resolution: 2.37 mm) and determine the cavitation threshold (between 161 and 254 kPa). Thus, the array accurately monitored and localized microbubble activities, and may be an important technological step toward better feedback control methods and safer and more effective treatments.
Collapse
|
37
|
Durham PG, Dayton PA. Applications of sub-micron low-boiling point phase change contrast agents for ultrasound imaging and therapy. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Chen J, Nan Z, Zhao Y, Zhang L, Zhu H, Wu D, Zong Y, Lu M, Ilovitsh T, Wan M, Yan K, Feng Y. Enhanced HIFU Theranostics with Dual-Frequency-Ring Focused Ultrasound and Activatable Perfluoropentane-Loaded Polymer Nanoparticles. MICROMACHINES 2021; 12:mi12111324. [PMID: 34832737 PMCID: PMC8621746 DOI: 10.3390/mi12111324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
High-intensity focused ultrasound (HIFU) has been widely used in tumor ablation in clinical settings. Meanwhile, there is great potential to increase the therapeutic efficiency of temporary cavitation due to enhanced thermal effects and combined mechanical effects from nonlinear vibration and collapse of the microbubbles. In this study, dual-frequency (1.1 and 5 MHz) HIFU was used to produce acoustic droplet vaporization (ADV) microbubbles from activatable perfluoropentane-loaded polymer nanoparticles (PFP@Polymer NPs), which increased the therapeutic outcome of the HIFU and helped realize tumor theranostics with ultrasound contrast imaging. Combined with PFP@Polymer NPs, dual-frequency HIFU changed the shape of the damage lesion and reduced the acoustic intensity threshold of thermal damage significantly, from 216.86 to 62.38 W/cm2. It produced a nearly 20 °C temperature increase in half the irradiation time and exhibited a higher tumor inhibition rate (84.5% ± 3.4%) at a low acoustic intensity (1.1 MHz: 23.77 W/cm2; 5 MHz: 0.35 W/cm2) in vitro than the single-frequency HIFU (60.2% ± 11.9%). Moreover, compared with the traditional PFP@BSA NDs, PFP@Polymer NPs showed higher anti-tumor efficacy (81.13% vs. 69.34%; * p < 0.05) and better contrast-enhanced ultrasound (CEUS) imaging ability (gray value of 57.53 vs. 30.67; **** p < 0.0001), probably benefitting from its uniform and stable structure. It showed potential as a highly efficient tumor theranostics approach based on dual-frequency HIFU and activatable PFP@Polymer NPs.
Collapse
Affiliation(s)
- Junjie Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi′an Jiaotong University, Xi′an 710049, China; (J.C.); (Z.N.); (Y.Z.); (L.Z.); (H.Z.); (D.W.); (Y.Z.); (M.L.); (M.W.)
| | - Zhezhu Nan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi′an Jiaotong University, Xi′an 710049, China; (J.C.); (Z.N.); (Y.Z.); (L.Z.); (H.Z.); (D.W.); (Y.Z.); (M.L.); (M.W.)
| | - Yubo Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi′an Jiaotong University, Xi′an 710049, China; (J.C.); (Z.N.); (Y.Z.); (L.Z.); (H.Z.); (D.W.); (Y.Z.); (M.L.); (M.W.)
| | - Lei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi′an Jiaotong University, Xi′an 710049, China; (J.C.); (Z.N.); (Y.Z.); (L.Z.); (H.Z.); (D.W.); (Y.Z.); (M.L.); (M.W.)
| | - Hongrui Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi′an Jiaotong University, Xi′an 710049, China; (J.C.); (Z.N.); (Y.Z.); (L.Z.); (H.Z.); (D.W.); (Y.Z.); (M.L.); (M.W.)
| | - Daocheng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi′an Jiaotong University, Xi′an 710049, China; (J.C.); (Z.N.); (Y.Z.); (L.Z.); (H.Z.); (D.W.); (Y.Z.); (M.L.); (M.W.)
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi′an Jiaotong University, Xi′an 710049, China; (J.C.); (Z.N.); (Y.Z.); (L.Z.); (H.Z.); (D.W.); (Y.Z.); (M.L.); (M.W.)
| | - Mingzhu Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi′an Jiaotong University, Xi′an 710049, China; (J.C.); (Z.N.); (Y.Z.); (L.Z.); (H.Z.); (D.W.); (Y.Z.); (M.L.); (M.W.)
| | - Tali Ilovitsh
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi′an Jiaotong University, Xi′an 710049, China; (J.C.); (Z.N.); (Y.Z.); (L.Z.); (H.Z.); (D.W.); (Y.Z.); (M.L.); (M.W.)
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Correspondence: (K.Y.); (Y.F.)
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi′an Jiaotong University, Xi′an 710049, China; (J.C.); (Z.N.); (Y.Z.); (L.Z.); (H.Z.); (D.W.); (Y.Z.); (M.L.); (M.W.)
- Correspondence: (K.Y.); (Y.F.)
| |
Collapse
|
39
|
Sang PG, Biswas D, Lee SJ, Won SM, Son D, Ok JG, Park HJ, Baac HW. Experimental Demonstration of a Stacked Hybrid Optoacoustic-Piezoelectric Transducer for Localized Heating and Enhanced Cavitation. MICROMACHINES 2021; 12:mi12101268. [PMID: 34683319 PMCID: PMC8540735 DOI: 10.3390/mi12101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Laser-generated focused ultrasound (LGFU) is an emerging modality for cavitation-based therapy. However, focal pressure amplitudes by LGFU alone to achieve pulsed cavitation are often lacking as a treatment depth increases. This requires a higher pressure from a transmitter surface and more laser energies that even approach to a damage threshold of transmitter. To mitigate the requirement for LGFU-induced cavitation, we propose LGFU configurations with a locally heated focal zone using an additional high-intensity focused ultrasound (HIFU) transmitter. After confirming heat-induced cavitation enhancement using two separate transmitters, we then developed a stacked hybrid optoacoustic-piezoelectric transmitter, which is a unique configuration made by coating an optoacoustic layer directly onto a piezoelectric substrate. This shared curvature design has great practical advantage without requiring the complex alignment of two focal zones. Moreover, this enabled the amplification of cavitation bubble density by 18.5-fold compared to the LGFU operation alone. Finally, the feasibility of tissue fragmentation was confirmed through a tissue-mimicking gel, using the combination of LGFU and HIFU (not via a stacked structure). We expect that the stacked transmitter can be effectively used for stronger and faster tissue fragmentation than the LGFU transmitter alone.
Collapse
Affiliation(s)
- Pil Gyu Sang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Deblina Biswas
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Seung Jin Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Jong G. Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Hui Joon Park
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Korea;
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
- Correspondence:
| |
Collapse
|
40
|
He M, Zhong Z, Zeng D, Gong X, Wang Z, Li F. Effects of sub-atmospheric pressure and dissolved oxygen concentration on lesions generated in ex vivo tissues by high intensity focused ultrasound. Biomed Eng Online 2021; 20:91. [PMID: 34526014 PMCID: PMC8442382 DOI: 10.1186/s12938-021-00926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 08/28/2021] [Indexed: 11/12/2022] Open
Abstract
Background Acoustic cavitation plays an important role in the medical treatment using high-intensity focused ultrasound (HIFU), but unnecessarily strong cavitation also could deform the morphology and enlarge the size of lesions. It is known that the increase of ambient hydrostatic pressure (Pstat) can control the acoustic cavitation. But the question of how the decrease of Pstat and dissolved oxygen concentration (DOC) influence the strength of cavitation has not been thoroughly answered. In this study, we aimed to investigate the relationship among the Pstat, DOC and the strength of cavitation. Methods Ex vivo bovine liver tissues were immersed in degassed water with different DOC of 1.0 mg/L, 1.5 mg/L and 2.0 mg/L. Ultrasound (US) of 1 MHz and the spatial and temporal average intensity (Isata) of 6500 W/cm2 was used to expose two groups of in vitro bovine livers for 2 s; one group was under atmospheric pressure (Pstat = 1 bar) and the other was under sub-atmospheric pressure (Pstat = 0.1 bar). Acoustic cavitation was detected by a passive cavitation detector (PCD) during the exposure process. Echo signals at the focal zone of HIFU were monitored by B-mode ultrasound imaging before and after exposure. The difference between two pressure groups was tested using paired sample t-test. The difference among different DOC groups was evaluated by one-way analysis of variance (ANOVA). Results The results demonstrated a significant difference of broadband acoustic emissions from the cavitation bubbles, echo signals on B-mode image, morphology of lesions under various conditions of ambient pressure and DOC. The lesion volume in tissue was increased with the increase of ambient pressure and DOC. Conclusion Cavitation could be suppressed through sub-atmospheric pressure and low DOC level in liver tissue, which could provide a method of controlling cavitation in HIFU treatment to avoid unpredictable lesions.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiqiang Zhong
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Deping Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaobo Gong
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, People's Republic of China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Faqi Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
41
|
Vu T, Tang Y, Li M, Sankin G, Tang S, Chen S, Zhong P, Yao J. Photoacoustic computed tomography of mechanical HIFU-induced vascular injury. BIOMEDICAL OPTICS EXPRESS 2021; 12:5489-5498. [PMID: 34692196 PMCID: PMC8515986 DOI: 10.1364/boe.426660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Mechanical high-intensity focused ultrasound (HIFU) has been used for cancer treatment and drug delivery. Existing monitoring methods for mechanical HIFU therapies such as MRI and ultrasound imaging often suffer from high cost, poor spatial-temporal resolution, and/or low sensitivity to tissue's hemodynamic changes. Evaluating vascular injury during mechanical HIFU treatment, therefore, remains challenging. Photoacoustic computed tomography (PACT) is a promising tool to meet this need. Intrinsically sensitive to optical absorption, PACT provides high-resolution imaging of blood vessels using hemoglobin as the endogenous contrast. In this study, we have developed an integrated HIFU-PACT system for detecting vascular rupture in mechanical HIFU treatment. We have demonstrated singular value decomposition for enhancing hemorrhage detection. We have validated the HIFU-PACT performance on phantoms and in vivo animal tumor models. We expect that PACT-HIFU will find practical applications in oncology research using small animal models.
Collapse
Affiliation(s)
- Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yuqi Tang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Mucong Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Georgii Sankin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Pei Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
42
|
Exner AA, Kolios MC. Bursting Microbubbles: How Nanobubble Contrast Agents Can Enable the Future of Medical Ultrasound Molecular Imaging and Image-Guided Therapy. Curr Opin Colloid Interface Sci 2021; 54:101463. [PMID: 34393610 PMCID: PMC8356903 DOI: 10.1016/j.cocis.2021.101463] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of medical ultrasound has undergone a significant evolution since the development of microbubbles as contrast agents. However, due to their size, microbubbles remain in the vasculature, and therefore have limited clinical applications. Building a better - and smaller - bubble can expand the applications of contrast-enhanced ultrasound by allowing bubbles to extravasate from blood vessels - creating new opportunities. In this review, we summarize recent research on the formulation and use of NBs as imaging agents and as therapeutic vehicles. We discuss the ongoing debates in the field and reluctance to accepting NBs as an acoustically active construct and a potentially impactful clinical tool that can help shape the future of medical ultrasound. We hope that the overview of key experimental and theoretical findings in the NB field presented in this paper provides a fundamental framework that will help clarify NB-ultrasound interactions and inspire engagement in the field.
Collapse
Affiliation(s)
- Agata A. Exner
- Departments of Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
43
|
Blais S, Porée J, Ramos-Palacios G, Desmarais S, Perrot V, Sadikot A, Provost J. Equivalent time active cavitation imaging. Phys Med Biol 2021; 66. [PMID: 34320473 DOI: 10.1088/1361-6560/ac1877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022]
Abstract
RATIONALE Despite the development of a large number of neurologically active drugs, brain diseases are difficult to treat due to the inability of many drugs to penetrate the blood-brain barrier. High-intensity focused ultrasound blood-brain barrier opening in a site-specific manner could significantly expand the spectrum of available drug treatments. However, without monitoring, brain damage and off target effects can occur during these treatments. While some methods can monitor inertial cavitation, temperature increase, or passively monitor cavitation events, to the best of our knowledge none of them can actively and spatiotemporally map the high intensity focused ultrasound pressure field during treatment. METHODS Here we detail the development of a novel ultrasound imaging modality called Equivalent Time Active Cavitation Imaging capable of characterizing the high-intensity focused ultrasound pressure field through stable cavitation events across the field of view with an ultrafast active imaging setup. This work introduces 1) a novel plane wave sequence whose transmit delays increase linearly with transmit events enabling the sampling of high-frequency cavitation events, and 2) an algorithm allowing the filtration of the microbubble signal for pressure field mapping. The pressure measurements with our modality were first carried out in vitro for hydrophone comparison and then in vivo during blood-brain barrier opening treatment in mice. RESULTS This study demonstrates the ability of our modality to spatiotemporally characterize a modulation pressure field with an active imaging setup. The resulting pressure field mapping reveals a good correlation with hydrophone measurements. Further proof is provided experimentally in vivo with promising results. CONCLUSION This proof of concept establishes the first steps towards a novel ultrasound modality for monitoring focused ultrasound blood-brain barrier opening, allowing new possibilities for a safe and precise monitoring method.
Collapse
Affiliation(s)
- Simon Blais
- Engineering Physics Department, Polytechnique Montréal, Montreal, Quebec, CANADA
| | - Jonathan Porée
- Engineering Physics Department, Polytechnique Montreal, Montreal, Quebec, CANADA
| | | | - Samuel Desmarais
- Engineering Physics Department, Montreal Polytechnic, Montreal, Quebec, CANADA
| | - Vincent Perrot
- Engineering Physics Department, Polytechnique Montréal, Montreal, Quebec, CANADA
| | - Abbas Sadikot
- Montreal Neurological Institute and Hospital, Montreal, Quebec, CANADA
| | - Jean Provost
- 1 Engineering Physics Department, Polytechnique Montreal, Montreal, Quebec, CANADA
| |
Collapse
|
44
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Wang S, Li BH, Wang JJ, Guo YS, Cheng JM, Ye H, Zang CY, Zhang Y, Duan H, Zhang XY. The safety of echo contrast-enhanced ultrasound in high-intensity focused ultrasound ablation for abdominal wall endometriosis: a retrospective study. Quant Imaging Med Surg 2021; 11:1751-1762. [PMID: 33936962 DOI: 10.21037/qims-20-622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background We aimed to investigate the efficacy and safety of echo contrast-enhanced ultrasound (CEUS) during high-intensity focused ultrasound (HIFU) ablation therapy for abdominal wall endometriosis (AWE). Methods A total of 67 patients with AWE were treated with HIFU ablation, and their demographic characteristics were retrospectively analysed. Blood perfusion of the focal lesion was assessed before the operation, during ablation and after the operation with the use of an ultrasound contrast agent, and the effect of the ultrasound contrast agent on treatment was assessed over a 1-year follow-up period. The degree of symptom relief and adverse effects were evaluated after HIFU ablation. Results Eighty-two lesions were ablated in 67 patients. CEUS showed that all lesions were successfully ablated with HIFU. The shrinkage ratio of the lesions significantly increased over the follow-up period. Intermittent pain disappeared at 1 month after the operation, and the patients' pain scores significantly decreased at the 1-year follow-up. The mean [± standard deviation (SD)] lesion volume was 7.64±8.95 cm3 on B-mode ultrasound. The post-HIFU non-perfused volume was 18.34±24.08 cm3, and the rate of massive changes on greyscale imaging was 96.16%±5.44% at 12 months. During the procedure, the main complications were a prickling sensation and tenderness in the treatment area and/or a transient "hot" sensation on the skin. After the procedure, there was no obvious discomfort except for pain. Two patients developed an approximately 1-cm area of skin that exhibited a waxy appearance. Seven patients had haematuria. No severe complications were observed. Conclusions Ultrasound contrast agents are effective and safe for evaluating the effect of HIFU ablation on AWE, and this approach provides significant guidance and evaluation benefits for the use of HIFU treatment for AWE without obvious side effects.
Collapse
Affiliation(s)
- Sha Wang
- Department of Gynecologic Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Bo-Han Li
- Department of Gynecologic Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jin-Juan Wang
- Department of Gynecologic Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ying-Shu Guo
- Department of Gynecologic Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jiu-Mei Cheng
- Department of Gynecologic Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hong Ye
- Department of Gynecologic Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Chun-Yi Zang
- Department of Gynecologic Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Gynecologic Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hua Duan
- Department of Gynecologic Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ying Zhang
- Department of Gynecologic Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Lafon C, Moore D, Eames MDC, Snell J, Drainville RA, Padilla F. Evaluation of Pseudorandom Sonications for Reducing Cavitation With a Clinical Neurosurgery HIFU Device. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1224-1233. [PMID: 33166253 DOI: 10.1109/tuffc.2020.3036774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transcranial high-intensity focused ultrasound is used in clinics for treating essential tremor (ET) and proposed for many other brain disorders. This promising treatment modality requires high energy resulting eventually in undesired cavitation and potential side effects. The goals of the present work were: 1) to evaluate the potential increase of the cavitation threshold using pseudorandom gated sonications and 2) to assess the heating capabilities with such sonications. The experiments were performed with the transcranial magnetic resonance (MR)-compatible ExAblate Neuro system (InSightec, Haifa, Israel) operating at a frequency of 670 kHz, either in continuous wave (CW) or with pseudorandom gated sonications of 50% duty cycle. Cavitation activity with the two types of sonications was compared using chemical dosimetry of hydroxyl radical production at the focus of the transducer, after propagation in water or through a human skull. Heating trials were performed in a hydrogel tissue-mimicking material embedded in a human skull to mimic a clinical situation. The temperature was measured by MR-thermometry when focusing at the geometrical focus and steering off focus up to 15 mm. Compared with CW sonications, the use of gated sonication did not affect the efficiency (60%) nor the steering abilities of the transducer. After propagation through a human skull, gated sonication required a higher pressure level (10 MPa) to initiate cavitation as compared with CW (5.8 MPa). Moreover, at equivalent acoustic power above the cavitation threshold, the level of cavitation activity initiated with gated sonications was much lower with gated sonication than with continuous sonications, almost half after propagation through water and one-third after propagation through a skull. This lowered cavitation activity may be attributed to a breaking of the dynamic of the bubbles moving from monochromatic to more broadband sonications and to the removal of residual cavitation nuclei between pulses with gated sonications. The heating capability was not affected by the gated sonications, and similar temperature increases were reached at focus with both types of sonications when sonicating at equivalent acoustic power, both in water or after propagation through a human skull (+15 °C at 325 W for 10 s). These data, acquired with a clinical system, suggest that gated sonication could be an alternative to continuous sonications when cavitation onset is an issue.
Collapse
|
47
|
Li Y, Tan C, Yan B, Han T, Yu ACH, Qin P. Evaluation of the properties of daughter bubbles generated by inertial cavitation of preformed microbubbles. ULTRASONICS SONOCHEMISTRY 2021; 72:105400. [PMID: 33341072 PMCID: PMC7803680 DOI: 10.1016/j.ultsonch.2020.105400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/09/2020] [Accepted: 11/07/2020] [Indexed: 05/28/2023]
Abstract
Inertial cavitation (IC) of the preformed microbubbles is being investigated for ultrasound imaging and therapeutic applications. However, microbubbles rupture during IC, creating smaller daughter bubbles (DBs), which may cause undesired bioeffects in the target region. Thus, it is important to determine the properties of DBs to achieve controllable cavitation activity for applications. In this study, we theoretically calculated the dissolution dynamics of sulfur hexafluoride bubbles. Then, we applied a 1-MHz single tone burst with different peak negative pressures (PNPs) and pulse lengths (PLs), and multiple 5-MHz tone bursts with fixed acoustic conditions to elicit IC of the preformed SonoVue microbubbles and scattering of DBs, respectively. After the IC and scattering signals were received by a 7.5-MHz transducer, time- and frequency-domain analysis was performed to obtain the IC dose and scattering intensity curve. The theoretical dissolution curves and measured scattering intensity curves were combined to determine the effect of the incident pulse parameters on the lifetime, mean radius and distribution range of DBs. Increased PNP reduced the lifetime and mean size of the DBs population and narrowed the size distribution. The proportion of small DBs (less than resonance size) increased from 36.83% to 85.98% with an increase in the PNP from 0.6 to 1.6 MPa. Moreover, increased PL caused a shift of the DB population to the smaller bubbles with shorter lifetime and narrower distribution. The proportion of small bubbles increased from 25.74% to 95.08% as the PL was increased from 5 to 100 µs. Finally, increased IC dose caused a smaller mean size, shorter lifetime and narrower distribution in the DB population. These results provide new insight into the relationship between the incident acoustic parameters and the properties of DBs, and a feasible strategy for achieving controllable cavitation activity in applications.
Collapse
Affiliation(s)
- Yanglin Li
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunjie Tan
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Yan
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Han
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, Waterloo, ON N2L3G1, Canada
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
48
|
Abstract
Acoustic cavitation has been widely explored for both diagnostic and therapeutic purposes. Ultrasound-induced cavitation, including inertial cavitation and non-inertial cavitation, can cause microstreaming, microjet, and free radical formation. The acoustic cavitation effects on endothelial cells have been studied for drug delivery, gene therapy, and cancer therapy. Studies have demonstrated that the ultrasound-induced cavitation effect can treat cancer, ischaemia, diabetes, and cardiovascular diseases. In this minireview, we will review the impact of ultrasound-induced cavitation on the endothelial cells such as cell permeability, cell proliferation, gene expression regulation, cell viability, hemostasis interaction, oxygenation, and variation in the level of calcium ions, ceramide, nitric oxide (NO) and nitric oxide synthase (NOS) activity. The applications of these effects and the cavitation mechanism involved will be summarized, demonstrating the important role of acoustic cavitation in non-invasive ultrasound treatment of various physiological conditions.
Collapse
Affiliation(s)
| | - Xinmai Yang
- Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
49
|
Grundy M, Bau L, Hill C, Paverd C, Mannaris C, Kwan J, Crake C, Coviello C, Coussios C, Carlisle R. Improved therapeutic antibody delivery to xenograft tumors using cavitation nucleated by gas-entrapping nanoparticles. Nanomedicine (Lond) 2021; 16:37-50. [PMID: 33426913 DOI: 10.2217/nnm-2020-0263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aims: Testing ultrasound-mediated cavitation for enhanced delivery of the therapeutic antibody cetuximab to tumors in a mouse model. Methods: Tumors with strong EGF receptor expression were grown bilaterally. Cetuximab was coadministered intravenously with cavitation nuclei, consisting of either the ultrasound contrast agent Sonovue or gas-stabilizing nanoscale SonoTran Particles. One of the two tumors was exposed to focused ultrasound. Passive acoustic mapping localized and monitored cavitation activity. Both tumors were then excised and cetuximab concentration was quantified. Results: Cavitation increased tumoral cetuximab concentration. When nucleated by Sonovue, a 2.1-fold increase (95% CI 1.3- to 3.4-fold) was measured, whereas SonoTran Particles gave a 3.6-fold increase (95% CI 2.3- to 5.8-fold). Conclusions: Ultrasound-mediated cavitation, especially when nucleated by nanoscale gas-entrapping particles, can noninvasively increase site-specific delivery of therapeutic antibodies to solid tumors.
Collapse
Affiliation(s)
- Megan Grundy
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Luca Bau
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Claudia Hill
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Catherine Paverd
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Christophoros Mannaris
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - James Kwan
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Calum Crake
- OxSonics Therapeutics, Oxford Science Park, Oxford OX4 4GA, UK
| | | | - Constantin Coussios
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | - Robert Carlisle
- Department of Engineering Science, Biomedical Ultrasonics, Biotherapy and Biopharmaceuticals Laboratory (BUBBL), Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
50
|
Current Practice of Percutaneous Ablation Technologies for Thyroid Nodules 2020. CURRENT OTORHINOLARYNGOLOGY REPORTS 2021. [DOI: 10.1007/s40136-020-00323-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|