1
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
2
|
Lorton O, Guillemin PC, Peloso A, M’Rad Y, Crowe LA, Koessler T, Poletti PA, Boudabbous S, Ricoeur A, Salomir R. In Vivo Thermal Ablation of Deep Intrahepatic Targets Using a Super-Convergent MRgHIFU Applicator and a Pseudo-Tumor Model. Cancers (Basel) 2023; 15:3961. [PMID: 37568777 PMCID: PMC10417404 DOI: 10.3390/cancers15153961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND HIFU ablation of liver malignancies is particularly challenging due to respiratory motion, high tissue perfusion and the presence of the rib cage. Based on our previous development of a super-convergent phased-array transducer, we aimed to further investigate, in vivo, its applicability to deep intrahepatic targets. METHODS In a series of six pigs, a pseudo-tumor model was used as target, visible both on intra-operatory MRI and post-mortem gross pathology. The transcostal MRgHIFU ablation was prescribed coplanar with the pseudo-tumor, either axial or sagittal, but deliberately shifted 7 to 18 mm to the side. No specific means of protection of the ribs were implemented. Post-treatment MRI follow-up was performed at D7, followed by animal necropsy and gross pathology of the liver. RESULTS The pseudo-tumor was clearly identified on T1w MR imaging and subsequently allowed the MRgHIFU planning. The peak temperature at the focal point ranged from 58-87 °C. Gross pathology confirmed the presence of the pseudo-tumor and the well-delineated MRgHIFU ablation at the expected locations. CONCLUSIONS The specific design of the transducer enabled a reliable workflow. It demonstrated a good safety profile for in vivo transcostal MRgHIFU ablation of deep-liver targets, graded as challenging for standard surgery.
Collapse
Affiliation(s)
- Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pauline Coralie Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Yacine M’Rad
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | | | - Thibaud Koessler
- Oncology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | | | - Sana Boudabbous
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Alexis Ricoeur
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Hughes A, Khan DS, Alkins R. Current and Emerging Systems for Focused Ultrasound-Mediated Blood-Brain Barrier Opening. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1479-1490. [PMID: 37100672 DOI: 10.1016/j.ultrasmedbio.2023.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/09/2023] [Accepted: 02/23/2023] [Indexed: 05/17/2023]
Abstract
With an ever-growing list of neurological applications of focused ultrasound (FUS), there has been a consequent increase in the variety of systems for delivering ultrasound energy to the brain. Specifically, recent successful pilot clinical trials of blood-brain barrier (BBB) opening with FUS have generated substantial interest in the future applications of this relatively novel therapy, with divergent, purpose-built technologies emerging. With many of these technologies at various stages of pre-clinical and clinical investigation, this article seeks to provide an overview and analysis of the numerous medical devices in active use and under development for FUS-mediated BBB opening.
Collapse
Affiliation(s)
- Alec Hughes
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Dure S Khan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada; Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
4
|
Barzegar-Fallah A, Gandhi K, Rizwan SB, Slatter TL, Reynolds JNJ. Harnessing Ultrasound for Targeting Drug Delivery to the Brain and Breaching the Blood–Brain Tumour Barrier. Pharmaceutics 2022; 14:pharmaceutics14102231. [PMID: 36297666 PMCID: PMC9607160 DOI: 10.3390/pharmaceutics14102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Despite significant advances in developing drugs to treat brain tumours, achieving therapeutic concentrations of the drug at the tumour site remains a major challenge due to the presence of the blood–brain barrier (BBB). Several strategies have evolved to enhance brain delivery of chemotherapeutic agents to treat tumours; however, most approaches have several limitations which hinder their clinical utility. Promising studies indicate that ultrasound can penetrate the skull to target specific brain regions and transiently open the BBB, safely and reversibly, with a high degree of spatial and temporal specificity. In this review, we initially describe the basics of therapeutic ultrasound, then detail ultrasound-based drug delivery strategies to the brain and the mechanisms by which ultrasound can improve brain tumour therapy. We review pre-clinical and clinical findings from ultrasound-mediated BBB opening and drug delivery studies and outline current therapeutic ultrasound devices and technologies designed for this purpose.
Collapse
Affiliation(s)
- Anita Barzegar-Fallah
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Kushan Gandhi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Shakila B. Rizwan
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Tania L. Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John N. J. Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-5781; Fax: +64-3-479-7254
| |
Collapse
|
5
|
Portilla Tuesta G, Montero de Espinosa F. System and method for applying physiotherapeutic focused ultrasound. ULTRASONICS 2022; 121:106693. [PMID: 35093669 DOI: 10.1016/j.ultras.2022.106693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Despite many years of clinical use of ultrasound, the results of different reviews of controlled trials on the efficacy of ultrasound physical therapy for different musculoskeletal injuries continue to question its efficacy. However, "in vitro" experiments with well-controlled cell cultures and experiments with animal models show positive results. The question is whether the commercial systems used by physiotherapists can deliver the required ultrasonic dose to the exact location on the body. The object of this work is the design, realization and testing of a new concept of ultrasound system for Physiotherapy capable of focusing the ultrasound beam to apply the required ultrasonic energy dose at the point targeted by the physiotherapist. The system is designed for non-thermal effects Physiotherapy. The system consists of conceptually new piezocomposite arrays with a metallic delay line, multi-pulser electronics for emission focusing, parallel robots for mechanical steering and positioning of the array transducers, and linear and angular encoders to allow the physiotherapist to direct the focus to the target. The multi-pulser and parallel robot angulation are controlled by the computer, using a graphical interface software.
Collapse
Affiliation(s)
- G Portilla Tuesta
- ITEFI-CSIC, Spanish High Research Council, Serrano 144, Madrid, Spain
| | | |
Collapse
|
6
|
Cilleros C, Dupré A, Chen Y, Vincenot J, Rivoire M, Melodelima D. Intraoperative HIFU Ablation of the Pancreas Using a Toroidal Transducer in a Porcine Model. The First Step towards a Clinical Treatment of Locally Advanced Pancreatic Cancer. Cancers (Basel) 2021; 13:6381. [PMID: 34945001 PMCID: PMC8699564 DOI: 10.3390/cancers13246381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Apart from palliative chemotherapy, no other therapy has been proven effective for the treatment of locally advanced pancreatic tumors. In this study, an intraoperative high-intensity focused ultrasound (HIFU) device was tested in vivo to demonstrate the feasibility of treating the pancreatic parenchyma and tissues surrounding the superior mesenteric vessels prior to clinical translation of this technique. Twenty pigs were included and treated using a HIFU device equipped with a toroidal transducer and an integrated ultrasound imaging probe. Treatments were performed with energy escalation (from 30 kJ to 52 kJ). All treatments resulted in visible (macroscopically and in ultrasound images) homogeneous thermal damage, which was confirmed by histology. The dimensions of thermal lesions measured in ultrasound images and those measured macroscopically were correlated (r = 0.82, p < 0.05). No arterial spasms or occlusion were observed at the lowest energy setting. Temporary spasm of the peripancreatic artery was observed when using an energy setting greater than 30 kJ. The possibility of treating the pancreas and tissues around mesenteric vessels without vascular thrombosis holds great promise for the treatment of locally advanced pancreatic cancers. If clinically successful, chemotherapy followed by HIFU treatment could rapidly become a novel treatment option for locally advanced pancreatic cancer.
Collapse
Affiliation(s)
- Celia Cilleros
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Aurélien Dupré
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Yao Chen
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - Jeremy Vincenot
- EDAP TMS, 4 Rue du Dauphiné, F-69120 Vaulx-en-Velin, France;
| | - Michel Rivoire
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| | - David Melodelima
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, F-69003 Lyon, France; (C.C.); (A.D.); (Y.C.); (M.R.)
| |
Collapse
|
7
|
Beccaria K, Canney M, Bouchoux G, Puget S, Grill J, Carpentier A. Blood-brain barrier disruption with low-intensity pulsed ultrasound for the treatment of pediatric brain tumors: a review and perspectives. Neurosurg Focus 2021; 48:E10. [PMID: 31896084 DOI: 10.3171/2019.10.focus19726] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/03/2019] [Indexed: 11/06/2022]
Abstract
Pediatric brain tumors are the most common solid tumor and the first cause of cancer death in childhood, adolescence, and young adulthood. Current treatments are far from optimal in most of these tumors and the prognosis remains dismal for many of them. One of the main causes of the failure of current medical treatments is in part due to the existence of the blood-brain barrier (BBB), which limits drug delivery to tumors. Opening of the BBB with low-intensity pulsed ultrasound (LIPU) has emerged during the last 2 decades as a promising technique for enhancing drug delivery to the brain. In preclinical models, enhanced delivery of a wide range of therapeutic agents, from low-molecular-weight drugs, to antibodies and immune cells, has been observed as well as tumor control and increased survival. This technique has recently entered clinical trials with extracranial and intracranial devices. The safety and feasibility of this technique has furthermore been shown in patients treated monthly for recurrent glioblastoma receiving carboplatin chemotherapy. In this review, the characteristics of the BBB in the most common pediatric brain tumors are reviewed. Then, principles and mechanisms of BBB disruption with ultrasound (US) are summarized and described at the histological and biological levels. Lastly, preclinical studies that have used US-induced BBB opening in tumor models, recent clinical trials, and the potential use of this technology in pediatrics are provided.
Collapse
Affiliation(s)
- Kévin Beccaria
- 1Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris 5 University, Paris
| | - Michael Canney
- 2CarThera, Institut du Cerveau et de la Moelle épinière (ICM), Paris
| | | | - Stéphanie Puget
- 1Department of Pediatric Neurosurgery, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris 5 University, Paris
| | - Jacques Grill
- 3Department of Pediatric Oncology, Gustave-Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif.,4UMR8203 "Vectorologie et Thérapeutiques Anticancéreuses," CNRS, Gustave-Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif; and
| | - Alexandre Carpentier
- 5Department of Neurosurgery, Sorbonne Université, UPMC Paris 6, AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière, Paris, France
| |
Collapse
|
8
|
Mozaffarzadeh M, Minonzio C, de Jong N, Verweij MD, Hemm S, Daeichin V. Lamb Waves and Adaptive Beamforming for Aberration Correction in Medical Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:84-91. [PMID: 32746204 DOI: 10.1109/tuffc.2020.3007345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phase aberration in transcranial ultrasound imaging (TUI) caused by the human skull leads to an inaccurate image reconstruction. In this article, we present a novel method for estimating the speed of sound and an adaptive beamforming technique for phase aberration correction in a flat polyvinylchloride (PVC) slab as a model for the human skull. First, the speed of sound of the PVC slab is found by extracting the overlapping quasi-longitudinal wave velocities of symmetrical Lamb waves in the frequency-wavenumber domain. Then, the thickness of the plate is determined by the echoes from its front and back side. Next, an adaptive beamforming method is developed, utilizing the measured sound speed map of the imaging medium. Finally, to minimize reverberation artifacts caused by strong scatterers (i.e., needles), a dual probe setup is proposed. In this setup, we image the medium from two opposite directions, and the final image can be the minimum intensity projection of the inherently co-registered images of the opposed probes. Our results confirm that the Lamb wave method estimates the longitudinal speed of the slab with an error of 3.5% and is independent of its shear wave speed. Benefiting from the acquired sound speed map, our adaptive beamformer reduces (in real time) a mislocation error of 3.1, caused by an 8 mm slab, to 0.1 mm. Finally, the dual probe configuration shows 7 dB improvement in removing reverberation artifacts of the needle, at the cost of only 2.4-dB contrast loss. The proposed image formation method can be used, e.g., to monitor deep brain stimulation procedures and localization of the electrode(s) deep inside the brain from two temporal bones on the sides of the human skull.
Collapse
|
9
|
Beccaria K, Canney M, Bouchoux G, Desseaux C, Grill J, Heimberger AB, Carpentier A. Ultrasound-induced blood-brain barrier disruption for the treatment of gliomas and other primary CNS tumors. Cancer Lett 2020; 479:13-22. [PMID: 32112904 DOI: 10.1016/j.canlet.2020.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 01/08/2023]
Abstract
The treatment of primary brain tumors, especially malignant gliomas, remains challenging. The failure of most treatments for this disease is partially explained by the blood-brain barrier (BBB), which prevents circulating molecules from entering the brain parenchyma. Ultrasound-induced BBB disruption (US-BBBD) has recently emerged as a promising strategy to improve the delivery of therapeutic agents to brain tumors. A large body of preclinical studies has demonstrated that the association of low-intensity pulsed ultrasound with intravenous microbubbles can transiently open the BBB in a localized manner. The safety of this technique has been assessed in numerous preclinical studies in both small and large animal models. A large panel of therapeutic agents have been delivered to the brain in preclinical models, demonstrating both tumor control and increased survival. This technique has recently entered clinical trials with encouraging preliminary data. In this review, we describe the mechanisms and histological effects of US-BBBD and summarize the preclinical studies published to date. We furthermore provide an overview of the current clinical development and future potential of this promising technology.
Collapse
Affiliation(s)
- Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Paris 5 University, Paris, France.
| | - Michael Canney
- CarThera, Institut Du Cerveau et de La Moelle épinière (ICM), Paris, F-75013, France
| | - Guillaume Bouchoux
- CarThera, Institut Du Cerveau et de La Moelle épinière (ICM), Paris, F-75013, France
| | - Carole Desseaux
- CarThera, Institut Du Cerveau et de La Moelle épinière (ICM), Paris, F-75013, France
| | - Jacques Grill
- Department of Pediatric Oncology, Gustave-Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France; UMR8203 "Vectorologie et Thérapeutiques Anticancéreuses," CNRS, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne Université, UPMC Univ Paris 06, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires La Pitié-Salpêtrière, Paris, France
| |
Collapse
|
10
|
Almekkawy M, Ebbini ES. The Optimization of Transcostal Phased Array Refocusing Using the Semidefinite Relaxation Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:318-328. [PMID: 31567081 PMCID: PMC8651278 DOI: 10.1109/tuffc.2019.2944434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumors in organs partially obscured by the rib cage represent a challenge for high-intensity focused ultrasound (HIFU) therapy. The ribs distort the HIFU beams in a manner that reduces the focusing gain at the target, which could result in treatment-limiting collateral damage. In fact, skin burns are a common complication during the ablation of hepatic tumors. This problem can be addressed by employing optimal refocusing algorithms that are designed to achieve a specified focusing gain at the target while controlling the exposure to the ribs in the path of the HIFU beam. However, previously proposed optimal refocusing algorithms did not allow for the controlled transmission through the ribs. In this article, we introduce a new approach for refocusing that can more efficiently steer power toward the target while limiting the power deposition on the ribs. The approach utilizes the semidefinite relaxation (SDR) technique to approximate the original (nonconvex) optimization problem. An important advantage of the SDR-based method over previously proposed optimization methods is the control of the side lobes in the focal plane. The method also allows for specifying an acceptable level of exposure to the ribs. Simulation results using a 1-MHz spherical concave phased array focused on an inhomogeneous medium are presented to demonstrate the performance of the SDR refocusing approach. A finite-difference time-domain propagation model was used to model the propagation in the inhomogeneous tissues, including the ribs. Temperature simulations based on the inhomogeneous transient bioheat transfer equation (tBHTE) demonstrate the significance of the improvements in the focusing gain when using the limited power deposition (LPD) method. The results also demonstrate that the LPD method yields well-behaved array excitation vectors, realizable by currently existing drivers.
Collapse
|
11
|
Adams C, Carpenter TM, Cowell D, Freear S, McLaughlan JR. HIFU Drive System Miniaturization Using Harmonic Reduced Pulsewidth Modulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2407-2417. [PMID: 30371363 PMCID: PMC6305628 DOI: 10.1109/tuffc.2018.2878464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/24/2018] [Indexed: 05/30/2023]
Abstract
Switched excitation has the potential to improve on the cost, efficiency, and size of the linear amplifier circuitry currently used in high-intensity focused ultrasound (HIFU) systems. Existing switching schemes are impaired by high harmonic distortion or lack array apodisation capability, so require adjustable supplies and/or large power filters to be useful. A multilevel pulsewidth modulation (PWM) topology could address both of these issues but the switching-speed limitations of transistors mean that there are a limited number of pulses available in each waveform cycle. In this study, harmonic reduction PWM (HRPWM) is proposed as an algorithmic solution to the design of switched waveforms. Its appropriateness for HIFU was assessed by design of a high power five-level unfiltered amplifier and subsequent thermal-only lesioning of ex vivo chicken breast. Three switched waveforms of different electrical powers (16, 26, 35 W) were generated using the HRPWM algorithm. Lesion sizes were measured and compared with those made at the same electrical power using a linear amplifier and bi-level excitation. HRPWM produced symmetric, thermal-only lesions that were the same size as their linear amplifier equivalents ( ). At 16 W, bi-level excitation produced smaller lesions but at higher power levels large transients in the acoustic waveform nucleated undesired cavitation. These results demonstrate that HRPWM can minimize HIFU drive circuity size without the need for filters to remove harmonics or adjustable power supplies to achieve array apodisation.
Collapse
|
12
|
Real-Time HIFU Treatment Monitoring Using Pulse Inversion Ultrasonic Imaging. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8112219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Real-time monitoring of high-intensity focused ultrasound (HIFU) surgery is essential for safe and accurate treatment. However, ultrasound imaging is difficult to use for treatment monitoring during HIFU surgery because of the high intensity of the HIFU echoes that are received by an imaging transducer. Here, we propose a real-time HIFU treatment monitoring method based on pulse inversion of imaging ultrasound; an imaging transducer fires ultrasound twice in 0° and 180° phases for one scanline while HIFUs of the same phase are transmitted in synchronization with the ultrasound transmission for imaging. By doing so, HIFU interferences can be eliminated after subtracting the two sets of the signals received by the imaging transducer. This function was implemented in a commercial research ultrasound scanner, and its performance was evaluated using the excised bovine liver. The experimental results demonstrated that the proposed method allowed ultrasound images to clearly show the echogenicity change induced by HIFU in the excised bovine liver. Additionally, it was confirmed that the moving velocity of the organs in the abdomen due to respiration does not affect the performance of the proposed method. Based on the experimental results, we believe that the proposed method can be used for real-time HIFU surgery monitoring that is a pivotal function for maximized treatment efficacy.
Collapse
|
13
|
Kim YG, Chang JW. High-Intensity Focused Ultrasound Surgery for the Treatment of Obsessive–Compulsive Disorder. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00086-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
van Breugel JMM, de Greef M, Wijlemans JW, Schubert G, van den Bosch MAAJ, Moonen CTW, Ries MG. Thermal ablation of a confluent lesion in the porcine kidney with a clinically available MR-HIFU system. Phys Med Biol 2017; 62:5312-5326. [PMID: 28557798 DOI: 10.1088/1361-6560/aa75b3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The incidence of small renal masses (SRMs) sized <4 cm has increased over the decades (as co-findings/or due to introduction of cross sectional imaging). Currently, partial nephrectomy (PN) or watchful waiting is advised in these patients. Ultimately, 80-90% of these SRMs require surgical treatment and PN is associated with a 15% complication rate. In this aging population, with possible comorbidities and poor health condition, both PN and watchful waiting are non-ideal treatment options. This resulted in an increased need for early, non-invasive treatment strategies such as MR-guided high intensity focused ultrasound (MR-HIFU). (i) To investigate the feasibility of creating a confluent lesion in the kidney using respiratory-gated MR-HIFU under clinical conditions in a pre-clinical study and (ii) to evaluate the reproducibility of the MR-HIFU ablation strategy. Healthy pigs (n = 10) under general anesthesia were positioned on a clinical MR-HIFU system with integrated cooling. A honeycomb pattern of seven overlapping ablation cells (4 × 4 × 10 mm3, 450 W, <30 s) was ablated successively in the cortex of the porcine kidney. Both MR thermometry and acoustic energy delivery were respiratory gated using a pencil beam navigator on the contralateral kidney. The non-perfused volume (NPV) was visualized after the last sonication by contrast-enhanced (CE) T 1-weighted MR (T 1 w) imaging. Cell viability staining was performed to visualize the extent of necrosis. RESULTS a median NPV of 0.62 ml was observed on CE-T 1 w images (IQR 0.58-1.57 ml, range 0.33-2.75 ml). Cell viability staining showed a median damaged volume of 0.59 ml (IQR 0.24-1.35 ml, range 0-4.1 ml). Overlooking of the false rib, shivering of the pig, and too large depth combined with a large heat-sink effect resulted in insufficient heating in 4 cases. The NPV and necrosed volume were confluent in all cases in which an ablated volume could be observed. Our results demonstrated the feasibility of creating a confluent volume of ablated kidney cortical tissue in vivo with MR-HIFU on a clinically available system using respiratory gating and near-field cooling and showed its reproducibility.
Collapse
Affiliation(s)
- J M M van Breugel
- Center for Imaging Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Dillon CR, Rieke V, Ghanouni P, Payne A. Thermal diffusivity and perfusion constants from in vivo MR-guided focussed ultrasound treatments: a feasibility study. Int J Hyperthermia 2017; 34:352-362. [DOI: 10.1080/02656736.2017.1340677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Christopher R. Dillon
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Viola Rieke
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Hajian M, Gaspar R, Maev RG. Accurate 3-D Profile Extraction of Skull Bone Using an Ultrasound Matrix Array. IEEE Trans Biomed Eng 2017; 64:2858-2871. [PMID: 28287955 DOI: 10.1109/tbme.2017.2679214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The present study investigates the feasibility, accuracy, and precision of 3-D profile extraction of the human skull bone using a custom-designed ultrasound matrix transducer in Pulse-Echo. Due to the attenuative scattering properties of the skull, the backscattered echoes from the inner surface of the skull are severely degraded, attenuated, and at some points overlapped. Furthermore, the speed of sound (SOS) in the skull varies significantly in different zones and also from case to case; if considered constant, it introduces significant error to the profile measurement. A new method for simultaneous estimation of the skull profiles and the sound speed value is presented. The proposed method is a two-folded procedure: first, the arrival times of the backscattered echoes from the skull bone are estimated using multi-lag phase delay (MLPD) and modified space alternating generalized expectation maximization (SAGE) algorithms. Next, these arrival times are fed into an adaptive sound speed estimation algorithm to compute the optimal SOS value and subsequently, the skull bone thickness. For quantitative evaluation, the estimated bone phantom thicknesses were compared with the mechanical measurements. The accuracies of the bone thickness measurements using MLPD and modified SAGE algorithms combined with the adaptive SOS estimation were 7.93% and 4.21%, respectively. These values were 14.44% and 10.75% for the autocorrelation and cross-correlation methods. Additionally, the Bland-Altman plots showed the modified SAGE outperformed the other methods with -0.35 and 0.44 mm limits of agreement. No systematic error that could be related to the skull bone thickness was observed for this method.
Collapse
|
17
|
Marsac L, Chauvet D, La Greca R, Boch AL, Chaumoitre K, Tanter M, Aubry JF. Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz. Int J Hyperthermia 2017; 33:635-645. [PMID: 28540778 DOI: 10.1080/02656736.2017.1295322] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Transcranial brain therapy has recently emerged as a non-invasive strategy for the treatment of various neurological diseases, such as essential tremor or neurogenic pain. However, treatments require millimetre-scale accuracy. The use of high frequencies (typically ≥1 MHz) decreases the ultrasonic wavelength to the millimetre scale, thereby increasing the clinical accuracy and lowering the probability of cavitation, which improves the safety of the technique compared with the use of low-frequency devices that operate at 220 kHz. Nevertheless, the skull produces greater distortions of high-frequency waves relative to low-frequency waves. High-frequency waves require high-performance adaptive focusing techniques, based on modelling the wave propagation through the skull. This study sought to optimise the acoustical modelling of the skull based on computed tomography (CT) for a 1 MHz clinical brain therapy system. The best model tested in this article corresponded to a maximum speed of sound of 4000 m.s-1 in the skull bone, and it restored 86% of the optimal pressure amplitude on average in a collection of six human skulls. Compared with uncorrected focusing, the optimised non-invasive correction led to an average increase of 99% in the maximum pressure amplitude around the target and an average decrease of 48% in the distance between the peak pressure and the selected target. The attenuation through the skulls was also assessed within the bandwidth of the transducers, and it was found to vary in the range of 10 ± 3 dB at 800 kHz and 16 ± 3 dB at 1.3 MHz.
Collapse
Affiliation(s)
- L Marsac
- a INSERM U979, Institut Langevin , Paris , France.,b ESPCI Paris, PSL Research University, Institut Langevin , Paris , France.,c CNRS UMR 7587 , Paris , France.,d SuperSonic Imagine, Aix en Provence , France
| | - D Chauvet
- e Service de Neurochirurgie, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris , Paris Cedex 13 , France.,f Neurosurgery Department, Fondation A Rothschild , Paris Cedex 19 , France
| | - R La Greca
- d SuperSonic Imagine, Aix en Provence , France
| | - A-L Boch
- e Service de Neurochirurgie, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris , Paris Cedex 13 , France.,g Centre de Recherche de l?Institut du Cerveau et de la Moelle Épinière, INSERM - UMRS 975, CNRS 7225, Hôpital de la Pitié-Salpêtrière , Paris Cedex 13 , France
| | - K Chaumoitre
- h Imaging Department , North Hospital, Aix Marseille Université , Marseille , France
| | - M Tanter
- a INSERM U979, Institut Langevin , Paris , France.,b ESPCI Paris, PSL Research University, Institut Langevin , Paris , France.,c CNRS UMR 7587 , Paris , France
| | - J-F Aubry
- a INSERM U979, Institut Langevin , Paris , France.,b ESPCI Paris, PSL Research University, Institut Langevin , Paris , France.,c CNRS UMR 7587 , Paris , France
| |
Collapse
|
18
|
Thermal Ablation of the Pancreas With Intraoperative High-Intensity Focused Ultrasound: Safety and Efficacy in a Porcine Model. Pancreas 2017; 46:219-224. [PMID: 27841792 DOI: 10.1097/mpa.0000000000000720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE New focal destruction technologies such as high-intensity focused ultrasound (HIFU) may improve the prognosis of pancreatic ductal adenocarcinoma. Our objectives were to demonstrate the safety and efficacy of intraoperative pancreatic HIFU ablation in a porcine model. METHODS In a porcine model (N = 12), a single HIFU ablation was performed in either the body or tail of the pancreas, distant to superior mesenteric vessels. All animals were sacrificed on the eighth day. The primary objective was to obtain an HIFU ablation measuring at least 1 cm without premature death. RESULTS In total, 12 HIFU ablations were carried out. These ablations were performed within 160 seconds and on average measured 20 (15-27) × 16 (8-26) mm. The primary objective was fulfilled in all but 1 pig. There were no premature deaths or severe complications. High-intensity focused ultrasound treatment was associated with a transitory increase in amylase and lipase levels, and pseudocysts were observed in half of the pigs without being clinically apparent. All ablations were well delimited at both gross and histological examinations. CONCLUSIONS Intraoperative thermal destruction of porcine pancreas with HIFU is feasible. Reproducibility and safety have to be confirmed when applied close to mesenteric vessels and in long-term preclinical studies.
Collapse
|
19
|
Deng L, O'Reilly MA, Jones RM, An R, Hynynen K. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. Phys Med Biol 2016; 61:8476-8501. [PMID: 27845920 DOI: 10.1088/0031-9155/61/24/8476] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Focused ultrasound (FUS) phased arrays show promise for non-invasive brain therapy. However, the majority of them are limited to a single transmit/receive frequency and therefore lack the versatility to expose and monitor the treatment volume. Multi-frequency arrays could offer variable transmit focal sizes under a fixed aperture, and detect different spectral content on receive for imaging purposes. Here, a three-frequency (306, 612, and 1224 kHz) sparse hemispherical ultrasound phased array (31.8 cm aperture; 128 transducer modules) was constructed and evaluated for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. The array is able to perform effective electronic beam steering over a volume spanning (-40, 40) and (-30, 50) mm in the lateral and axial directions, respectively. The focal size at the geometric center is approximately 0.9 (2.1) mm, 1.7 (3.9) mm, and 3.1 (6.5) mm in lateral (axial) pressure full width at half maximum (FWHM) at 1224, 612, and 306 kHz, respectively. The array was also found capable of dual-frequency excitation and simultaneous multi-foci sonication, which enables the future exploration of more complex exposure strategies. Passive acoustic mapping of dilute microbubble clouds demonstrated that the point spread function of the receive array has a lateral (axial) intensity FWHM between 0.8-3.5 mm (1.7-11.7 mm) over a volume spanning (-25, 25) mm in both the lateral and axial directions, depending on the transmit/receive frequency combination and the imaging location. The device enabled both half and second harmonic imaging through the intact skull, which may be useful for improving the contrast-to-tissue ratio or imaging resolution, respectively. Preliminary in vivo experiments demonstrated the system's ability to induce blood-brain barrier opening and simultaneously spatially map microbubble cavitation activity in a rat model. This work presents a tool to investigate optimal strategies for non-thermal FUS brain therapy and concurrent microbubble cavitation monitoring through the availability of multiple frequencies.
Collapse
Affiliation(s)
- Lulu Deng
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
20
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
21
|
Scherrer A, Jakobsson S, Küfer KH. On the advancement and software support of decision-making in focused ultrasound therapy. JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS 2016. [DOI: 10.1002/mcda.1596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander Scherrer
- Fraunhofer Institute for Industrial Mathematics (ITWM); Kaiserslautern Germany
| | | | - Karl-Heinz Küfer
- Fraunhofer Institute for Industrial Mathematics (ITWM); Kaiserslautern Germany
| |
Collapse
|
22
|
Vincenot J, Kocot A, Vignot A, Chavrier F, Blanc E, Dupré A, Rivoire M, Chapelon J, Melodelima D. Toroidal Transducer for Intraoperative Thermal Ablation of Pancreatic Tumours by High-Intensity Focused Ultrasound. First In Vitro Experiments. Ing Rech Biomed 2016. [DOI: 10.1016/j.irbm.2016.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
In vivo validation of spatio-temporal liver motion prediction from motion tracked on MR thermometry images. Int J Comput Assist Radiol Surg 2016; 11:1143-52. [PMID: 27072839 DOI: 10.1007/s11548-016-1405-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
PURPOSE Magnetic resonance-guided focused ultrasound (MRgFUS) of the liver during free-breathing requires spatio-temporal prediction of the liver motion from partial motion observations. The study purpose is to evaluate the prediction accuracy for a realistic MRgFUS therapy scenario, namely for human in vivo data, tracking based on MR images routinely acquired during MRgFUS and in vivo deformations caused by the FUS probe. METHODS In vivo validation of the motion model was based on a 3D breath-hold image and an interleaved acquisition of two MR slices. Prediction accuracy was determined with respect to manually annotated landmarks. A statistical population liver motion model was used for predicting the liver motion for not tracked regions. This model was individualized by mapping it to end-exhale 3D breath-hold images. Spatial correspondence between tracking and model positions was established by affine 3D-to-2D image registration. For spatio-temporal prediction, MR tracking results were temporally extrapolated. RESULTS Performance was evaluated for 10 volunteers, of which 5 had a dummy FUS probe put on their abdomen. MR tracking had a mean (95 %) accuracy of 1.1 (2.4) mm. The motion of the liver on the evaluation MR slice was spatio-temporally predicted with an accuracy of 1.9 (4.4) mm for a latency of 216 ms. A simple translation model performed similarly (2.1 (4.8) mm) as the two MR slices were relatively close (mean 38 mm). Temporal prediction was important (10 % error reduction), while registration effects could only partially be assessed and showed no benefits. On average, motion magnitude, motion amplitude and breathing frequency increased by 24, 16 and 8 %, respectively, for the cases with FUS probe placement. This motion increase could be reduced by the spatio-temporal prediction. CONCLUSION The study shows that tracking liver vessels on MR images, which are also used for MR thermometry, is a viable approach.
Collapse
|
24
|
Miller GW, Eames M, Snell J, Aubry JF. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria. Med Phys 2016; 42:2223-33. [PMID: 25979016 DOI: 10.1118/1.4916656] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Transcranial magnetic resonance-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements. These corrections are currently calculated based on a preacquired computed tomography (CT) scan of the patient's head. The purpose of the work presented here is to demonstrate the feasibility of using ultrashort echo-time magnetic resonance imaging (UTE MRI) instead of CT to calculate and apply aberration corrections on a clinical TcMRgFUS system. METHODS Phantom experiments were performed in three ex-vivo human skulls filled with tissue-mimicking hydrogel. Each skull phantom was imaged with both CT and UTE MRI. The MR images were then segmented into "skull" and "not-skull" pixels using a computationally efficient, threshold-based algorithm, and the resulting 3D binary skull map was converted into a series of 2D virtual CT images. Each skull was mounted in the head transducer of a clinical TcMRgFUS system (ExAblate Neuro, Insightec, Israel), and transcranial sonications were performed using a power setting of approximately 750 acoustic watts at several different target locations within the electronic steering range of the transducer. Each target location was sonicated three times: once using aberration corrections calculated from the actual CT scan, once using corrections calculated from the MRI-derived virtual CT scan, and once without applying any aberration correction. MR thermometry was performed in conjunction with each 10-s sonication, and the highest single-pixel temperature rise and surrounding-pixel mean were recorded for each sonication. RESULTS The measured temperature rises were ∼ 45% larger for aberration-corrected sonications than for noncorrected sonications. This improvement was highly significant (p < 10(-4)). The difference between the single-pixel peak temperature rise and the surrounding-pixel mean, which reflects the sharpness of the thermal focus, was also significantly larger for aberration-corrected sonications. There was no significant difference between the sonication results achieved using CT-based and MR-based aberration correction. CONCLUSIONS The authors have demonstrated that transcranial focal heating can be significantly improved in vitro by using UTE MRI to compute skull-induced ultrasound aberration corrections. Their results suggest that UTE MRI could be used instead of CT to implement such corrections on current 0.7 MHz clinical TcMRgFUS devices. The MR image acquisition and segmentation procedure demonstrated here would add less than 15 min to a clinical MRgFUS treatment session.
Collapse
Affiliation(s)
- G Wilson Miller
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia 22908 and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
| | - Matthew Eames
- Focused Ultrasound Foundation, Charlottesville, Virginia 22903
| | - John Snell
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia 22908 and Focused Ultrasound Foundation, Charlottesville, Virginia 22903
| | - Jean-François Aubry
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908 and Institut Langevin Ondes et Images, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Paris 75005, France
| |
Collapse
|
25
|
MRI-Guided HIFU Methods for the Ablation of Liver and Renal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:43-63. [DOI: 10.1007/978-3-319-22536-4_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Aubry JF, Tanter M. MR-Guided Transcranial Focused Ultrasound. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:97-111. [PMID: 26486334 DOI: 10.1007/978-3-319-22536-4_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous chapters introduced the ability of using focused ultrasound to ablate tissues. It has led to various clinical applications in the treatment of uterine fibroid, prostate or liver cancers. Nevertheless, treating the brain non-invasively with focused ultrasound has been considered beyond reach for almost a century: The skull bone protects the brain from mechanical injuries, but it also reflects and refracts ultrasound, making it difficult to target the brain with focused ultrasound. Fortunately, aberration correction techniques have been developed recently and thermal lesioning in the thalamus has been achieved clinically. This chapter introduces the aberration effect of the skull bone and how it can be corrected non-invasively. It also presents the latest clinical results obtained with thermal ablation and introduces novel non-thermal approaches that could revolutionize brain therapy in the future.
Collapse
Affiliation(s)
- Jean-François Aubry
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Paris, France. .,Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA.
| | - Mickael Tanter
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Paris, France.
| |
Collapse
|
27
|
Holbrook AB, Ghanouni P, Santos JM, Dumoulin C, Medan Y, Pauly KB. Respiration based steering for high intensity focused ultrasound liver ablation. Magn Reson Med 2015; 71:797-806. [PMID: 23460510 DOI: 10.1002/mrm.24695] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Respiratory motion makes hepatic ablation using high intensity focused ultrasound (HIFO) challenging. Previous HIFU liver treatment had required apnea induced during general anesthesia. We describe and test a system that allows treatment of the liver in the presence of breathing motion. METHODS Mapping a signal from an external respiratory bellow to treatment locations within the liver allows the ultrasound transducer to be steered in real time to the target location. Using a moving phantom, three metrics were used to compare static, steered, and unsteered sonications: the area of sonications once a temperature rise of 15°C was achieved, the energy deposition required to reach that temperature, and the average rate of temperature rise during the first 10 s of sonication. Steered HIFU in vivo ablations of the porcine liver were also performed and compared to breath-hold ablations. RESULTS For the last phantom metric, all groups were found to be statistically significantly different (P ≤ 0.003). However, in the other two metrics, the static and unsteered sonications were not statistically different (P > 0.9999). Steered in vivo HIFU ablations were not statistically significantly different from ablations during breath-holding. CONCLUSIONS A system for performing HIFU steering during ablation of the liver with breathing motion is presented and shown to achieve results equivalent to ablation performed with breath-holding.
Collapse
Affiliation(s)
- Andrew B Holbrook
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
28
|
Sagias G, Yiallouras C, Ioannides K, Damianou C. An MRI-conditional motion phantom for the evaluation of high-intensity focused ultrasound protocols. Int J Med Robot 2015; 12:431-41. [PMID: 27593511 DOI: 10.1002/rcs.1709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 11/11/2022]
Abstract
BACKGROUND The respiratory motion of abdominal organs is a serious obstacle in high-intensity focused ultrasound (HIFU) treatment with magnetic resonance imaging (MRI) guidance. In this study, a two-dimensional (2D) MRI-conditional motion phantom device was developed in order to evaluate HIFU protocols in synchronized and non-synchronized ablation of moving targets. MATERIALS AND METHODS The 2D phantom device simulates the respiratory motion of moving organs in both the left-right and craniocaudal directions. The device consists of MR-conditional materials which have been produced by a three-dimensional (3D) printer. RESULTS The MRI compatibility of the motion phantom was tested successfully in an MRI scanner. In vitro experiments were carried out to evaluate HIFU ablation protocols that are minimally affected by target motion. CONCLUSION It was shown that only in synchronized mode does HIFU produce thermal lesions, as tested on a gel phantom mimicking the moving target. The MRI-conditional phantom device was shown to be functional for its purpose and can be used as an evaluation tool for testing HIFU protocols for moving targets in an MRI environment. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
|
29
|
An Ultrasound Image-Based Dynamic Fusion Modeling Method for Predicting the Quantitative Impact of In Vivo Liver Motion on Intraoperative HIFU Therapies: Investigations in a Porcine Model. PLoS One 2015; 10:e0137317. [PMID: 26398366 PMCID: PMC4580572 DOI: 10.1371/journal.pone.0137317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/15/2015] [Indexed: 11/19/2022] Open
Abstract
Organ motion is a key component in the treatment of abdominal tumors by High Intensity Focused Ultrasound (HIFU), since it may influence the safety, efficacy and treatment time. Here we report the development in a porcine model of an Ultrasound (US) image-based dynamic fusion modeling method for predicting the effect of in vivo motion on intraoperative HIFU treatments performed in the liver in conjunction with surgery. A speckle tracking method was used on US images to quantify in vivo liver motions occurring intraoperatively during breathing and apnea. A fusion modeling of HIFU treatments was implemented by merging dynamic in vivo motion data in a numerical modeling of HIFU treatments. Two HIFU strategies were studied: a spherical focusing delivering 49 juxtapositions of 5-second HIFU exposures and a toroidal focusing using 1 single 40-second HIFU exposure. Liver motions during breathing were spatially homogenous and could be approximated to a rigid motion mainly encountered in the cranial-caudal direction (f = 0.20 Hz, magnitude > 13 mm). Elastic liver motions due to cardiovascular activity, although negligible, were detectable near millimeter-wide sus-hepatic veins (f = 0.96 Hz, magnitude < 1 mm). The fusion modeling quantified the deleterious effects of respiratory motions on the size and homogeneity of a standard "cigar-shaped" millimetric lesion usually predicted after a 5-second single spherical HIFU exposure in stationary tissues (Dice Similarity Coefficient: DSC < 45%). This method assessed the ability to enlarge HIFU ablations during respiration, either by juxtaposing "cigar-shaped" lesions with spherical HIFU exposures, or by generating one large single lesion with toroidal HIFU exposures (DSC > 75%). Fusion modeling predictions were preliminarily validated in vivo and showed the potential of using a long-duration toroidal HIFU exposure to accelerate the ablation process during breathing (from 0.5 to 6 cm3 · min(-1)). To improve HIFU treatment control, dynamic fusion modeling may be interesting for assessing numerically focusing strategies and motion compensation techniques in more realistic conditions.
Collapse
|
30
|
|
31
|
Schwenke M, Strehlow J, Haase S, Jenne J, Tanner C, Langø T, Loeve AJ, Karakitsios I, Xiao X, Levy Y, Sat G, Bezzi M, Braunewell S, Guenther M, Melzer A, Preusser T. An integrated model-based software for FUS in moving abdominal organs. Int J Hyperthermia 2015; 31:240-50. [DOI: 10.3109/02656736.2014.1002817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
32
|
Petrusca L, Salomir R, Manasseh G, Becker CD, Terraz S. Spatio-temporal quantitative thermography of pre-focal interactions between high intensity focused ultrasound and the rib cage. Int J Hyperthermia 2015; 31:421-32. [PMID: 25753370 DOI: 10.3109/02656736.2015.1009501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim of this paper is to quantitatively investigate the thermal effects generated by the pre-focal interactions of a HIFU beam with a rib cage, in the context of minimally invasive transcostal therapy of liver malignancies. MATERIALS AND METHODS HIFU sonications were produced by a phased-array MR-compatible transducer on Turkey muscle placed on a sheep thoracic cage specimen. The thoracic wall was positioned in the pre-focal zone 3.5 to 6.5 cm below the focus. Thermal monitoring was simultaneously performed using fluoroptic sensors inserted into the medullar cavity of the ribs and high resolution MR-thermometry (voxel: 1 × 1 × 5 mm3, four multi-planar slices). RESULTS MR-thermometry data indicated nearly isotropic distribution of the thermal energy at the ribs' surface. The temperature elevation at the focus was comparable with the pericostal temperature elevation around unprotected ribs, while being systematically inferior, by more than a factor of four on average, to the intra-medullar values. The spatial profiles of the pericostal and intra-medullar thermal build-up measurements could be smoothly connected using a Gaussian function. The dynamics of the post-sonication thermal relaxation as determined by fluoroptic measurements was demonstrated to be theoretically coherent with the experimental observations. CONCLUSION The experimental findings motivate further efforts for the transfer towards clinical routine of effective rib-sparing strategies for hepatic HIFU.
Collapse
Affiliation(s)
- Lorena Petrusca
- Hepatobiliary Interventional Radiology, Faculty of Medicine, University of Geneva , Geneva, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Xu Z, Carlson C, Snell J, Eames M, Hananel A, Lopes MB, Raghavan P, Lee CC, Yen CP, Schlesinger D, Kassell NF, Aubry JF, Sheehan J. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation. J Neurosurg 2015; 122:152-61. [PMID: 25380106 DOI: 10.3171/2014.9.jns14541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In biological tissues, it is known that the creation of gas bubbles (cavitation) during ultrasound exposure is more likely to occur at lower rather than higher frequencies. Upon collapsing, such bubbles can induce hemorrhage. Thus, acoustic inertial cavitation secondary to a 220-kHz MRI-guided focused ultrasound (MRgFUS) surgery is a serious safety issue, and animal studies are mandatory for laying the groundwork for the use of low-frequency systems in future clinical trials. The authors investigate here the in vivo potential thresholds of MRgFUS-induced inertial cavitation and MRgFUS-induced thermal coagulation using MRI, acoustic spectroscopy, and histology. METHODS Ten female piglets that had undergone a craniectomy were sonicated using a 220-kHz transcranial MRgFUS system over an acoustic energy range of 5600-14,000 J. For each piglet, a long-duration sonication (40-second duration) was performed on the right thalamus, and a short sonication (20-second duration) was performed on the left thalamus. An acoustic power range of 140-300 W was used for long-duration sonications and 300-700 W for short-duration sonications. Signals collected by 2 passive cavitation detectors were stored in memory during each sonication, and any subsequent cavitation activity was integrated within the bandwidth of the detectors. Real-time 2D MR thermometry was performed during the sonications. T1-weighted, T2-weighted, gradient-recalled echo, and diffusion-weighted imaging MRI was performed after treatment to assess the lesions. The piglets were killed immediately after the last series of posttreatment MR images were obtained. Their brains were harvested, and histological examinations were then performed to further evaluate the lesions. RESULTS Two types of lesions were induced: thermal ablation lesions, as evidenced by an acute ischemic infarction on MRI and histology, and hemorrhagic lesions, associated with inertial cavitation. Passive cavitation signals exhibited 3 main patterns identified as follows: no cavitation, stable cavitation, and inertial cavitation. Low-power and longer sonications induced only thermal lesions, with a peak temperature threshold for lesioning of 53°C. Hemorrhagic lesions occurred only with high-power and shorter sonications. The sizes of the hemorrhages measured on macroscopic histological examinations correlated with the intensity of the cavitation activity (R2 = 0.74). The acoustic cavitation activity detected by the passive cavitation detectors exhibited a threshold of 0.09 V·Hz for the occurrence of hemorrhages. CONCLUSIONS This work demonstrates that 220-kHz ultrasound is capable of inducing a thermal lesion in the brain of living swines without hemorrhage. Although the same acoustic energy can induce either a hemorrhage or a thermal lesion, it seems that low-power, long-duration sonication is less likely to cause hemorrhage and may be safer. Although further study is needed to decrease the likelihood of ischemic infarction associated with the 220-kHz ultrasound, the threshold established in this work may allow for the detection and prevention of deleterious cavitations.
Collapse
|
34
|
Menikou G, Dadakova T, Pavlina M, Bock M, Damianou C. MRI compatible head phantom for ultrasound surgery. ULTRASONICS 2015; 57:144-152. [PMID: 25482534 DOI: 10.1016/j.ultras.2014.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/29/2014] [Accepted: 11/09/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Develop a magnetic resonance imaging (MRI) compatible head phantom with acoustic attenuation closely matched to the human attenuation, and suitable for testing focused ultrasound surgery protocols. MATERIALS AND METHODS Images from an adult brain CT scan were used to segment the skull bone from adjacent cerebral tissue. The segmented model was manufactured in a 3-D printer using (Acrylonitrile Butadiene Styrene) ABS plastic. The cerebral tissue was mimicked by an agar-evaporated milk-silica gel (2% w/v-25% v/v-1.2% w/v) which was molded inside a skull model. RESULTS The measured attenuation of the ABS skull was 16 dB/cm MHz. The estimated attenuation coefficient of the gel replicating brain tissue was 0.6 dB/cm MHz. The estimated agar-silica gel's T1 and T2 relaxation times in a 1.5 Tesla magnetic field were 852 ms and 66 ms respectively. The effectiveness of the skull to reduce ultrasonic heating was demonstrated using MRI thermometry. CONCLUSION Due to growing interest in using MRI guided focused ultrasound (MRgFUS) for treating brain cancer and its application in sonothrombolysis, the proposed head phantom can be utilized as a very useful tool for evaluating ultrasonic protocols, thus minimizing the need for animal models and cadavers.
Collapse
Affiliation(s)
| | - Tetiana Dadakova
- University Medical Center Freiburg, Radiology - Medical Physics, Freiburg, Germany
| | - Matt Pavlina
- University Medical Center Freiburg, Radiology - Medical Physics, Freiburg, Germany
| | - Michael Bock
- University Medical Center Freiburg, Radiology - Medical Physics, Freiburg, Germany
| | | |
Collapse
|
35
|
Dupré A, Melodelima D, Pérol D, Chen Y, Vincenot J, Chapelon JY, Rivoire M. First clinical experience of intra-operative high intensity focused ultrasound in patients with colorectal liver metastases: a phase I-IIa study. PLoS One 2015. [PMID: 25719540 DOI: 10.1371/journal.pone.0118212}] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Surgery is the only curative treatment in patients with colorectal liver metastases (CLM), but only 10-20% of patients are eligible. High Intensity Focused Ultrasound (HIFU) technology is of proven value in several indications, notably prostate cancer. Its intra-operative use in patients with CLM has not previously been studied. Preclinical work suggested the safety and feasibility of a new HIFU device capable of ablating volumes of up to 2cm x 2cm in a few seconds. METHODS We conducted a prospective, single-centre phase I-IIa trial. HIFU was delivered immediately before scheduled hepatectomy. To demonstrate the safety and efficacy of rapidly ablating liver parenchyma, ablations were performed on healthy tissue within the areas scheduled for resection. RESULTS In total, 30 ablations were carried out in 15 patients. These ablations were all generated within 40 seconds and on average measured 27.5mm x 21.0mm. The phase I study (n = 6) showed that use of the HIFU device was feasible and safe and did not damage neighbouring tissue. The phase IIa study (n = 9) showed both that the area of ablation could be precisely targeted on a previously implanted metallic mark (used to represent a major anatomical structure) and that ablations could be undertaken deliberately to avoid such a mark. Ablations were achieved with a precision of 1-2 mm. CONCLUSION HIFU was feasible, safe and effective in ablating areas of liver scheduled for resection. The next stage is a phase IIb study which will attempt ablation of small metastases with a 5 mm margin, again prior to planned resection. TRIAL REGISTRATION ClinicalTrials.govNCT01489787.
Collapse
Affiliation(s)
- Aurélien Dupré
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France; LabTau, U1032, Inserm, Université de Lyon, Lyon, France
| | | | - David Pérol
- Biostatistics and Treatment Evaluation Unit, Centre Léon Bérard, Lyon, France
| | - Yao Chen
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
| | | | | | - Michel Rivoire
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France; LabTau, U1032, Inserm, Université de Lyon, Lyon, France
| |
Collapse
|
36
|
Dupré A, Melodelima D, Pérol D, Chen Y, Vincenot J, Chapelon JY, Rivoire M. First clinical experience of intra-operative high intensity focused ultrasound in patients with colorectal liver metastases: a phase I-IIa study. PLoS One 2015; 10:e0118212. [PMID: 25719540 PMCID: PMC4342219 DOI: 10.1371/journal.pone.0118212] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/07/2015] [Indexed: 12/25/2022] Open
Abstract
Background Surgery is the only curative treatment in patients with colorectal liver metastases (CLM), but only 10–20% of patients are eligible. High Intensity Focused Ultrasound (HIFU) technology is of proven value in several indications, notably prostate cancer. Its intra-operative use in patients with CLM has not previously been studied. Preclinical work suggested the safety and feasibility of a new HIFU device capable of ablating volumes of up to 2cm x 2cm in a few seconds. Methods We conducted a prospective, single-centre phase I-IIa trial. HIFU was delivered immediately before scheduled hepatectomy. To demonstrate the safety and efficacy of rapidly ablating liver parenchyma, ablations were performed on healthy tissue within the areas scheduled for resection. Results In total, 30 ablations were carried out in 15 patients. These ablations were all generated within 40 seconds and on average measured 27.5mm x 21.0mm. The phase I study (n = 6) showed that use of the HIFU device was feasible and safe and did not damage neighbouring tissue. The phase IIa study (n = 9) showed both that the area of ablation could be precisely targeted on a previously implanted metallic mark (used to represent a major anatomical structure) and that ablations could be undertaken deliberately to avoid such a mark. Ablations were achieved with a precision of 1–2 mm. Conclusion HIFU was feasible, safe and effective in ablating areas of liver scheduled for resection. The next stage is a phase IIb study which will attempt ablation of small metastases with a 5 mm margin, again prior to planned resection. Trial Registration ClinicalTrials.govNCT01489787
Collapse
Affiliation(s)
- Aurélien Dupré
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
- LabTau, U1032, Inserm, Université de Lyon, Lyon, France
| | | | - David Pérol
- Biostatistics and Treatment Evaluation Unit, Centre Léon Bérard, Lyon, France
| | - Yao Chen
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
| | | | | | - Michel Rivoire
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
- LabTau, U1032, Inserm, Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
37
|
Song JH, Chang JH. An effective pulse sequence for simultaneous HIFU insonation and monitoring. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1580-1587. [PMID: 25167158 DOI: 10.1109/tuffc.2014.3072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The HIFU interference cancellation method using pulse inversion is useful for real-time treatment monitoring; however, this method suffers from residual interference when a high duty cycle is employed. In this paper, a pulse sequence is proposed to overcome the problem. It was experimentally verified that all interference could be removed using the pulse sequence. This implies that the HIFU interference cancellation method with the pulse sequence can be utilized for simultaneous HIFU insonation and monitoring under any duty cycle condition.
Collapse
|
38
|
Gélat P, Ter Haar G, Saffari N. A comparison of methods for focusing the field of a HIFU array transducer through human ribs. Phys Med Biol 2014; 59:3139-71. [PMID: 24861888 DOI: 10.1088/0031-9155/59/12/3139] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A forward model, which predicts the scattering by human ribs of a multi-element high-intensity focused ultrasound transducer, was used to investigate the efficacy of a range of focusing approaches described in the literature. This forward model is based on the boundary element method and was described by Gélat et al (2011 Phys. Med. Biol. 56 5553-81; 2012 Phys. Med. Biol. 57 8471-97). The model has since been improved and features a complex surface impedance condition at the surface of the ribs. The inverse problem of focusing through the ribs was implemented on six transducer array-rib topologies and five methods of focusing were investigated, including spherical focusing, binarized apodization based on geometric ray tracing, phase conjugation and the decomposition of the time-reversal operator method. The excitation frequency was 1 MHz and the array was of spherical-section type. Both human and idealized rib topologies were considered. The merit of each method of focusing was examined. It was concluded that the constrained optimization approach offers greater potential than the other focusing methods in terms of maximizing the ratio of acoustic pressure magnitudes at the focus to those on the surface of the ribs whilst taking full advantage of the dynamic range of the phased array.
Collapse
Affiliation(s)
- P Gélat
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK. Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | |
Collapse
|
39
|
Wintermark M, Tustison NJ, Elias WJ, Patrie JT, Xin W, Demartini N, Eames M, Sumer S, Lau B, Cupino A, Snell J, Hananel A, Kassell N, Aubry JF. T1-weighted MRI as a substitute to CT for refocusing planning in MR-guided focused ultrasound. Phys Med Biol 2014; 59:3599-614. [DOI: 10.1088/0031-9155/59/13/3599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys 2014; 40:080901. [PMID: 23927296 DOI: 10.1118/1.4811136] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20∕20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice.
Collapse
Affiliation(s)
- David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Younan Y, Deffieux T, Larrat B, Fink M, Tanter M, Aubry JF. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation. Med Phys 2014; 40:082902. [PMID: 23927357 DOI: 10.1118/1.4812423] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Low-intensity focused ultrasound has been shown to stimulate the brain noninvasively and without noticeable tissue damage. Such a noninvasive and localized neurostimulation is expected to have a major impact in neuroscience in the coming years. This emerging field will require many animal experiments to fully understand the link between ultrasound and stimulation. The primary goal of this paper is to investigate transcranial ultrasonic neurostimulation at low frequency (320 kHz) on anesthetized rats for different acoustic pressures and estimate the in situ pressure field distribution and the corresponding motor threshold, if any. The corresponding acoustic pressure distribution inside the brain, which cannot be measured in vivo, is investigated based on numerical simulations of the ultrasound propagation inside the head cavity, reproducing at best the experiments conducted in the first part, both in terms of transducer and head geometry and in terms of acoustic parameters. METHODS In this study, 37 ultrasonic neurostimulation sessions were achieved in rats (N=8) using a 320 kHz transducer. The corresponding beam profile in the entire head was simulated in order to investigate the in situ pressure and intensity level as well as the spatial pressure distribution, thanks to a rat microcomputed tomography scan (CT)-based 3D finite differences time domain solver. RESULTS Ultrasound pulse evoked a motor response in more than 60% of the experimental sessions. In those sessions, the stimulation was always present, repeatable with a pressure threshold under which no motor response occurred. This average acoustic pressure threshold was found to be 0.68±0.1 MPa (corresponding mechanical index, MI=1.2 and spatial peak, pulse averaged intensity, Isppa=7.5 W cm(-2)), as calibrated in free water. A slight variation was observed between deep anesthesia stage (0.77±0.04 MPa) and light anesthesia stage (0.61±0.03 MPa), assessed from the pedal reflex. Several kinds of motor responses were observed: movements of the tail, the hind legs, the forelimbs, the eye, and even a single whisker were induced separately. Numerical simulations of an equivalent experiment with identical acoustic parameters showed that the acoustic field was spread over the whole rat brain with the presence of several secondary pressure peaks. Due to reverberations, a 1.8-fold increase of the spatial peak, temporal peak acoustic pressure (Psptp) (±0.4 standard deviation), a 3.6-fold increase (±1.8) for the spatial peak, temporal peak acoustic intensity (Isptp), and 2.3 for the spatial peak, pulse averaged acoustic intensity (Isppa), were found compared to simulations of the beam in free water. Applying such corrections due to reverberations on the experimental results would yield a higher estimation for the average acoustic pressure threshold for motor neurostimulation at 320 KHz at 1.2±0.3 MPa (MI=2.2±0.5 and Isppa=17.5±7.5 W cm(-2)). CONCLUSIONS Transcranial ultrasonic stimulation is pressure- and anesthesia-dependent in the rat model. Numerical simulations have shown that the acoustic pattern can be complex inside the rat head and that special care must be taken for small animal studies relating acoustic parameters to neurostimulation effects, especially at a low frequency.
Collapse
Affiliation(s)
- Youliana Younan
- Institut Langevin, ESPCI-ParisTech, CNRS UMR7587, INSERM U979, 1 rue Jussieu, Paris 75005, France
| | | | | | | | | | | |
Collapse
|
42
|
Tyshlek D, Aubry JF, ter Haar G, Hananel A, Foley J, Eames M, Kassell N, Simonin HH. Focused ultrasound development and clinical adoption: 2013 update on the growth of the field. J Ther Ultrasound 2014; 2:2. [PMID: 25512866 PMCID: PMC4265987 DOI: 10.1186/2050-5736-2-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022] Open
Abstract
The field of therapeutic focused ultrasound, which first emerged in the 1940s, has seen significant growth, particularly over the past decade. The eventual widespread clinical adoption of this non-invasive therapeutic modality require continued progress, in a multitude of activities including technical, pre-clinical, and clinical research, regulatory approval and reimbursement, manufacturer growth, and other commercial and public sector investments into the field, all within a multi-stakeholder environment. We present here a snapshot of the field of focused ultrasound and describe how it has progressed over the past several decades. It is assessed using metrics which include quantity and breadth of academic work (presentations, publications), funding trends, manufacturer presence in the field, number of treated patients, number of indications reaching first-in-human status, and quantity and breadth of clinical indications.
Collapse
Affiliation(s)
- Dasha Tyshlek
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
| | - Jean-Francois Aubry
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22901, USA
- Institut Langevin, CNRS UMR 7587, ESPCI ParisTech, INSERM U979, Paris 75005, France
| | - Gail ter Haar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey, UK
| | - Arik Hananel
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22901, USA
| | - Jessica Foley
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
| | - Matthew Eames
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
| | - Neal Kassell
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22901, USA
| | | |
Collapse
|
43
|
Keyhole acceleration for magnetic resonance acoustic radiation force imaging (MR ARFI). Magn Reson Imaging 2013; 31:1695-703. [DOI: 10.1016/j.mri.2013.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/21/2013] [Indexed: 11/19/2022]
|
44
|
Dervishi E, Aubry JF, Delattre JY, Boch AL. [Focused ultrasound therapy: current status and potential applications in neurosurgery]. Neurochirurgie 2013; 59:201-9. [PMID: 24210288 DOI: 10.1016/j.neuchi.2013.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 05/19/2013] [Accepted: 06/09/2013] [Indexed: 01/26/2023]
Abstract
High Intensity Focused Ultrasound (HIFU) therapy is an innovative approach for tissue ablation, based on high intensity focused ultrasound beams. At the focus, HIFU induces a temperature elevation and the tissue can be thermally destroyed. In fact, this approach has been tested in a number of clinical studies for the treatment of several tumors, primarily the prostate, uterine, breast, bone, liver, kidney and pancreas. For transcranial brain therapy, the skull bone is a major limitation, however, new adaptive techniques of phase correction for focusing ultrasound through the skull have recently been implemented by research systems, paving the way for HIFU therapy to become an interesting alternative to brain surgery and radiotherapy.
Collapse
Affiliation(s)
- E Dervishi
- Équipe de neuro-oncologie expérimentale, Inserm, UMRS 975, CNRS 7225, institut du cerveau et de la moelle épinière, groupe hospitalier La Pitié Salpêtrière-Charles-Foix, Assistance publique-Hôpitaux de Paris, 47-83, boulevard de l'Hôpital, 75651 Paris, France.
| | | | | | | |
Collapse
|
45
|
Bucknor MD, Rieke V, Do L, Majumdar S, Link TM, Saeed M. MRI-guided high-intensity focused ultrasound ablation of bone: evaluation of acute findings with MR and CT imaging in a swine model. J Magn Reson Imaging 2013; 40:1174-80. [PMID: 24925593 DOI: 10.1002/jmri.24451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To evaluate hyperacute (<1 hour) changes on magnetic resonance (MR) and computed tomography (CT) imaging following MR-guided high-intensity focused ultrasound (MRgHIFU) in a swine bone model as a function of sonication number and energy. MATERIALS AND METHODS Experimental procedures received approval from the local Institutional Animal Care and Use Committee. MRgHIFU was used to create distal and proximal ablations in the right femur of eight pigs. Each target was dosed with four or six sonications within similar volumes. The energy dosed to the distal target was higher (419 ± 19 J) than the proximal target (324 ± 17 J). The targeted femur and contralateral control were imaged before and after ablation using MR at 3T. Qualitative changes in signal on T1-weighted, T2-weighted, and T1-weighted postcontrast images were assessed. Ablation dimensions were calculated from postcontrast MRI. The 64-slice CT images were also obtained before and after ablation and qualitative changes were assessed. RESULTS MRgHIFU bone ablation size measured on average 8.5 × 21.1 × 16.2 mm (transverse × craniocaudal × anteroposterior). Interestingly, within similar prescribed volumes, increasing the number of sonications from 4 to 6 increased the depth of the intramedullary hypoenhanced zone from 2.9 mm to 6.5 mm (P < 0.001). There was no difference in the appearance of low versus high energy ablations. CT imaging did not show structural abnormalities. CONCLUSION The number of MRgHIFU focal sonications can be used to increase the depth of treatment within the targeted bone. Unlike CT, T2-weighted and contrast-enhanced MR demonstrated the hyperacute structural changes in the femur and surrounding soft tissue.
Collapse
Affiliation(s)
- Matthew D Bucknor
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Beccaria K, Canney M, Goldwirt L, Fernandez C, Adam C, Piquet J, Autret G, Clément O, Lafon C, Chapelon JY, Carpentier A. Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits. J Neurosurg 2013; 119:887-98. [DOI: 10.3171/2013.5.jns122374] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The blood-brain barrier (BBB) is a major impediment to the intracerebral diffusion of drugs used in the treatment of gliomas. Previous studies have demonstrated that pulsed focused ultrasound (US) in conjunction with a microbubble contrast agent can be used to open the BBB. To apply the US-induced opening of the BBB in clinical practice, the authors designed an innovative unfocused US device that can be implanted in the skull and used to transiently and repeatedly open the BBB during a standard chemotherapy protocol. The goal of this preliminary work was to study the opening of the BBB induced by the authors' small unfocused US transducer and to evaluate the effects of the sonications on brain parenchyma.
Methods
Craniectomy was performed in 16 healthy New Zealand White rabbits; epidural application of a single-element planar ultrasonic transducer operating at 1 MHz was then used with a pulse-repetition frequency of 1 Hz, pulse lengths of 10–35 msec, in situ acoustic pressure levels of 0.3–0.8 MPa, and sonication for 60–120 seconds. SonoVue was intravenously injected during the US applications, and opening of the BBB was determined by detecting extravasation of Evans blue dye (EBD) in brain tissues, quantitative measurement of EBD with UV-visible spectrophotometry, and contrast enhancement after Gd injection in 4.7-T MRI. A histological study was performed to determine adverse effects.
Results
An opening of the BBB was observed over a large extent of the US beam in the brain corresponding to in situ pressures of greater than 0.2 MPa. The BBB opening observed was highly significant for both EBD (p < 0.01) and MRI Gd enhancement (p < 0.0001). The BBB opening was associated with minor adverse effects that included perivascular red blood cell extravasations that were less than 150 μm in size and not visible on MR images. Moderate edema was visible on FLAIR sequences and limited to the extent of the sonication field.
Conclusions
The results demonstrate that the BBB can be opened in large areas of the brain in rabbits with lowpower, pulsed, and unfocused US with limited damage to healthy tissue.
Collapse
Affiliation(s)
- Kevin Beccaria
- 1CarThera Research Team, Brain and Spine Institute, Paris
- 2Departments of Neurosurgery and
| | - Michael Canney
- 1CarThera Research Team, Brain and Spine Institute, Paris
- 5Inserm U1032, LabTau, University of Lyon
| | - Lauriane Goldwirt
- 3Pharmacology, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris
| | - Christine Fernandez
- 3Pharmacology, Assistance Publique–Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris
| | - Clovis Adam
- 4Assistance Publique–Hôpitaux de Paris, Bicêtre Hospital, Pathology Department, Le Kremlin-Bicêtre, Paris
| | | | - Gwennhael Autret
- 7Inserm UMR 970, Université Paris Descartes, Sorbonne Paris Cité, Paris; and
| | - Olivier Clément
- 7Inserm UMR 970, Université Paris Descartes, Sorbonne Paris Cité, Paris; and
| | | | | | - Alexandre Carpentier
- 2Departments of Neurosurgery and
- 8Sorbonne University, Paris 6 School of Medicine, Paris, France
| |
Collapse
|
47
|
Dervishi E, Larrat B, Pernot M, Adam C, Marie Y, Fink M, Delattre JY, Boch AL, Tanter M, Aubry JF. Transcranial high intensity focused ultrasound therapy guided by 7 TESLA MRI in a rat brain tumour model: a feasibility study. Int J Hyperthermia 2013; 29:598-608. [PMID: 23941242 DOI: 10.3109/02656736.2013.820357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Transcranial high intensity focused ultrasound (HIFU) therapy guided by magnetic resonance imaging (MRI) is a promising approach for the treatment of brain tumours. Our objective is to validate a dedicated therapy monitoring system for rodents for transcranial HIFU therapy under MRI guidance in an in vivo brain tumour model. MATERIALS AND METHODS A dedicated MR-compatible ultrasound therapy system and positioning frame was developed. Three MR-compatible prefocused ultrasonic monoelement transducers were designed, operating at 1.5 MHz and 2.5 MHz with different geometries. A full protocol of transcranial HIFU brain therapy under MRI guidance was applied in n = 19 rats without and n = 6 rats with transplanted tumours (RG2). Different heating strategies were tested. After treatment, histological study of the brain was performed in order to confirm thermal lesions. RESULTS Relying on a larger aperture and a higher frequency, the 2.5 MHz transducer was found to give better results than other ones. This single element transducer optimised the ratio of the temperature elevation at the focus to the one at the skull surface. Using optimised transducer and heating strategies enabled thermal necrosis both in normal and tumour tissues as verified by histology while limiting overheating in the tissues in contact with the skull. CONCLUSIONS In this study, a system for transcranial HIFU therapy guided by MRI was developed and tested in an in vivo rat brain tumour model. The feasibility of this therapy set-up to induce thermal lesions within brain tumours was demonstrated.
Collapse
Affiliation(s)
- Elvis Dervishi
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Épinière, INSERM - UMRS 975, CNRS 7225, Hôpital de la Pitié-Salpêtrière, Paris
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Foley JL, Eames M, Snell J, Hananel A, Kassell N, Aubry JF. Image-guided focused ultrasound: state of the technology and the challenges that lie ahead. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/iim.13.38] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Aubry JF, Pauly KB, Moonen C, Haar GT, Ries M, Salomir R, Sokka S, Sekins KM, Shapira Y, Ye F, Huff-Simonin H, Eames M, Hananel A, Kassell N, Napoli A, Hwang JH, Wu F, Zhang L, Melzer A, Kim YS, Gedroyc WM. The road to clinical use of high-intensity focused ultrasound for liver cancer: technical and clinical consensus. J Ther Ultrasound 2013; 1:13. [PMID: 25512859 PMCID: PMC4265946 DOI: 10.1186/2050-5736-1-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/12/2013] [Indexed: 01/20/2023] Open
Abstract
Clinical use of high-intensity focused ultrasound (HIFU) under ultrasound or MR guidance as a non-invasive method for treating tumors is rapidly increasing. Tens of thousands of patients have been treated for uterine fibroid, benign prostate hyperplasia, bone metastases, or prostate cancer. Despite the methods' clinical potential, the liver is a particularly challenging organ for HIFU treatment due to the combined effect of respiratory-induced liver motion, partial blocking by the rib cage, and high perfusion/flow. Several technical and clinical solutions have been developed by various groups during the past 15 years to compensate for these problems. A review of current unmet clinical needs is given here, as well as a consensus from a panel of experts about technical and clinical requirements for upcoming pilot and pivotal studies in order to accelerate the development and adoption of focused ultrasound for the treatment of primary and secondary liver cancer.
Collapse
Affiliation(s)
- Jean-Francois Aubry
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Université Denis Diderot, Paris VII, Paris, France
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Kim Butts Pauly
- Radiological Sciences Laboratory, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chrit Moonen
- Imaging Division, University Medical Center Utrecht, Amsterdam, The Netherlands
| | - Gail ter Haar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey, UK
| | - Mario Ries
- Imaging Division, University Medical Center Utrecht, Amsterdam, The Netherlands
| | - Rares Salomir
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | - Fangwei Ye
- Chongqing Haifu Medical Technology Co., Ltd, Chongqing, China
| | | | - Matt Eames
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Arik Hananel
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Neal Kassell
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | | | - Joo Ha Hwang
- Digestive Disease Center, University of Washington, Seattle, WA, USA
| | - Feng Wu
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing, China
| | - Lian Zhang
- Clinical Center for Tumor Therapy, Second Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing, China
| | - Andreas Melzer
- Institute for Medical Science and Technology, University of Dundee, Dundee, Scotland, UK
| | - Young-sun Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wladyslaw M Gedroyc
- Department of Medicine, Imperial College, South Kensington Campus, Exhibition Rd, London SW7 2AZ, UK
- Saint Mary’s Hospital, Praed St, W2 1NY, London, UK
| |
Collapse
|
50
|
Qiao S, Shen G, Bai J, Chen Y. Transcostal high-intensity focused ultrasound treatment using phased array with geometric correction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1503-1514. [PMID: 23927190 DOI: 10.1121/1.4812869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the high-intensity focused ultrasound treatment of liver tumors, ultrasound propagation is affected by the rib cage. Because of the diffraction and absorption of the bone, the sound distribution at the focal plane is altered, and more importantly, overheating on the rib surface might occur. To overcome these problems, a geometric correction method is applied to turn off the elements blocked by the ribs. The potential of steering the focus of the phased-array along the propagation direction to improve the transcostal treatment was investigated by simulations and experiments using different rib models and transducers. The ultrasound propagation through the ribs was computed by a hybrid method including the Rayleigh-Sommerfeld integral, k-space method, and angular spectrum method. A modified correction method was proposed to adjust the output of elements based on their relative area in the projected "shadow" of the ribs. The simulation results showed that an increase in the specific absorption rate gain up to 300% was obtained by varying the focal length although the optimal value varied in each situation. Therefore, acoustic simulation is required for each clinical case to determine a satisfactory treatment plan.
Collapse
Affiliation(s)
- Shan Qiao
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | |
Collapse
|