1
|
Barra A, Huerta-Gutierrez R, Annen J, Martens G, Laureys S, Llorens R, Kurth T, Thibaut A. Characterization of responders to transcranial direct current stimulation in disorders of consciousness: A retrospective study of 8 clinical trials. Neurotherapeutics 2025:e00587. [PMID: 40253244 DOI: 10.1016/j.neurot.2025.e00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025] Open
Abstract
The treatment for patients with disorders of consciousness challenges researchers and clinicians. The stimulation of the left dorsolateral prefrontal cortex with transcranial direct current stimulation (tDCS) may enhance behavioral responsiveness of a subset of patients in a minimally conscious state, while having limited effects in unresponsive patients. However, heterogeneity in responses raises questions about the effectiveness of tDCS. Our objective was to explore the characteristics of responders to tDCS based on previously published RCTs and investigate the heterogeneity of treatment effect to better direct future tDCS studies towards patient profiles that appear to be more responsive to the treatment. We explored clinical and demographical differences between responders (i.e., recovery of a new sign of consciousness after active stimulation) and non-responder and the predictors of treatment response with a LASSO logistic regression. We included 131 patients (44 women, 61 traumatic brain injury, 90 minimally conscious, mean age 46.13 years [SD = 16], median time since injury 12.84 months [IQR: 5.25-35.10]) of which 33 responded to tDCS. While 32 % of minimally conscious patients responded to tDCS (95%CI 0.24, 0.43), 10 % (95%CI 0.04, 0.25) of those unresponsive responded. The regression model, using diagnosis at baseline, Coma Recovery Scale-Revised Index at baseline, age, sex and time since injury correctly discriminated between tDCS responders and non-responders (area under the curve of 0.77). Our findings suggest that patients in minimally conscious state, with a better cognitive profile and longer TSI respond better to tDCS, making them better candidates for the treatment.
Collapse
Affiliation(s)
- Alice Barra
- NeuroRecovery Lab, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium; IRENEA - Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, València, Spain.
| | | | - Jitka Annen
- Department of Data Analysis, University of Ghent, B9000, Ghent, Belgium; Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
| | - Geraldine Martens
- NeuroRecovery Lab, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium; NeuroRehab & Consciousness Clinic, Neurology Department, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, U Laval, Canada; Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
| | - Roberto Llorens
- Neurorehabilitation and Brain Research Group, Institute for Human-Centered Technology Research, Universitat Politècnica de València, València, Spain
| | - Tobias Kurth
- Institute of Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Aurore Thibaut
- NeuroRecovery Lab, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium; NeuroRehab & Consciousness Clinic, Neurology Department, University Hospital of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Vitello MM, Laureys S, Thibaut A, Gosseries O. Non-pharmacologic interventions in disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:197-216. [PMID: 39986722 DOI: 10.1016/b978-0-443-13408-1.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Severely brain-injured patients with disorders of consciousness pose significant challenges in terms of management, particularly due to the limited therapeutic options available. Despite the potential for some patients to benefit from interventions even years after the injury, clinicians often lack clear and reliable treatment strategies to promote patient recovery. In response to this clinical need, the field of neuromodulation has emerged as a promising alternative to traditional pharmacologic therapies. Both invasive and noninvasive brain stimulation techniques offer diverse possibilities for restoring physiologic neural activity and enhancing functional network integrity in these complex neurological disorders. This chapter offers a comprehensive overview of current neuromodulation techniques, exploring their potential applications and analyzing the existing evidence for their efficacy. Specifically, we describe transcranial electrical stimulation, transcranial magnetic stimulation, deep brain stimulation, low-intensity focused ultrasound, vagal nerve stimulation (including transcutaneous methods), spinal cord stimulation, and median nerve stimulation. While certain approaches show promise for patients with disorders of consciousness, there remains a pressing need for large-scale interventional clinical trials that will play an essential role for elucidating the underlying mechanisms of recovery and for refining stimulation parameters. This, together with the development of tailored individual interventions will move the field forward and optimize therapeutic outcomes.
Collapse
Affiliation(s)
- Marie M Vitello
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Department of Neurology, Centre du Cerveau (2), University Hospital of Liège, Liège, Belgium
| |
Collapse
|
3
|
Wan X, Zhang Y, Li Y, Song W. An update on noninvasive neuromodulation in the treatment of patients with prolonged disorders of consciousness. CNS Neurosci Ther 2024; 30:e14757. [PMID: 38747078 PMCID: PMC11094579 DOI: 10.1111/cns.14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND With the improvement of emergency techniques, the survival rate of patients with severe brain injury has increased. However, this has also led to an annual increase in the number of patients with prolonged disorders of consciousness (pDoC). Hence, recovery of consciousness is an important part of treatment. With advancing techniques, noninvasive neuromodulation seems a promising intervention. The objective of this review was to summarize the latest techniques and provide the basis for protocols of noninvasive neuromodulations in pDoC. METHODS This review summarized the advances in noninvasive neuromodulation in the treatment of pDoC in the last 5 years. RESULTS Variable techniques of neuromodulation are used in pDoC. Transcranial ultrasonic stimulation (TUS) and transcutaneous auricular vagus nerve stimulation (taVNS) are very new techniques, while transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are still the hotspots in pDoC. Median nerve electrical stimulation (MNS) has received little attention in the last 5 years. CONCLUSIONS Noninvasive neuromodulation is a valuable and promising technique to treat pDoC. Further studies are needed to determine a unified stimulus protocol to achieve optimal effects as well as safety.
Collapse
Affiliation(s)
- Xiaoping Wan
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Ye Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Yanhua Li
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Kumar S, Agarwal N, Sanal TS. Effectiveness of coma arousal therapy on patients with disorders of consciousness - A systematic review and meta-analysis. Brain Circ 2024; 10:119-133. [PMID: 39036297 PMCID: PMC11259325 DOI: 10.4103/bc.bc_112_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Disorders of consciousness (DOC) incorporate stages of awareness and arousal. Through coma arousal therapy sensory deprivation experienced by patients with DOC can be mitigated. Nevertheless, consensus concerning its effectiveness on these patients is still fractional. PURPOSE This review aims to investigate the effectiveness of coma arousal therapies on patients with DOC. METHODS A meta-analysis was performed by searching electronic databases using search terms, the studies investigating the effect of coma arousal therapy in patients with DOC using the Coma Recovery Scale-Revised and Glasgow Coma Scale as outcome measures were included. The risk of bias was assessed, using Cochrane and Joanna Briggs Institute critical appraisal tools. Further, analysis was conducted for the included studies. RESULTS Out of 260 studies, 45 trials were reviewed and assessed for bias, with 31 studies included for analysis. The analysis demonstrates a significant difference in pre- and post - sensory stimulation, vagus nerve stimulation, transcranial magnetic stimulation, and transcranial direct current stimulation. Sensory stimulation showed the greatest mean difference of -4.96; 95% CI = -5.76 to - 4.15. The patients who underwent intervention after 3 months of illness showed significant improvement. CONCLUSION The result shows that sensory stimulation, transcranial magnetic stimulation, and transcranial direct stimulation can improve behavioral outcomes of patients with DOC, wherein sensory stimulation is found to be more effective.
Collapse
Affiliation(s)
- Sanjiv Kumar
- Department of Neurophysiotherapy, KAHER Institute of Physiotherapy, Belagavi, Karnataka, India
| | - Nupur Agarwal
- Department of Neurophysiotherapy, KAHER Institute of Physiotherapy, Belagavi, Karnataka, India
| | | |
Collapse
|
5
|
Straudi S, Antonioni A, Baroni A, Bonsangue V, Lavezzi S, Koch G, Tisato V, Ziliotto N, Basaglia N, Secchiero P, Manfredini F, Lamberti N. Anti-Inflammatory and Cortical Responses after Transcranial Direct Current Stimulation in Disorders of Consciousness: An Exploratory Study. J Clin Med 2023; 13:108. [PMID: 38202115 PMCID: PMC10779892 DOI: 10.3390/jcm13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Disorders of consciousness (DoC) due to severe traumatic brain injury (TBI) are associated with severe disability and an alteration of cortical activation, angiogenesis, and inflammation, which are crucial elements for behavioural recovery. This exploratory study aimed to evaluate anti-inflammatory and cortical responses after transcranial direct current stimulation (tDCS) in traumatic prolonged disorders of consciousness. Ten minimally conscious state (MCS) patients underwent ten sessions of anodal tDCS (five sessions/week, two weeks, 40 min/session) on the primary motor cortex bilaterally. Clinical evaluations were performed using the Coma Recovery Scale-Revised (CRS-R) pre- and post-treatment. In contrast, after single and multiple tDCS sessions, the haemodynamic cortical response was obtained with functional near-infrared spectroscopy (fNIRS). Moreover, angiogenesis (angiopoietin-2, BMP9, endoglin, HbEFG, HGF, IL8, Leptin, PLGF, VEGF-A, and VEGF-C) and inflammation (GM-CSF, IFNg, IP10, MCP1, and TNFα) circulating biomarkers were collected. A significant haemodynamic response was observed after a single tDCS session, with an increased activation from 4.4 (3.1-6.1) to 7.6 (2.9-15.7) a.u. (p = 0.035). After ten tDCS sessions, a significant reduction of angiopoietin-2, VEGF-C, and IP-10 was detected. Moreover, a correlation between behavioural (CRS-R), TNFα (r = 0.89; p = 0.007), and IP10 (r = 0.81; p = 0.014) variation was found. In conclusion, a single tDCS session can increase the cortical activation in MCS patients. Moreover, multiple tDCS sessions showed an anti-inflammatory effect related to behavioural improvement.
Collapse
Affiliation(s)
- Sofia Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University, 44121 Ferrara, Italy; (S.S.); (A.A.); (A.B.); (G.K.); (N.B.)
- Department of Neuroscience, Ferrara University Hospital, 44124 Ferrara, Italy; (V.B.); (S.L.)
| | - Annibale Antonioni
- Department of Neuroscience and Rehabilitation, Ferrara University, 44121 Ferrara, Italy; (S.S.); (A.A.); (A.B.); (G.K.); (N.B.)
- Doctoral Program in Translational Neurosciences and Neurotechnologies, Ferrara University, 44121 Ferrara, Italy
| | - Andrea Baroni
- Department of Neuroscience and Rehabilitation, Ferrara University, 44121 Ferrara, Italy; (S.S.); (A.A.); (A.B.); (G.K.); (N.B.)
- Department of Neuroscience, Ferrara University Hospital, 44124 Ferrara, Italy; (V.B.); (S.L.)
| | - Valentina Bonsangue
- Department of Neuroscience, Ferrara University Hospital, 44124 Ferrara, Italy; (V.B.); (S.L.)
| | - Susanna Lavezzi
- Department of Neuroscience, Ferrara University Hospital, 44124 Ferrara, Italy; (V.B.); (S.L.)
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, Ferrara University, 44121 Ferrara, Italy; (S.S.); (A.A.); (A.B.); (G.K.); (N.B.)
| | - Veronica Tisato
- Department of Translational Medicine, Ferrara University, 44121 Ferrara, Italy
| | - Nicole Ziliotto
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | - Nino Basaglia
- Department of Neuroscience and Rehabilitation, Ferrara University, 44121 Ferrara, Italy; (S.S.); (A.A.); (A.B.); (G.K.); (N.B.)
- Department of Neuroscience, Ferrara University Hospital, 44124 Ferrara, Italy; (V.B.); (S.L.)
| | - Paola Secchiero
- Department of Translational Medicine, Ferrara University, 44121 Ferrara, Italy
| | - Fabio Manfredini
- Department of Neuroscience and Rehabilitation, Ferrara University, 44121 Ferrara, Italy; (S.S.); (A.A.); (A.B.); (G.K.); (N.B.)
- Department of Neuroscience, Ferrara University Hospital, 44124 Ferrara, Italy; (V.B.); (S.L.)
| | - Nicola Lamberti
- Department of Neuroscience and Rehabilitation, Ferrara University, 44121 Ferrara, Italy; (S.S.); (A.A.); (A.B.); (G.K.); (N.B.)
- Department of Neuroscience, Ferrara University Hospital, 44124 Ferrara, Italy; (V.B.); (S.L.)
| |
Collapse
|
6
|
Gunduz ME, Bucak B, Keser Z. Advances in Stroke Neurorehabilitation. J Clin Med 2023; 12:6734. [PMID: 37959200 PMCID: PMC10650295 DOI: 10.3390/jcm12216734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Stroke is one of the leading causes of disability worldwide despite recent advances in hyperacute interventions to lessen the initial impact of stroke. Stroke recovery therapies are crucial in reducing the long-term disability burden after stroke. Stroke recovery treatment options have rapidly expanded within the last decade, and we are in the dawn of an exciting era of multimodal therapeutic approaches to improve post-stroke recovery. In this narrative review, we highlighted various promising advances in treatment and technologies targeting stroke rehabilitation, including activity-based therapies, non-invasive and minimally invasive brain stimulation techniques, robotics-assisted therapies, brain-computer interfaces, pharmacological treatments, and cognitive therapies. These new therapies are targeted to enhance neural plasticity as well as provide an adequate dose of rehabilitation and improve adherence and participation. Novel activity-based therapies and telerehabilitation are promising tools to improve accessibility and provide adequate dosing. Multidisciplinary treatment models are crucial for post-stroke neurorehabilitation, and further adjuvant treatments with brain stimulation techniques and pharmacological agents should be considered to maximize the recovery. Among many challenges in the field, the heterogeneity of patients included in the study and the mixed methodologies and results across small-scale studies are the cardinal ones. Biomarker-driven individualized approaches will move the field forward, and so will large-scale clinical trials with a well-targeted patient population.
Collapse
Affiliation(s)
- Muhammed Enes Gunduz
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Bilal Bucak
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (B.B.); (Z.K.)
| | - Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (B.B.); (Z.K.)
| |
Collapse
|
7
|
Dong L, Li H, Dang H, Zhang X, Yue S, Zhang H. Efficacy of non-invasive brain stimulation for disorders of consciousness: a systematic review and meta-analysis. Front Neurosci 2023; 17:1219043. [PMID: 37496734 PMCID: PMC10366382 DOI: 10.3389/fnins.2023.1219043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Objective The aim of this study is to evaluate the efficacy of non-invasive brain stimulation (NIBS) in patients with disorders of consciousness (DoC) and compare differences in efficacy between different stimulation modalities. Methods We searched the PubMed, Cochrane Library, Web of Science, and EMBASE databases for all studies published in English from inception to April 2023. Literature screening and quality assessment were performed independently by two investigators. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were used to evaluate the therapeutic effects of NIBS. The Cochrane Q test and I2 statistic were used to evaluate heterogeneity between studies. Subgroup analysis was performed to identify the source of heterogeneity, and differences in efficacy between different stimulation modalities were compared by Bayesian analysis. Results A total of 17 studies with 377 DoC patients were included. NIBS significantly improved the state of consciousness in DoC patients when compared to sham stimulation (WMD: 0.81; 95% CI: 0.46, 1.17; I2 = 78.2%, p = 0.000). When divided into subgroups according to stimulation modalities, the heterogeneity of each subgroup was significantly lower than before (I2: 0.00-30.4%, p >0.05); different stimulation modalities may be the main source of such heterogeneity. Bayesian analysis, based on different stimulation modalities, indicated that a patient's state of consciousness improved most significantly after repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC). Diagnosis-based subgroup analysis showed that NIBS significantly improved the state of consciousness in patients with a minimal consciousness state (WMD: 1.11; 95% CI: 0.37, 1.86) but not in patients with unresponsive wakefulness syndrome or a vegetative state (WMD: 0.31; 95% CI: -0.09, 0.71). Subgroup analysis based on observation time showed that single treatment did not improve the state of consciousness in DoC patients (WMD: 0.28; 95% CI: -0.27, 0.82) while multiple treatments could (WMD: 1.05; 95% CI: 0.49, 1.61). Furthermore, NIBS had long-term effects on DoC patients (WMD: 0.79; 95% CI: 0.08-1.49). Conclusion Available evidence suggests that the use of NIBS on patients with DoC is more effective than sham stimulation, and that rTMS of the left DLPFC may be the most prominent stimulation modality.
Collapse
Affiliation(s)
- Linghui Dong
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hui Li
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hui Dang
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | | | - Shouwei Yue
- Shandong University, Jinan, Shandong, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hao Zhang
- Shandong University, Jinan, Shandong, China
- China Rehabilitation Research Center, Beijing, China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
8
|
Li Y, Li L, Huang H. Effect of non-invasive brain stimulation on conscious disorder in patients after brain injury: a network meta-analysis. Neurol Sci 2023; 44:2311-2327. [PMID: 36943589 DOI: 10.1007/s10072-023-06743-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
OBJECTIVE To systematically evaluate the rehabilitation effect of non-invasive brain stimulation (NIBS) on disorder of consciousness (DOC) after brain injury and compare the effects of different NIBSs. METHODS Randomized controlled trials (RCTs) on the effect of NIBS on DOC after brain injury were retrieved from the PubMed, Cochrane Library, Web of Science, CNKI, VIP, Wanfang Data, and CBM databases from inception to October 2022. The risk of bias and quality of the trials were assessed following the Cochrane Handbook of Systematic Reviews and the physiotherapy evidence database Jadad Scale. Statistical analysis was conducted with RevMan 5.4 and R Studio. This study was registered on PROSPERO (No. CRD42022371334). RESULTS A total of 28 articles were included involving 1118 patients. Meta-analysis showed that NIBS combined with routine rehabilitation had the highest effect than the routine rehabilitation and the sham NIBS combined with routine rehabilitation. The cumulative probability ranking results showed that the rTMS was best. The order of network meta-analysis with GCS (Glasgow Coma Scale) as the outcome index is rTMS combined with routine rehabilitation > tDCS combined with routine rehabilitation > routine rehabilitation > NIBS sham stimulation combined with routine rehabilitation. The order of network meta-analysis with CRS-R (Coma Recovery Scale-Revised) as the outcome index is rTMS combined with routine rehabilitation > tDCS combined with routine rehabilitation > NIBS sham stimulation combined with routine rehabilitation > routine rehabilitation. For patients with different conditions of DOC, the subgroup analysis results showed that rTMS improved the effect of patients with severe DOC better than those with unclear conditions of DOC, but the overall results of the two groups were not significantly different. On the contrary, the effect of tDCS on patients with DOC whose condition was not clear was better than that on patients with severe DOC, and the effect on patients with severe DOC was not significant (P > 0.05). In terms of safety, only 9 articles mentioned ADRs in the included literature, including 8 articles without ADRs, and 1 article with ADRs. CONCLUSION Based on the research results of various indicators, NIBS can improve DOC after brain injury, and the rTMS is the best. Limited by the number and the quality of literature, the above conclusions need more high-quality research to verify.
Collapse
Affiliation(s)
- Yaning Li
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Lingling Li
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Hailiang Huang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
9
|
Weaver JA, Watters K, Cogan AM. Interventions Facilitating Recovery of Consciousness Following Traumatic Brain Injury: A Systematic Review. OTJR-OCCUPATION PARTICIPATION AND HEALTH 2023; 43:322-336. [PMID: 36047664 DOI: 10.1177/15394492221117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
People who experience disorders of consciousness (DoC) following a severe traumatic brain injury (TBI) have complex rehabilitation needs addressed by occupational therapy. To examine the effectiveness of interventions to improve arousal and awareness of people with DoC following a TBI. For this systematic review, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched six databases in collaboration with a research librarian. Twenty-seven studies were included and grouped thematically. Multimodal sensory stimulation, familiar voices telling structured stories, and transcranial direct current stimulation had a moderate level of evidence. Multimodal sensory stimulation had the strongest evidence in support of its use in clinical practice. Occupational therapy practitioners should administer multimodal stimuli frequently as studies reported administering these interventions at least twice daily. Occupational therapy practitioners should incorporate personally relevant, meaningful, salient stimuli into interventions when treating patients with DoC.
Collapse
Affiliation(s)
| | | | - Alison M Cogan
- VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
10
|
Ma H, Zhao K, Jia C, You J, Zhou M, Wang T, Huang C. Effect of transcranial direct current stimulation for patients with disorders of consciousness: A systematic review and meta-analysis. Front Neurosci 2023; 16:1081278. [PMID: 36755882 PMCID: PMC9899861 DOI: 10.3389/fnins.2022.1081278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/31/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) could potentially facilitate consciousness improvement in patients with disorders of consciousness (DOC). The aim of this study was to investigate the therapeutic efficacy of tDCS on consciousness recovery for patients with DOC. Methods Eight databases were systematically searched from their inception to June 2022. Quality of included studies were assessed using PEDro score and Cochrane's risk of bias assessment. All statistical analyses were performed using RevMan software. Seventeen studies with 618 patients were identified eligible for this study, and fifteen studies with sufficient data were pooled in the meta-analysis. Results The results of meta-analysis showed a significant effect on increasing GCS scores (MD = 1.73; 95% CI, 1.28-2.18; P < 0.01) and CRS-R scores (MD = 1.28; 95% CI = 0.56-2.00; P < 0.01) in favor of the real stimulation group as compared to sham. The results of subgroup analysis demonstrated that only more than 20 sessions of stimulation could significantly enhance the improvement of GCS scores and the CRS-R scores. Moreover, the effect of tDCS on CRS-R score improvement was predominant in patients with minimal conscious state (MCS) (MD = 1.84; 95% CI = 0.74-2.93; P < 0.01). Conclusion Anodal tDCS with sufficient stimulation doses appears to be an effective approach for patients with MCS, in terms of CRS-R scores. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022336958.
Collapse
Affiliation(s)
- Hui Ma
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,School of Rehabilitation Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Kehong Zhao
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,School of Rehabilitation Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Jiuhong You
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,School of Rehabilitation Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Mei Zhou
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,School of Rehabilitation Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Tingting Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Cheng Huang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China,*Correspondence: Cheng Huang,
| |
Collapse
|
11
|
Xu Z, Zheng R, Xia T, Qi Z, Zang D, Wang Z, Wu X. Behavioral effects in disorders of consciousness following transcranial direct current stimulation: A systematic review and individual patient data meta-analysis of randomized clinical trials. Front Neurol 2022; 13:940361. [PMID: 36247787 PMCID: PMC9558708 DOI: 10.3389/fneur.2022.940361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background In patients with Disorders of Consciousness (DoC), recent evidence suggests that transcranial direct current stimulation (tDCS) can be a promising intervention for them. However, there has been little agreement on the treatment effect and the optimal treatment strategy for the tDCS in patients with DoC. Objective In this meta-analysis of individual patient data (IPD), we assess whether tDCS could improve DoC patients' behavioral performance. We also determine whether these treatment effects could be modified by patient characteristics or tDCS protocol. Methods We searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials until 7 April 2022 using the terms “persistent vegetative state,” “minimally conscious state,” “disorder of consciousness,” or “unresponsive wakefulness syndrome,” and “transcranial direct current stimulation” to identify Randomized Controlled Trials (RCTs) in English-language publications. Studies were eligible for inclusion if they reported pre- and post-tDCS Coma Recovery Scale-Revised (CRS-R) scores. From the included studies, patients who had incomplete data were excluded. We performed a meta-analysis to assess the treatment effect of the tDCS compared with sham control. Additionally, various subgroup analyses were performed to determine whether specific patient characteristics could modify the treatment effect and to find out the optimal tDCS protocol. Results We identified 145 papers, but eventually eight trials (including 181 patients) were included in the analysis, and one individual data were excluded because of incomplete data. Our meta-analysis demonstrated a mean difference change in the CRS-R score of 0.89 (95% CI, 0.17–1.61) between tDCS and sham-control, favoring tDCS. The subgroup analysis showed that patients who were male or with a minimally conscious state (MCS) diagnosis were associated with a greater improvement in CRS-R score. We also found that patients who underwent five or more sessions of tDCS protocol had a better treatment effect than just one session. Conclusion The result shows that tDCS can improve the behavioral performance of DoC patients. The heterogeneity of the treatment effect existed within the patients' baseline conditions and the stimulation protocol. More explorative studies on the optimal tDCS protocol and the most beneficial patient group based on the mechanism of tDCS are required in the future. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: CRD42022331241.
Collapse
Affiliation(s)
- Zeyu Xu
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Ruizhe Zheng
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Tiantong Xia
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Zengxin Qi
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Di Zang
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Zhe Wang
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Xuehai Wu
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- *Correspondence: Xuehai Wu
| |
Collapse
|
12
|
Liu S, Gao Q, Guan M, Chen Y, Cheng S, Yang L, Meng W, Lu C, Li B. Effectiveness of transcranial direct current stimulation over dorsolateral prefrontal cortex in patients with prolonged disorders of consciousness: A systematic review and meta-analysis. Front Neurol 2022; 13:998953. [PMID: 36226076 PMCID: PMC9549167 DOI: 10.3389/fneur.2022.998953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) has been widely studied for treatment of patients with prolonged disorders of consciousness (PDOC). The dorsolateral prefrontal cortex (DLPFC) is a hot target for intervention, but some controversies remain. Purpose This review aimed to systematically investigate the therapeutic effects of DLPFC-anodal-tDCS for patients with PDOC through a meta-analysis approach. Data sources Searches for relevant articles available in English were conducted using EMBASE, Medline, Web of Science, EBSCO, and Cochrane Central Register of Controlled Trials from inception until March 26, 2022. Study selection All randomized parallel or cross-over controlled trials comparing the effect of intervention with active-tDCS and Sham-tDCS on Coma Recovery Scale Revised (CRS-R) score in individuals with PDOC were included. Data extraction Two authors independently extracted data, assessed the methodological quality, and rated each study. Data synthesis Ten randomized parallel or cross-over controlled trials were eligible for systematic review, and eight of the studies involving 165 individuals were identified as eligible for meta-analysis. Compared with Sham-tDCS, the use of anode-tDCS over DLPFC improved the CRS-R score (SMD = 0.71; 95% CI: 0.47–0.95, I2 = 10%). Patients with PDOC classified as MCS and clinically diagnosed as CVA or TBI may benefit from anode-tDCS. Limitations Failure to evaluate the long-term effects and lack of quantitative analysis of neurological examination are the main limitations for the application of anode-tDCS. Conclusions Anodal-tDCS over the left DLPFC may be advantageous to the recovery of patients with MCS and clinically diagnosed with CVA or TBI. There is a lack of evidence to support the duration of the disease course will limit the performance of the treatment. Further studies are needed to explore the diversity of stimulation targets and help to improve the mesocircuit model. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=279391, identifier: CRD42022279391.
Collapse
|
13
|
Liu B, Zhang X, Li Y, Duan G, Hou J, Zhao J, Guo T, Wu D. tDCS-EEG for Predicting Outcome in Patients With Unresponsive Wakefulness Syndrome. Front Neurosci 2022; 16:771393. [PMID: 35812233 PMCID: PMC9263392 DOI: 10.3389/fnins.2022.771393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives We aimed to assess the role of transcranial direct current stimulation (tDCS) combined with electroencephalogram (EEG) for predicting prognosis in UWS cases. Methods This was a historical control study that enrolled 85 patients with UWS. The subjects were assigned to the control (without tDCS) and tDCS groups. Conventional treatments were implemented in both the control and tDCS groups, along with 40 multi-target tDCS sessions only in the tDCS group. Coma Recovery Scale-Revised (CRS-R) was applied at admission. The non-linear EEG index was evaluated after treatment. The modified Glasgow Outcome Scale (mGOS) was applied 12 months after disease onset. Results The mGOS improvement rate in the tDCS group (37.1%) was higher than the control value (22.0%). Linear regression analysis revealed that the local and remote cortical networks under unaffected pain stimulation conditions and the remote cortical network under affected pain stimulation conditions were the main relevant factors for mGOS improvement. Furthermore, the difference in prefrontal-parietal cortical network was used to examine the sensitivity of prognostic assessment in UWS patients. The results showed that prognostic sensitivity could be increased from 54.5% (control group) to 84.6% (tDCS group). Conclusions This study proposes a tDCS-EEG protocol for predicting the prognosis of UWS. With multi-target tDCS combined with EEG, the sensitivity of prognostic assessment in patients with UWS was improved. The recovery might be related to improved prefrontal-parietal cortical networks of the unaffected hemisphere.
Collapse
Affiliation(s)
- Baohu Liu
- Department of Rehabilitation, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Zhang
- Department of Rehabilitation, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Li
- Department of Rehabilitation, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoping Duan
- Department of Rehabilitation, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Hou
- Department of Rehabilitation, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayi Zhao
- Department of Rehabilitation, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongyu Wu
- Department of Rehabilitation, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Dongyu Wu
| |
Collapse
|
14
|
Zhang C, Han S, Li Z, Wang X, Lv C, Zou X, Zhu F, Zhang K, Lu S, Bie L, Lv G, Guo Y. Multidimensional Assessment of Electroencephalography in the Neuromodulation of Disorders of Consciousness. Front Neurosci 2022; 16:903703. [PMID: 35812212 PMCID: PMC9260110 DOI: 10.3389/fnins.2022.903703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the present study, we aimed to elucidate changes in electroencephalography (EEG) metrics during recovery of consciousness and to identify possible clinical markers thereof. More specifically, in order to assess changes in multidimensional EEG metrics during neuromodulation, we performed repeated stimulation using a high-density transcranial direct current stimulation (HD-tDCS) protocol in 42 patients with disorders of consciousness (DOC). Coma Recovery Scale-Revised (CRS-R) scores and EEG metrics [brain network indicators, spectral energy, and normalized spatial complexity (NSC)] were obtained before as well as fourteen days after undergoing HD-tDCS stimulation. CRS-R scores increased in the responders (R +) group after HD-tDCS stimulation. The R + group also showed increased spectral energy in the alpha2 and beta1 bands, mainly at the frontal and parietal electrodes. Increased graphical metrics in the alpha1, alpha2, and beta1 bands combined with increased NSC in the beta2 band in the R + group suggested that improved consciousness was associated with a tendency toward stronger integration in the alpha1 band and greater isolation in the beta2 band. Following this, using NSC as a feature to predict responsiveness through machine learning, which yielded a prediction accuracy of 0.929, demonstrated that the NSC of the alpha and gamma bands at baseline successfully predicted improvement in consciousness. According to our findings reported herein, we conclude that neuromodulation of the posterior lobe can lead to an EEG response related to consciousness in DOC, and that the posterior cortex may be one of the key brain areas involved in the formation or maintenance of consciousness.
Collapse
Affiliation(s)
- Chunyun Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Shuai Han
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Zean Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - XinJun Wang
- Department of Neurosurgery, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Xiangyun Zou
- Department of Pediatrics, Qilu Hospital of Shandong University, Qingdao, China
| | - Fulei Zhu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Kang Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Shouyong Lu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Li Bie
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yongkun Guo
- Department of Neurosurgery, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Prevention and Treatment of Brain Injury, Zhengzhou, China
| |
Collapse
|
15
|
Barra A, Monti M, Thibaut A. Noninvasive Brain Stimulation Therapies to Promote Recovery of Consciousness: Where We Are and Where We Should Go. Semin Neurol 2022; 42:348-362. [PMID: 36100229 DOI: 10.1055/s-0042-1755562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Therapeutic options for patients with disorders of consciousness (DoC) are still underexplored. Noninvasive brain stimulation (NIBS) techniques modulate neural activity of targeted brain areas and hold promise for the treatment of patients with DoC. In this review, we provide a summary of published research using NIBS as therapeutic intervention for DoC patients, with a focus on (but not limited to) randomized controlled trials (RCT). We aim to identify current challenges and knowledge gaps specific to NIBS research in DoC. Furthermore, we propose possible solutions and perspectives for this field. Thus far, the most studied technique remains transcranial electrical stimulation; however, its effect remains moderate. The identified key points that NIBS researchers should focus on in future studies are (1) the lack of large-scale RCTs; (2) the importance of identifying the endotypes of responders; and (3) the optimization of stimulation parameters to maximize the benefits of NIBS.
Collapse
Affiliation(s)
- Alice Barra
- Coma Science Group, GIGA Consciousness - GIGA Research, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Martin Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, California.,Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness - GIGA Research, University of Liège, Liège, Belgium.,Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
16
|
Barra A, Rosenfelder M, Mortaheb S, Carrière M, Martens G, Bodien YG, Morales-Quezada L, Bender A, Laureys S, Thibaut A, Fregni F. Transcranial Pulsed-Current Stimulation versus Transcranial Direct Current Stimulation in Patients with Disorders of Consciousness: A Pilot, Sham-Controlled Cross-Over Double-Blind Study. Brain Sci 2022; 12:429. [PMID: 35447961 PMCID: PMC9031379 DOI: 10.3390/brainsci12040429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) over the prefrontal cortex can improve signs of consciousness in patients in a minimally conscious state. Transcranial pulsed-current stimulation (tPCS) over the mastoids can modulate brain activity and connectivity in healthy controls. This study investigated the feasibility of tPCS as a therapeutic tool in patients with disorders of consciousness (DoC) and compared its neurophysiological and behavioral effects with prefrontal tDCS. This pilot study was a randomized, double-blind sham-controlled clinical trial with three sessions: bi-mastoid tPCS, prefrontal tDCS, and sham. Electroencephalography (EEG) and behavioral assessments were collected before and after each stimulation session. Post minus pre differences were compared using Kruskal-Wallis and Wilcoxon signed-rank tests. Twelve patients with DoC were included in the study (eight females, four traumatic brain injury, 50.3 ± 14 y.o., 8.8 ± 10.5 months post-injury). We did not observe any side-effects following tPCS, nor tDCS, and confirmed their feasibility and safety. We did not find a significant effect of the stimulation on EEG nor behavioral outcomes for tPCS. However, consistent with prior findings, our exploratory analyses suggest that tDCS induces behavioral improvements and an increase in theta frontal functional connectivity.
Collapse
Affiliation(s)
- Alice Barra
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
| | - Martin Rosenfelder
- Department of Neurology, Therapiezentrum Burgau, Kapuzinerstrasse 34, 89331 Burgau, Germany; (M.R.); (A.B.)
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, 89081 Ulm, Germany
| | - Sepehr Mortaheb
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Physiology of Cognition Lab, GIGA-Consciousness, University of Liège, 4000 Liège, Belgium
| | - Manon Carrière
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
| | - Geraldine Martens
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
| | - Yelena G. Bodien
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leon Morales-Quezada
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.B.); (L.M.-Q.)
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Andreas Bender
- Department of Neurology, Therapiezentrum Burgau, Kapuzinerstrasse 34, 89331 Burgau, Germany; (M.R.); (A.B.)
- Department of Neurology, Ludwig-Maximilians University (LMU), 81377 Munich, Germany
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre CIUSS, University Laval, Quebec, QC G1E1T2, Canada
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness-GIGA Research, University of Liège, 4000 Liège, Belgium; (A.B.); (S.M.); (M.C.); (G.M.); (S.L.)
- Centre du Cerveau, University Hospital of Liège, 4000 Liège, Belgium
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
17
|
Zhang Y, Chen W, Zhang T, Du J, Li R, Huo R, Song W. P300 correlates with tDCS response in minimally conscious state patients. Neurosci Lett 2022; 774:136534. [PMID: 35181480 DOI: 10.1016/j.neulet.2022.136534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Several recent studies indicated that transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex (DLPFC) showed promising results in patients in a minimally conscious state (MCS). However, the neurological characteristics of patients in MCS considered to be tDCS responders have not been firmly established. OBJECTIVES In the current study, we aimed to explore a reliable electrophysiological biomarker of tDCS response before the patients' inclusion in a tDCS protocol. METHOD A hierarchical auditory event-related potential (ERP) pattern was applied to thirty-one MCS patients who subsequently received 20 anodal tDCS sessions of the left DLPFC over 10 consecutive working days. The patients were divided into responders and non-responders according to the Coma Recovery Scale-Revised (CRS-R) behavioral evaluation, and the differences in cortical information processing were compared using the P300 component in the ERP pattern. RESULTS For the Tone-SON (TO) paradigm, CRS-R score (OR = 2.229, 95% CI: 1.241-4.005, P = .007) at admission was independently associated with tDCS response, while in the SDN-SON (DO) paradigm, CRS-R score at admission (OR = 2.369, 95% CI: 1.143-4.908, P = .020) and P300 (OR = 22.795, 95% CI: 1.823-285.038, P = .015) were independently associated with tDCS response in MCS patients. CONCLUSION Our findings showed that higher total CRS-R score and presence of P300 in the hierarchical auditory ERP pattern, especially P300 in the DO paradigm, are associated with tDCS response in MCS patients. We speculate that P300 in the DO paradigm indicates patients with more preserved semantic processing abilities, and a priority to recover. The results provide important information for guidelines on the use of tDCS in MCS patients.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Weiguan Chen
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Tiantian Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Rui Li
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Renchao Huo
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
18
|
Aloi D, Jalali R, Tilsley P, Miall RC, Fernández-Espejo D. tDCS modulates effective connectivity during motor command following; a potential therapeutic target for disorders of consciousness. Neuroimage 2022; 247:118781. [PMID: 34879252 PMCID: PMC8803542 DOI: 10.1016/j.neuroimage.2021.118781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/22/2021] [Accepted: 12/04/2021] [Indexed: 12/27/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is attracting increasing interest as a potential therapeutic route for unresponsive patients with prolonged disorders of consciousness (PDOC). However, research to date has had mixed results. Here, we propose a new direction by directly addressing the mechanisms underlying lack of responsiveness in PDOC, and using these to define our targets and the success of our intervention in the healthy brain first. We report 2 experiments that assess whether tDCS to the primary motor cortex (M1-tDCS; Experiment 1) and the cerebellum (cb-tDCS; Experiment 2) administered at rest modulate thalamo-cortical coupling in a subsequent command following task typically used to clinically assess awareness. Both experiments use sham- and polarity-controlled, randomised, double-blind, crossover designs. In Experiment 1, 22 participants received anodal, cathodal, and sham M1-tDCS sessions while in the MRI scanner. A further 22 participants received the same protocol with cb-tDCS in Experiment 2. We used Dynamic Causal Modelling of fMRI to characterise the effects of tDCS on brain activity and dynamics during simple thumb movements in response to command. We found that M1-tDCS increased thalamic excitation and that Cathodal cb-tDCS increased excitatory coupling from thalamus to M1. All these changes were polarity specific. Combined, our experiments demonstrate that tDCS can successfully modulate long range thalamo-cortical dynamics during command following via targeting of cortical regions. This suggests that M1- and cb-tDCS may allow PDOC patients to overcome the motor deficits at the root of their reduced responsiveness, improving their rehabilitation options and quality of life as a result.
Collapse
Affiliation(s)
- Davide Aloi
- School of Psychology, University of Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, United Kingdom
| | - Roya Jalali
- School of Psychology, University of Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, United Kingdom
| | - Penelope Tilsley
- School of Psychology, University of Birmingham, United Kingdom; Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, Marseille, France
| | - R Chris Miall
- School of Psychology, University of Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, United Kingdom
| | - Davinia Fernández-Espejo
- School of Psychology, University of Birmingham, United Kingdom; Centre for Human Brain Health, University of Birmingham, United Kingdom.
| |
Collapse
|
19
|
Zhang X, Liu B, Li Y, Duan G, Hou J, Wu D. Multi-Target and Multi-Session Transcranial Direct Current Stimulation in Patients With Prolonged Disorders of Consciousness: A Controlled Study. Front Neurosci 2021; 15:641951. [PMID: 34566555 PMCID: PMC8456025 DOI: 10.3389/fnins.2021.641951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives: To investigate the effect of multi-session transcranial direct current stimulation (tDCS) over the prefrontal area, left dorsolateral prefrontal cortex (DLPFC), and bilateral fronto-temporo-parietal cortices (FTPCs) in patients with prolonged disorders of consciousness (DOC) and to examine the altered cortical interconnections using non-linear electroencephalography (EEG). Methods: In this open-label controlled study, conventional treatments were implemented in both the control and tDCS groups, together with 80 tDCS sessions only in the tDCS group. The order of tDCS targets was as follows: prefrontal area, left FTPC, right FTPC, and left DLPFC. The Coma Recovery Scale-Revised (CRS-R) and non-linear EEG index were evaluated before and after the treatment. Additionally, the modified Glasgow Outcome Scale (mGOS) was used as a follow-up evaluation at 12 months after the disease onset. Results: The CRS-R improved significantly in both groups after the treatment. However, the CRS-R and mGOS were more significantly improved in the tDCS group than in the control group. Among the cross approximate entropy (C-ApEn) indices, the local CA-PA and CA-FA under the affected painful stimulus condition and all local and remote indices of the unaffected side under the unaffected painful stimulus condition were significantly higher in the tDCS group than in the control group. Multivariate logistic regression analysis revealed that group and type were the main relevant factors based on mGOS improvement. Multivariate linear regression analysis revealed that group, CA-FA, and CU-MTU were the main relevant factors based on CRS-R improvement under the affected painful stimulus conditions, whereas only CU-MTU and CU-FPU were relevant under the unaffected painful stimulus condition. Conclusion: Multi-target and multi-session tDCS could improve the cortical connections between the primary sensorimotor and frontal cortices of the affected hemisphere and the prefrontal-parietal and temporo-parietal associative cortical networks of the unaffected hemisphere. Thus, this tDCS protocol may be used as an add-on treatment for prolonged DOC.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baohu Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Li
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoping Duan
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Hou
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongyu Wu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Phillips A, Sami S, Adamson M. Sex Differences in Neuromodulation Treatment Approaches for Traumatic Brain Injury: A Scoping Review. J Head Trauma Rehabil 2021; 35:412-429. [PMID: 33165154 DOI: 10.1097/htr.0000000000000631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Neuromodulatory brain stimulation interventions for traumatic brain injury (TBI)-related health sequelae, such as psychiatric, cognitive, and pain disorders, are on the rise. Because of disproportionate recruitment and epidemiological reporting of TBI-related research in men, there is limited understanding of TBI development, pathophysiology, and treatment intervention outcomes in women. With data suggesting sex-related variances in treatment outcomes, it is important that these gaps are addressed in emerging, neuromodulatory treatment approaches for TBI populations. METHODS Four research databases (PubMED, EMBASE, CINAHL, and PsycINFO) were electronically searched in February 2020. DESIGN This PRISMA Scoping Review (PRISMA-ScR)-guided report contextualizes the importance of reporting sex differences in TBI + neuromodulatory intervention studies and summarizes the current state of reporting sex differences when investigating 3 emerging interventions for TBI outcomes. RESULTS Fifty-four studies were identified for the final review including 12 controlled trials, 16 single or case series reports, and 26 empirical studies. Across all studies reviewed, 68% of participants were male, and only 7 studies reported sex differences as a part of their methodological approach, analysis, or discussion. CONCLUSION This review is hoped to update the TBI community on the current state of evidence in reporting sex differences across these 3 neuromodulatory treatments of post-TBI sequelae. The proposed recommendations aim to improve future research and clinical treatment of all individuals suffering from post-TBI sequelae.
Collapse
Affiliation(s)
- Angela Phillips
- Department of Rehabilitation, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (Drs Phillips and Adamson and Mr Sami); and Departments of Psychiatry & Behavioral Sciences (Dr Phillips) and Neurosurgery (Dr Adamson), Stanford School of Medicine, Stanford, California
| | | | | |
Collapse
|
21
|
Treating Traumatic Brain Injuries with Electroceuticals: Implications for the Neuroanatomy of Consciousness. NEUROSCI 2021. [DOI: 10.3390/neurosci2030018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
According to the Centers for Disease Control and Prevention (CDC), traumatic brain injury (TBI) is the leading cause of loss of consciousness, long-term disability, and death in children and young adults (age 1 to 44). Currently, there are no United States Food and Drug Administration (FDA) approved pharmacological treatments for post-TBI regeneration and recovery, particularly related to permanent disability and level of consciousness. In some cases, long-term disorders of consciousness (DoC) exist, including the vegetative state/unresponsive wakefulness syndrome (VS/UWS) characterized by the exhibition of reflexive behaviors only or a minimally conscious state (MCS) with few purposeful movements and reflexive behaviors. Electroceuticals, including non-invasive brain stimulation (NIBS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS) have proved efficacious in some patients with TBI and DoC. In this review, we examine how electroceuticals have improved our understanding of the neuroanatomy of consciousness. However, the level of improvements in general arousal or basic bodily and visual pursuit that constitute clinically meaningful recovery on the Coma Recovery Scale-Revised (CRS-R) remain undefined. Nevertheless, these advancements demonstrate the importance of the vagal nerve, thalamus, reticular activating system, and cortico-striatal-thalamic-cortical loop in the process of consciousness recovery.
Collapse
|
22
|
Aloi D, della Rocchetta AI, Ditchfield A, Coulborn S, Fernández-Espejo D. Therapeutic Use of Transcranial Direct Current Stimulation in the Rehabilitation of Prolonged Disorders of Consciousness. Front Neurol 2021; 12:632572. [PMID: 33897592 PMCID: PMC8058460 DOI: 10.3389/fneur.2021.632572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022] Open
Abstract
Patients with Prolonged Disorders of Consciousness (PDOC) have catastrophic disabilities and very complex needs for care. Therapeutic options are very limited, and patients often show little functional improvement over time. Neuroimaging studies have demonstrated that a significant number of PDOC patients retain a high level of cognitive functioning, and in some cases even awareness, and are simply unable to show this with their external behavior - a condition known as cognitive-motor dissociation (CMD). Despite vast implications for diagnosis, the discovery of covert cognition in PDOC patients is not typically associated with a more favorable prognosis, and the majority of patients will remain in a permanent state of low responsiveness. Recently, transcranial direct current stimulation (tDCS) has attracted attention as a potential therapeutic tool in PDOC. Research to date suggests that tDCS can lead to clinical improvements in patients with a minimally conscious state (MCS), especially when administered over multiple sessions. While promising, the outcomes of these studies have been highly inconsistent, partially due to small sample sizes, heterogeneous methodologies (in terms of both tDCS parameters and outcome measures), and limitations related to electrode placement and heterogeneity of brain damage inherent to PDOC. In addition, we argue that neuroimaging and electrophysiological assessments may serve as more sensitive biomarkers to identify changes after tDCS that are not yet apparent behaviorally. Finally, given the evidence that concurrent brain stimulation and physical therapy can enhance motor rehabilitation, we argue that future studies should focus on the integration of tDCS with conventional rehabilitation programmes from the subacute phase of care onwards, to ascertain whether any synergies exist.
Collapse
Affiliation(s)
- Davide Aloi
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | | | - Alice Ditchfield
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Sean Coulborn
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Davinia Fernández-Espejo
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Abstract
Background: Reviving patients with prolonged disorders of consciousness (DOCs) has always been focused and challenging in medical research. Owing to the limited effectiveness of available medicine, recent research has increasingly turned towards neuromodulatory therapies, involving the stimulation of neural circuits. We summarised the progression of research regarding neuromodulatory therapies in the field of DOCs, compared the differences among different studies, in an attempt to explore optimal stimulation patterns and parameters, and analyzed the major limitations of the relevant studies to facilitate future research. Methods: We performed a search in the PubMed database, using the concepts of DOCs and neuromodulation. Inclusion criteria were: articles in English, published after 2002, and reporting clinical trials of neuromodulatory therapies in human patients with DOCs. Results: Overall, 187 published articles met the search criteria, and 60 articles met the inclusion criteria. There are differences among these studies regarding the clinical efficacies of neurostimulation techniques for patients with DOCs, and large-sample studies are still lacking. Conclusions: Neuromodulatory techniques were used as trial therapies for DOCs wherein their curative effects were controversial. The difficulties in detecting residual consciousness, the confounding effect between the natural course of the disease and therapeutic effect, and the heterogeneity across patients are the major limitations. Large-sample, well-designed studies, and innovations for both treatment and assessment are anticipated in future research.
Collapse
|
24
|
Feng Y, Zhang J, Zhou Y, Bai Z, Yin Y. Noninvasive brain stimulation for patients with a disorder of consciousness: a systematic review and meta-analysis. Rev Neurosci 2020; 31:/j/revneuro.ahead-of-print/revneuro-2020-0033/revneuro-2020-0033.xml. [PMID: 32845870 DOI: 10.1515/revneuro-2020-0033] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023]
Abstract
Noninvasive brain stimulation (NIBS) techniques have been used to facilitate the recovery from prolonged unconsciousness as a result of brain injury. The aim of this study is to systematically assess the effects of NIBS in patients with a disorder of consciousness (DOC). We searched four databases for any randomized controlled trials on the effect of NIBS in patients with a DOC, which used the JFK Coma Recovery Scale-Revised (CRS-R) as the primary outcome measure. A random-effects meta-analysis was conducted to pool effect sizes. Fourteen studies with 273 participants were included in this review, of which 12 studies with sufficient data were included in the meta-analysis. Our meta-analysis showed a significant effect on increasing CRS-R scores in favor of real stimulation as compared to sham (Hedges' g = 0.522; 95% confidence interval [CI], 0.318-0.726; P < 0.0001, I2 = 0.00%). Subgroup analysis demonstrated that only anodal transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex (DLPFC) significantly enhances the CRS-R scores in patients with a DOC, as compared to sham (Hedges' g = 0.703; 95% CI, 0.419-0.986; P < 0.001), and this effect was predominant in patients in a minimally conscious state (MCS) (Hedges' g = 0.815; 95% CI, 0.429-1.200; P < 0.001). Anodal tDCS of the left DLPFC appears to be an effective approach for patients with MCS.
Collapse
Affiliation(s)
- Yali Feng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road 74, Chongqing 400010, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yi Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road 74, Chongqing 400010, China
| | - Zhongfei Bai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Occupational Therapy, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road 74, Chongqing 400010, China
| |
Collapse
|
25
|
Modolo J, Hassan M, Wendling F, Benquet P. Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks. Netw Neurosci 2020; 4:315-337. [PMID: 32537530 PMCID: PMC7286300 DOI: 10.1162/netn_a_00119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/09/2019] [Indexed: 01/25/2023] Open
Abstract
Identifying the physiological processes underlying the emergence and maintenance of consciousness is one of the most fundamental problems of neuroscience, with implications ranging from fundamental neuroscience to the treatment of patients with disorders of consciousness (DOCs). One major challenge is to understand how cortical circuits at drastically different spatial scales, from local networks to brain-scale networks, operate in concert to enable consciousness, and how those processes are impaired in DOC patients. In this review, we attempt to relate available neurophysiological and clinical data with existing theoretical models of consciousness, while linking the micro- and macrocircuit levels. First, we address the relationships between awareness and wakefulness on the one hand, and cortico-cortical and thalamo-cortical connectivity on the other hand. Second, we discuss the role of three main types of GABAergic interneurons in specific circuits responsible for the dynamical reorganization of functional networks. Third, we explore advances in the functional role of nested oscillations for neural synchronization and communication, emphasizing the importance of the balance between local (high-frequency) and distant (low-frequency) activity for efficient information processing. The clinical implications of these theoretical considerations are presented. We propose that such cellular-scale mechanisms could extend current theories of consciousness.
Collapse
Affiliation(s)
- Julien Modolo
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | - Mahmoud Hassan
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | | | - Pascal Benquet
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| |
Collapse
|