1
|
Chrobak AA, Pańczyszyn-Trzewik P, Król P, Pawelec-Bąk M, Dudek D, Siwek M. New Light on Prions: Putative Role of PrP c in Pathophysiology of Mood Disorders. Int J Mol Sci 2024; 25:2967. [PMID: 38474214 PMCID: PMC10932175 DOI: 10.3390/ijms25052967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Mood disorders are highly prevalent and heterogenous mental illnesses with devastating rates of mortality and treatment resistance. The molecular basis of those conditions involves complex interplay between genetic and environmental factors. Currently, there are no objective procedures for diagnosis, prognosis and personalization of patients' treatment. There is an urgent need to search for novel molecular targets for biomarkers in mood disorders. Cellular prion protein (PrPc) is infamous for its potential to convert its insoluble form, leading to neurodegeneration in Creutzfeldt-Jacob disease. Meanwhile, in its physiological state, PrPc presents neuroprotective features and regulates neurotransmission and synaptic plasticity. The aim of this study is to integrate the available knowledge about molecular mechanisms underlying the impact of PrPc on the pathophysiology of mood disorders. Our review indicates an important role of this protein in regulation of cognitive functions, emotions, sleep and biological rhythms, and its deficiency results in depressive-like behavior and cognitive impairment. PrPc plays a neuroprotective role against excitotoxicity, oxidative stress and inflammation, the main pathophysiological events in the course of mood disorders. Research indicates that PrPc may be a promising biomarker of cognitive decline. There is an urgent need of human studies to elucidate its potential utility in clinical practice.
Collapse
Affiliation(s)
- Adrian Andrzej Chrobak
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland; (A.A.C.); (P.K.); (D.D.)
| | - Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| | - Patrycja Król
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland; (A.A.C.); (P.K.); (D.D.)
| | - Magdalena Pawelec-Bąk
- Department of Affective Disorders, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland;
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland; (A.A.C.); (P.K.); (D.D.)
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kopernika 21A, 31-501 Kraków, Poland;
| |
Collapse
|
2
|
Rauchman SH, Pinkhasov A, Gulkarov S, Placantonakis DG, De Leon J, Reiss AB. Maximizing the Clinical Value of Blood-Based Biomarkers for Mild Traumatic Brain Injury. Diagnostics (Basel) 2023; 13:3330. [PMID: 37958226 PMCID: PMC10650880 DOI: 10.3390/diagnostics13213330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Mild traumatic brain injury (TBI) and concussion can have serious consequences that develop over time with unpredictable levels of recovery. Millions of concussions occur yearly, and a substantial number result in lingering symptoms, loss of productivity, and lower quality of life. The diagnosis may not be made for multiple reasons, including due to patient hesitancy to undergo neuroimaging and inability of imaging to detect minimal damage. Biomarkers could fill this gap, but the time needed to send blood to a laboratory for analysis made this impractical until point-of-care measurement became available. A handheld blood test is now on the market for diagnosis of concussion based on the specific blood biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl terminal hydrolase L1 (UCH-L1). This paper discusses rapid blood biomarker assessment for mild TBI and its implications in improving prediction of TBI course, avoiding repeated head trauma, and its potential role in assessing new therapeutic options. Although we focus on the Abbott i-STAT TBI plasma test because it is the first to be FDA-cleared, our discussion applies to any comparable test systems that may become available in the future. The difficulties in changing emergency department protocols to include new technology are addressed.
Collapse
Affiliation(s)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | - Shelly Gulkarov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | | | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (A.P.); (S.G.); (J.D.L.)
| |
Collapse
|
3
|
Vanni I, Iacobone F, D’Agostino C, Giovannelli M, Pirisinu L, Altmeppen HC, Castilla J, Torres JM, Agrimi U, Nonno R. An optimized Western blot assay provides a comprehensive assessment of the physiological endoproteolytic processing of the prion protein. J Biol Chem 2022; 299:102823. [PMID: 36565989 PMCID: PMC9867980 DOI: 10.1016/j.jbc.2022.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The prion protein (PrPC) is subjected to several conserved endoproteolytic events producing bioactive fragments that are of increasing interest for their physiological functions and their implication in the pathogenesis of prion diseases and other neurodegenerative diseases. However, systematic and comprehensive investigations on the full spectrum of PrPC proteoforms have been hampered by the lack of methods able to identify all PrPC-derived proteoforms. Building on previous knowledge of PrPC endoproteolytic processing, we thus developed an optimized Western blot assay able to obtain the maximum information about PrPC constitutive processing and the relative abundance of PrPC proteoforms in a complex biological sample. This approach led to the concurrent identification of the whole spectrum of known endoproteolytic-derived PrPC proteoforms in brain homogenates, including C-terminal, N-terminal and, most importantly, shed PrPC-derived fragments. Endoproteolytic processing of PrPC was remarkably similar in the brain of widely used wild type and transgenic rodent models, with α-cleavage-derived C1 representing the most abundant proteoform and ADAM10-mediated shedding being an unexpectedly prominent proteolytic event. Interestingly, the relative amount of shed PrPC was higher in WT mice than in most other models. Our results indicate that constitutive endoproteolytic processing of PrPC is not affected by PrPC overexpression or host factors other than PrPC but can be impacted by PrPC primary structure. Finally, this method represents a crucial step in gaining insight into pathophysiological roles, biomarker suitability, and therapeutic potential of shed PrPC and for a comprehensive appraisal of PrPC proteoforms in therapies, drug screening, or in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Floriana Iacobone
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Giovannelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Joaquin Castilla
- Basque Research and Technology Alliance (BRTA) - CIC BioGUNE & IKERBasque, Bizkaia, Spain,Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
4
|
Wu X, Liu M, Yan T, Wang Z, Yu W, Du Q, Hu W, Zheng Y, Zhang Z, Wang K, Dong X. Plasma PRPC Levels Correlate With Severity and Prognosis of Intracerebral Hemorrhage. Front Neurol 2022; 13:913926. [PMID: 35899267 PMCID: PMC9309369 DOI: 10.3389/fneur.2022.913926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCellular prion protein (PRPC) exerts brain-protective effects. We determined the relationship between plasma PRPC levels and disease severity plus clinical outcome after acute intracerebral hemorrhage (ICH).MethodsA total of 138 ICH patients and 138 healthy controls were included in this prospective, observational study. Hematoma volume and Glasgow coma scale (GCS) score were used to assess disease severity. Glasgow outcome scale (GOS) scores of 1–3 and 4–5 at 90 days after stroke were defined as a poor outcome and good outcome, respectively. Using multivariate analysis, we discerned the relation of plasma PRPC levels to disease severity and poor outcome. The receiver operating characteristic (ROC) curve was built to evaluate the prognostic predictive capability.ResultsPlasma PRPC levels in ICH patients were significantly higher than those in healthy controls (median, 4.20 vs. 2.02 ng/ml; P < 0.001), and were independently correlated with GCS score (r = −0.645, P < 0.001) and hematoma volume (r = 0.627, P < 0.001). Plasma PRPC levels were highly correlated with GOS score (r = −0.762, P < 0.001), and were substantially higher in patients with poor outcomes than in those with the good outcomes. Using maximum Youden index, plasma PRPC levels >3.893 ng/ml distinguished the risk of poor outcome at 90 days, with a sensitivity of 86.4% and a specificity of 65.8% (area under the curve, 0.809; 95% confidence interval (CI), 0.737–0.881, P < 0.001). Plasma PRPC levels >3.893 ng/ml were independently associated with a poor 90-day outcome with an odds ratio of 12.278 (95% CI, 5.101–29.554).ConclusionElevated plasma PRPC levels are significantly associated with disease severity and poor 90-day outcome in ICH patients, indicating that plasma PRPC may be used as a potential prognostic biomarker after ICH.
Collapse
Affiliation(s)
- Xiaoyu Wu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ming Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tian Yan
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zefan Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Hu
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongke Zheng
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyong Zhang
- Department of Neurosurgery, Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Keyi Wang
- Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Keyi Wang
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Xiaoqiao Dong
| |
Collapse
|
5
|
Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M, Altmeppen HC. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell Tissue Res 2022; 392:215-234. [PMID: 35084572 PMCID: PMC10113312 DOI: 10.1007/s00441-022-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Working Group for Interdisciplinary Neurobiology and Immunology (INI Research), Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
6
|
Plasma ADAM-10 levels and functional outcome of acute primary basal ganglia hemorrhage. Clin Chim Acta 2022; 524:18-24. [PMID: 34852263 DOI: 10.1016/j.cca.2021.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The a-secretase A disintegrin and metalloprotease-10 (ADAM-10) may have deleterious effects in acute brain injury. This study was designed to discern if a relationship between plasma ADAM-10 levels and functional outcome exists in patients with intracerebral hemorrhage (ICH). METHODS A total of 109 patients with basal ganglia hemorrhage and 100 healthy controls were included. Their plasma ADAM-10 levels were gauged. Ninety-day prognosis was assessed and poor outcome was defined as death or major disability (modified Rankin Scale score of 3 or greater). RESULTS Plasma ADAM-10 levels were substantially elevated in patients, as compared to controls. ADAM-10 levels were independently correlated with hematoma size and National Institutes of Health Stroke Scale (NIHSS) score. Plasma ADAM-10, NIHSS score and hematoma size emerged as the independent predictors for 90-day poor outcome. Under receiver operating characteristic curve, plasma ADAM-10 levels exhibited similar prognostic capability, as compared to hematoma size and NIHSS score; moreover, it significantly improved prognostic abilities of NIHSS and hematoma size. CONCLUSIONS Rising plasma ADAM-10 levels are independently related to increasing severity and poor long-term functional outcome after hemorrhagic stroke, substantializing serum ADAM-10 as a useful prognostic biomarker of ICH.
Collapse
|
7
|
Yao H, Lv C, Luo F, He C. Plasma cellular prion protein concentrations correlate with severity and prognosis of aneurysmal subarachnoid hemorrhage. Clin Chim Acta 2021; 523:114-119. [PMID: 34537219 DOI: 10.1016/j.cca.2021.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cellular prion protein (PrPc) is greatly expressed in injured brain tissues. We investigates correlation of plasma PrPc concentrations with severity, delayed cerebral ischemia (DCI) plus prognosis following aneurysmal subarachnoid hemorrhage (aSAH). METHODS Plasma PrPc concentrations were measured in 110 aSAH patients and 110 healthy controls. The World Federation of Neurological Surgeons scale (WFNS) score, Glasgow coma scale (GCS) score, Hunt-Hess score and modified Fisher score were utilized to assess hemorrhagic severity. Relations of plasma PrPc concentrations to DCI and 90-day poor outcome (Glasgow outcome scale score of 1-3) were analyzed using multivariate analysis. Prognostic predictive capabilities were determined under receiver operating characteristic curve. RESULTS Plasma PrPc concentrations were significantly higher in patients than in controls. Plasma PrPc concentrations were tightly correlated with WFNS score, GCS score, Hunt-Hess score and modified Fisher score. Plasma PrPc emerged as an independent predictor for 90-day poor outcome, but not for DCI. Plasma PrPc concentrations exhibited similar prognostic predictive abilities, as compared to WFNS score, GCS score, Hunt-Hess score and modified Fisher score. CONCLUSIONS Plasma PrPc concentrations are highly associated with severity and poor outcome after hemorrhagic stroke, indicating that plasma PrPc may serve as a useful prognostic biomarker for aSAH.
Collapse
Affiliation(s)
- Hongfeng Yao
- Medical Laboratory, Zhuji Affiliated Hospital of Wenzhou Medical University, 9 Jianmin Road, Zhuji 311800, China
| | - Caiping Lv
- Medical Laboratory, Zhuji Affiliated Hospital of Wenzhou Medical University, 9 Jianmin Road, Zhuji 311800, China
| | - Fangjun Luo
- Medical Laboratory, Zhuji Affiliated Hospital of Wenzhou Medical University, 9 Jianmin Road, Zhuji 311800, China.
| | - Chao He
- Department of Neurosurgery, Zhuji Affiliated Hospital of Wenzhou Medical University, 9 Jianmin Road, Zhuji 311800, China
| |
Collapse
|
8
|
Sekar S, Viswas RS, Miranzadeh Mahabadi H, Alizadeh E, Fonge H, Taghibiglou C. Concussion/Mild Traumatic Brain Injury (TBI) Induces Brain Insulin Resistance: A Positron Emission Tomography (PET) Scanning Study. Int J Mol Sci 2021; 22:9005. [PMID: 34445708 PMCID: PMC8396497 DOI: 10.3390/ijms22169005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 01/07/2023] Open
Abstract
Brain injury/concussion is a growing epidemic throughout the world. Although evidence supports association between traumatic brain injury (TBI) and disturbance in brain glucose metabolism, the underlying molecular mechanisms are not well established. Previously, we reported the release of cellular prion protein (PrPc) from the brain to circulation following TBI. The PrPc level was also found to be decreased in insulin-resistant rat brains. In the present study, we investigated the molecular link between PrPc and brain insulin resistance in a single and repeated mild TBI-induced mouse model. Mild TBI was induced in mice by dropping a weight (~95 g at 1 m high) on the right side of the head. The procedure was performed once and thrice (once daily) for single (SI) and repeated induction (RI), respectively. Micro PET/CT imaging revealed that RI mice showed significant reduction in cortical, hippocampal and cerebellum glucose uptake compared to SI and control. Mice that received RI also showed significant motor and cognitive deficits. In co-immunoprecipitation, the interaction between PrPc, flotillin and Cbl-associated protein (CAP) observed in the control mice brains was disrupted by RI. Lipid raft isolation showed decreased levels of PrPc, flotillin and CAP in the RI mice brains. Based on observation, it is clear that PrPc has an interaction with CAP and the dislodgment of PrPc from cell membranes may lead to brain insulin resistance in a mild TBI mouse model. The present study generated a new insight into the pathogenesis of brain injury, which may result in the development of novel therapy.
Collapse
Affiliation(s)
- Sathiya Sekar
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (S.S.); (H.M.M.)
| | - Raja Solomon Viswas
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada; (R.S.V.); (E.A.)
| | - Hajar Miranzadeh Mahabadi
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (S.S.); (H.M.M.)
| | - Elahe Alizadeh
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada; (R.S.V.); (E.A.)
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada; (R.S.V.); (E.A.)
- Department of Medical Imaging, Royal University Hospital (RUH), Saskatoon, SK S7N 0W8, Canada
| | - Changiz Taghibiglou
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (S.S.); (H.M.M.)
| |
Collapse
|