1
|
Guebert A, Roumeliotis M, Wu CHD, Long K, Logie N, Graham T, Gourley A, Craighead P, Sia M, Quirk S. The transition in practice to reduce bolus use in post-mastectomy radiotherapy: A dosimetric study of skin and subcutaneous tissue. Med Dosim 2023; 48:113-117. [PMID: 36907800 DOI: 10.1016/j.meddos.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/12/2023]
Abstract
To inform clinical practice for women receiving post-mastectomy radiotherapy (PMRT), this study demonstrates the dosimetric impact of removing daily bolus on skin and subcutaneous tissue. Two planning strategies were used: clinical field-based (n = 30) and volume-based planning (n = 10). The clinical field-based plans were created with bolus and recalculated without bolus for comparison. The volume-based plans were created with bolus to ensure a minimum target coverage of the chest wall PTV and recalculated without bolus. In each scenario, the dose to superficial structures, including skin (3 mm and 5 mm) and subcutaneous tissue (a 2 mm layer, 3 mm deep from surface) were reported. Additionally, the difference in the clinically evaluated dosimetry to skin and subcutaneous tissue in volume-based plans were recalculated using Acuros (AXB) and compared to the Anisotropic Analytical Algorithm (AAA) algorithm. For all treatment planning strategies, chest wall coverage (V90%) was maintained. As expected, superficial structures demonstrate significant loss in coverage. The largest difference observed in the most superficial 3 mm where V90% coverage is reduced from a mean (± standard deviation) of 95.1% (± 2.8) to 18.9% (± 5.6) for clinical field-based treatments with and without bolus, respectively. For volume-based planning, the subcutaneous tissue maintains a V90% of 90.5% (± 7.0) compared to the clinical field-based planning coverage of 84.4% (± 8.0). In all skin and subcutaneous tissue, the AAA algorithm underestimates the volume of the 90% isodose. Removing bolus results in minimal dosimetric differences in the chest wall and significantly lower skin dose while dose to the subcutaneous tissue is maintained. Unless the skin has disease involvement, the most superficial 3 mm is not considered part of the target volume. The continued use of the AAA algorithm is supported for the PMRT setting.
Collapse
Affiliation(s)
- Alexandra Guebert
- Department of Physics & Astronomy, University of Calgary, Calgary, AB, Canada
| | - Michael Roumeliotis
- Department of Physics & Astronomy, University of Calgary, Calgary, AB, Canada; Department of Oncology, University of Calgary, Calgary, AB, Canada; Tom Baker Cancer Centre, Calgary, AB, Canada
| | | | - Karen Long
- Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Natalie Logie
- Department of Oncology, University of Calgary, Calgary, AB, Canada; Tom Baker Cancer Centre, Calgary, AB, Canada
| | | | | | - Peter Craighead
- Department of Oncology, University of Calgary, Calgary, AB, Canada; Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Michael Sia
- Department of Oncology, University of Calgary, Calgary, AB, Canada; Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Sarah Quirk
- Department of Physics & Astronomy, University of Calgary, Calgary, AB, Canada; Department of Oncology, University of Calgary, Calgary, AB, Canada; Tom Baker Cancer Centre, Calgary, AB, Canada.
| |
Collapse
|
2
|
Erickson BG, Cui Y, Ackerson BG, Kelsey CR, Yin FF, Niedzwiecki D, Adamson J. Uncertainties in the dosimetric heterogeneity correction and its potential effect on local control in lung SBRT. Biomed Phys Eng Express 2023; 9. [PMID: 36827685 DOI: 10.1088/2057-1976/acbeae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Objective. Dose calculation in lung stereotactic body radiation therapy (SBRT) is challenging due to the low density of the lungs and small volumes. Here we assess uncertainties associated with tissue heterogeneities using different dose calculation algorithms and quantify potential associations with local failure for lung SBRT.Approach. 164 lung SBRT plans were used. The original plans were prepared using Pencil Beam Convolution (PBC, n = 8) or Anisotropic Analytical Algorithm (AAA, n = 156). Each plan was recalculated with AcurosXB (AXB) leaving all plan parameters unchanged. A subset (n = 89) was calculated with Monte Carlo to verify accuracy. Differences were calculated for the planning target volume (PTV) and internal target volume (ITV) Dmean[Gy], D99%[Gy], D95%[Gy], D1%[Gy], and V100%[%]. Dose metrics were converted to biologically effective doses (BED) usingα/β= 10Gy. Regression analysis was performed for AAA plans investigating the effects of various parameters on the extent of the dosimetric differences. Associations between the magnitude of the differences for all plans and outcome were investigated using sub-distribution hazards analysis.Main results. For AAA cases, higher energies increased the magnitude of the difference (ΔDmean of -3.6%, -5.9%, and -9.1% for 6X, 10X, and 15X, respectively), as did lung volume (ΔD99% of -1.6% per 500cc). Regarding outcome, significant hazard ratios (HR) were observed for the change in the PTV and ITV D1% BEDs upon univariate analysis (p = 0.042, 0.023, respectively). When adjusting for PTV volume and prescription, the HRs for the change in the ITV D1% BED remained significant (p = 0.039, 0.037, respectively).Significance. Large differences in dosimetric indices for lung SBRT can occur when transitioning to advanced algorithms. The majority of the differences were not associated with local failure, although differences in PTV and ITV D1% BEDs were associated upon univariate analysis. This shows uncertainty in near maximal tumor dose to potentially be predictive of treatment outcome.
Collapse
Affiliation(s)
- Brett G Erickson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Yunfeng Cui
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Bradley G Ackerson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Christopher R Kelsey
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States of America
| | - Justus Adamson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
3
|
Arce P, Lagares JI, Azcona JD, Huesa-Berral C, Burguete J. Precise dosimetric comparison between GAMOS and the collapsed cone convolution algorithm of 4D DOSE accumulated in lung SBRT treatments. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Olofsson N, Wikström K, Flejmer A, Ahnesjö A, Dasu A. Dosimetric robustness of lung tumor photon radiotherapy evaluated from multiple event CT imaging. Phys Med 2022; 103:1-10. [PMID: 36182764 DOI: 10.1016/j.ejmp.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022] Open
Abstract
PURPOSE Intrafractional respiratory motion is a concern for lung tumor radiotherapy but full evaluation of its impact is hampered by the lack of images representing the true motion. This study presents a novel evaluation using free-breathing images acquired over realistic treatment times to study the dosimetric impact of respiratory motion in photon radiotherapy. METHODS Cine-CT images of 14 patients with lung cancer acquired during eight minutes of free-breathing at three occasions were used to simulate dose tracking of four different planning methods. These methods aimed to deliver 54 Gy in three fractions to D50% of the target and were denoted as robust 4D (RB4), homogeneous fluence to the ITV (FLU) and an isodose prescription to the ITV with a high central dose (ISD), concurrently renormalized (IRN). Differences in dose coverage probability and homogeneity between the methods were quantified. Correlations between underdosage and attributes regarding the tumor and its motion were investigated. RESULTS Despite tumor motion amplitudes being larger than in the 4DCT all but FLU achieved the intended CTV D50% for the cohort average. For all methods but IRN at least 93% of the patients would have received 95% of the intended dose. No differences in D50% were found between RB4 and ISD nor IRN. However, RB4 led to better homogeneity. CONCLUSIONS Tumor motion in free-breathing not covered by the 4DCT had a small impact on dose. The RB4 is recommended for planning of free-breathing treatments. No factor was found that consistently correlated dose degradation with patient or motion attributes.
Collapse
Affiliation(s)
- Nils Olofsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Kenneth Wikström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Uppsala University Hospital, Uppsala, Sweden
| | - Anna Flejmer
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Uppsala University Hospital, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| | - Anders Ahnesjö
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alexandru Dasu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| |
Collapse
|
5
|
Guebert A, Conroy L, Weppler S, Alghamdi M, Conway J, Harper L, Phan T, Olivotto IA, Smith WL, Quirk S. Clinical implementation of AXB from AAA for breast: Plan quality and subvolume analysis. J Appl Clin Med Phys 2018; 19:243-250. [PMID: 29696752 PMCID: PMC5978944 DOI: 10.1002/acm2.12329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/06/2017] [Accepted: 03/02/2018] [Indexed: 12/01/2022] Open
Abstract
Purpose Two dose calculation algorithms are available in Varian Eclipse software: Anisotropic Analytical Algorithm (AAA) and Acuros External Beam (AXB). Many Varian Eclipse‐based centers have access to AXB; however, a thorough understanding of how it will affect plan characteristics and, subsequently, clinical practice is necessary prior to implementation. We characterized the difference in breast plan quality between AXB and AAA for dissemination to clinicians during implementation. Methods Locoregional irradiation plans were created with AAA for 30 breast cancer patients with a prescription dose of 50 Gy to the breast and 45 Gy to the regional node, in 25 fractions. The internal mammary chain (IMCCTV) nodes were covered by 80% of the breast dose. AXB, both dose‐to‐water and dose‐to‐medium reporting, was used to recalculate plans while maintaining constant monitor units. Target coverage and organ‐at‐risk doses were compared between the two algorithms using dose–volume parameters. An analysis to assess location‐specific changes was performed by dividing the breast into nine subvolumes in the superior–inferior and left–right directions. Results There were minimal differences found between the AXB and AAA calculated plans. The median difference between AXB and AAA for breastCTVV95%, was <2.5%. For IMCCTV, the median differences V95%, and V80% were <5% and 0%, respectively; indicating IMCCTV coverage only decreased when marginally covered. Mean superficial dose increased by a median of 3.2 Gy. In the subvolume analysis, the medial subvolumes were “hotter” when recalculated with AXB and the lateral subvolumes “cooler” with AXB; however, all differences were within 2 Gy. Conclusion We observed minimal difference in magnitude and spatial distribution of dose when comparing the two algorithms. The largest observable differences occurred in superficial dose regions. Therefore, clinical implementation of AXB from AAA for breast radiotherapy is not expected to result in changes in clinical practice for prescribing or planning breast radiotherapy.
Collapse
Affiliation(s)
- Alexandra Guebert
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
| | - Leigh Conroy
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Division of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Sarah Weppler
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Division of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Majed Alghamdi
- Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Jessica Conway
- Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Lindsay Harper
- Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Tien Phan
- Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Ivo A Olivotto
- Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Wendy L Smith
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Division of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Sarah Quirk
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada.,Division of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Division of Radiation Oncology, Department of Oncology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Soufi M, Arimura H, Nakamoto T, Hirose TA, Ohga S, Umezu Y, Honda H, Sasaki T. Exploration of temporal stability and prognostic power of radiomic features based on electronic portal imaging device images. Phys Med 2018. [PMID: 29519407 DOI: 10.1016/j.ejmp.2017.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE We aimed to explore the temporal stability of radiomic features in the presence of tumor motion and the prognostic powers of temporally stable features. METHODS We selected single fraction dynamic electronic portal imaging device (EPID) (n = 275 frames) and static digitally reconstructed radiographs (DRRs) of 11 lung cancer patients, who received stereotactic body radiation therapy (SBRT) under free breathing. Forty-seven statistical radiomic features, which consisted of 14 histogram-based features and 33 texture features derived from the graylevel co-occurrence and graylevel run-length matrices, were computed. The temporal stability was assessed by using a multiplication of the intra-class correlation coefficients (ICCs) between features derived from the EPID and DRR images at three quantization levels. The prognostic powers of the features were investigated using a different database of lung cancer patients (n = 221) based on a Kaplan-Meier survival analysis. RESULTS Fifteen radiomic features were found to be temporally stable for various quantization levels. Among these features, seven features have shown potentials for prognostic prediction in lung cancer patients. CONCLUSIONS This study suggests a novel approach to select temporally stable radiomic features, which could hold prognostic powers in lung cancer patients.
Collapse
Affiliation(s)
- Mazen Soufi
- Graduate School of Medical Sciences, Kyushu University 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Research Fellow at Japan Society for the Promotion of Science 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Hidetaka Arimura
- Faculty of Medical Sciences, Kyushu University 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Takahiro Nakamoto
- Graduate School of Medical Sciences, Kyushu University 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Taka-Aki Hirose
- Graduate School of Medical Sciences, Kyushu University 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Saiji Ohga
- Faculty of Medical Sciences, Kyushu University 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshiyuki Umezu
- Kyushu University Hospital 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroshi Honda
- Faculty of Medical Sciences, Kyushu University 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomonari Sasaki
- Faculty of Medical Sciences, Kyushu University 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Chang ICF, Chen J, Yartsev S. Performance Characteristics of an Independent Dose Verification Program for Helical Tomotherapy. J Med Phys 2017; 42:156-162. [PMID: 28974862 PMCID: PMC5618463 DOI: 10.4103/jmp.jmp_48_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Helical tomotherapy with its advanced method of intensity-modulated radiation therapy delivery has been used clinically for over 20 years. The standard delivery quality assurance procedure to measure the accuracy of delivered radiation dose from each treatment plan to a phantom is time-consuming. RadCalc®, a radiotherapy dose verification software, has released specifically for beta testing a module for tomotherapy plan dose calculations. RadCalc®'s accuracy for tomotherapy dose calculations was evaluated through examination of point doses in ten lung and ten prostate clinical plans. Doses calculated by the TomoHDA™ tomotherapy treatment planning system were used as the baseline. For lung cases, RadCalc® overestimated point doses in the lung by an average of 13%. Doses within the spinal cord and esophagus were overestimated by 10%. Prostate plans showed better agreement, with overestimations of 6% in the prostate, bladder, and rectum. The systematic overestimation likely resulted from limitations of the pencil beam dose calculation algorithm implemented by RadCalc®. Limitations were more severe in areas of greater inhomogeneity and less prominent in regions of homogeneity with densities closer to 1 g/cm3. Recommendations for RadCalc® dose calculation algorithms and anatomical representation were provided based on the results of the study.
Collapse
Affiliation(s)
- Isaac C F Chang
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada
| | - Jeff Chen
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,Department of Oncology, Western University, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Slav Yartsev
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,Department of Oncology, Western University, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
8
|
Karlsson K, Lax I, Lindbäck E, Poludniowski G. Accuracy of the dose-shift approximation in estimating the delivered dose in SBRT of lung tumors considering setup errors and breathing motions. Acta Oncol 2017; 56:1189-1196. [PMID: 28388257 DOI: 10.1080/0284186x.2017.1310395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Geometrical uncertainties can result in a delivered dose to the tumor different from that estimated in the static treatment plan. The purpose of this project was to investigate the accuracy of the dose calculated to the clinical target volume (CTV) with the dose-shift approximation, in stereotactic body radiation therapy (SBRT) of lung tumors considering setup errors and breathing motion. The dose-shift method was compared with a beam-shift method with dose recalculation. MATERIAL AND METHODS Included were 10 patients (10 tumors) selected to represent a variety of SBRT-treated lung tumors in terms of tumor location, CTV volume, and tumor density. An in-house developed toolkit within a treatment planning system allowed the shift of either the dose matrix or a shift of the beam isocenter with dose recalculation, to simulate setup errors and breathing motion. Setup shifts of different magnitudes (up to 10 mm) and directions as well as breathing with different peak-to-peak amplitudes (up to 10:5:5 mm) were modeled. The resulting dose-volume histograms (DVHs) were recorded and dose statistics were extracted. RESULTS Generally, both the dose-shift and beam-shift methods resulted in calculated doses lower than the static planned dose, although the minimum (D98%) dose exceeded the prescribed dose in all cases, for setup shifts up to 5 mm. The dose-shift method also generally underestimated the dose compared with the beam-shift method. For clinically realistic systematic displacements of less than 5 mm, the results demonstrated that in the minimum dose region within the CTV, the dose-shift method was accurate to 2% (root-mean-square error). Breathing motion only marginally degraded the dose distributions. CONCLUSIONS Averaged over the patients and shift directions, the dose-shift approximation was determined to be accurate to approximately 2% (RMS) within the CTV, for clinically relevant geometrical uncertainties for SBRT of lung tumors.
Collapse
Affiliation(s)
- Kristin Karlsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology–Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ingmar Lax
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology–Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elias Lindbäck
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology–Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Gavin Poludniowski
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology–Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Diwanji TP, Mohindra P, Vyfhuis M, Snider JW, Kalavagunta C, Mossahebi S, Yu J, Feigenberg S, Badiyan SN. Advances in radiotherapy techniques and delivery for non-small cell lung cancer: benefits of intensity-modulated radiation therapy, proton therapy, and stereotactic body radiation therapy. Transl Lung Cancer Res 2017; 6:131-147. [PMID: 28529896 DOI: 10.21037/tlcr.2017.04.04] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 21st century has seen several paradigm shifts in the treatment of non-small cell lung cancer (NSCLC) in early-stage inoperable disease, definitive locally advanced disease, and the postoperative setting. A key driver in improvement of local disease control has been the significant evolution of radiation therapy techniques in the last three decades, allowing for delivery of definitive radiation doses while limiting exposure of normal tissues. For patients with locally-advanced NSCLC, the advent of volumetric imaging techniques has allowed a shift from 2-dimensional approaches to 3-dimensional conformal radiation therapy (3DCRT). The next generation of 3DCRT, intensity-modulated radiation therapy and volumetric-modulated arc therapy (VMAT), have enabled even more conformal radiation delivery. Clinical evidence has shown that this can improve the quality of life for patients undergoing definitive management of lung cancer. In the early-stage setting, conventional fractionation led to poor outcomes. Evaluation of altered dose fractionation with the previously noted technology advances led to advent of stereotactic body radiation therapy (SBRT). This technique has dramatically improved local control and expanded treatment options for inoperable, early-stage patients. The recent development of proton therapy has opened new avenues for improving conformity and the therapeutic ratio. Evolution of newer proton therapy techniques, such as pencil-beam scanning (PBS), could improve tolerability and possibly allow reexamination of dose escalation. These new progresses, along with significant advances in systemic therapies, have improved survival for lung cancer patients across the spectrum of non-metastatic disease. They have also brought to light new challenges and avenues for further research and improvement.
Collapse
Affiliation(s)
- Tejan P Diwanji
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Pranshu Mohindra
- University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Melissa Vyfhuis
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - James W Snider
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Chaitanya Kalavagunta
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Jen Yu
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland 21201, USA
| | - Steven Feigenberg
- University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Shahed N Badiyan
- University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| |
Collapse
|
10
|
Mayorga PA, Brualla L, Flühs A, Sauerwein W, Lallena AM. Testing Monte Carlo absolute dosimetry formalisms for a small field ‘D’-shaped collimator used in retinoblastoma external beam radiotherapy. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/6/065008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Chaikh A, Balosso J. Correlation between pneumonitis risk in radiation oncology and lung density measured with X-ray computed tomography. Quant Imaging Med Surg 2016; 6:413-417. [PMID: 27709077 DOI: 10.21037/qims.2016.08.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The risk of toxicity with radiation oncology for lung cancer limits the maximal radiation dose that can be delivered to thoracic tumors. This study aims at investigating the correlation between normal tissue complication probability (NTCP) and physical lung density by analyzing the computed tomography (CT) scan imaging used for radiotherapy dose planning. METHODS Data from CT of lung cancer patients (n=10), treated with three dimensional radiotherapy, were selected for this study. The dose was calculated using analytical anisotropic algorithm (AAA). Dose volume histograms (DVH) for healthy lung (lung excluding targets) were calculated. The NTCP for lung radiation induced pneumonitis was computed using initial radiobiological parameters from Lyman-Kutcher and Burman (LKB) model and readjusted parameters for AAA, with α/β=3. The correlation coefficient "rho" was calculated using Spearman's rank test. The bootstrap method was used to estimate the 95% confidence interval (95% CI). Wilcoxon paired test was used to calculate P values. RESULTS Bootstrapping simulation revealed significant difference between NTCP computed with the initial radiobiological parameters and that computed with the parameters readjusted for AAA (P=0.03). The results of simulations based on 1,000 replications showed no correlation for NTCP with density, with "rho" <0.3. CONCLUSIONS For a given set of patients, we assessed the correlation between NTCP and lung density using bootstrap analysis. The lack of correlation could result either from a very accurate dose calculation, by AAA, whatever the lung density yielding a NTCP result only dependant of the dose and not any more of the density; or to the very limited range of natural variation of relative electronic density (0.15 to 0.20) observed in this small series of patients. Another important parameter is the bootstrap simulation with 1,000 random samplings may have underestimated the correlation, since the initial data (n=10) showed a weak correlation.
Collapse
Affiliation(s)
- Abdulhamid Chaikh
- Department of Radiation Oncology and Medical physics, University Hospital of Grenoble, France
| | - Jacques Balosso
- Department of Radiation Oncology and Medical physics, University Hospital of Grenoble, France;; University Grenoble, Alpes, Grenoble, France
| |
Collapse
|
12
|
Xhaferllari I, El-Sherif O, Gaede S. Comprehensive dosimetric planning comparison for early-stage, non-small cell lung cancer with SABR: fixed-beam IMRT versus VMAT versus TomoTherapy. J Appl Clin Med Phys 2016; 17:329-340. [PMID: 27685129 PMCID: PMC5874107 DOI: 10.1120/jacmp.v17i5.6291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/07/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Volumetric-modulated arc therapy (VMAT) is emerging as a leading technology in treating early-stage, non-small cell lung cancer (NSCLC) with stereotactic ablative radiotherapy (SABR). However, two other modalities capable of deliver-ing intensity-modulated radiation therapy (IMRT) include fixed-beam and helical TomoTherapy (HT). This study aims to provide an extensive dosimetric compari-son among these various IMRT techniques for treating early-stage NSCLC with SABR. Ten early-stage NSCLC patients were retrospectively optimized using three fixed-beam techniques via nine to eleven beams (high and low modulation step-and-shoot (SS), and sliding window (SW)), two VMAT techniques via two partial arcs (SmartArc (SA) and RapidArc (RA)), and three HT techniques via three different fan beam widths (1 cm, 2.5 cm, and 5 cm) for 80 plans total. Fixed-beam and VMAT plans were generated using flattening filter-free beams. SS and SA, HT treatment plans, and SW and RA were optimized using Pinnacle v9.1, Tomoplan v.3.1.1, and Eclipse (Acuros XB v11.3 algorithm), respectively. Dose-volume histogram statistics, dose conformality, and treatment delivery efficiency were analyzed. VMAT treatment plans achieved significantly lower values for contralat-eral lung V5Gy (p ≤ 0.05) compared to the HT plans, and significantly lower mean lung dose (p < 0.006) compared to HT 5 cm treatment plans. In the comparison between the VMAT techniques, a significant reduction in the total monitor units (p = 0.05) was found in the SA plans, while a significant decrease was observed in the dose falloff parameter, D2cm, (p = 0.05), for the RA treatments. The maximum cord dose was significantly reduced (p = 0.017) in grouped RA&SA plans com-pared to SS. Estimated treatment time was significantly higher for HT and fixed-beam plans compared to RA&SA (p < 0.001). Although, a significant difference was not observed in the RA vs. SA (p = 0.393). RA&SA outperformed HT in all parameters measured. Despite an increase in dose to the heart and bronchus, this study demonstrates that VMAT is dosimetrically advantageous in treating early-stage NSCLC with SABR compared to fixed-beam, while providing significantly shorter treatment times.
Collapse
|
13
|
Rouabhi O, Ma M, Bayouth J, Xia J. Impact of temporal probability in 4D dose calculation for lung tumors. J Appl Clin Med Phys 2015; 16:110-118. [PMID: 26699562 PMCID: PMC5691019 DOI: 10.1120/jacmp.v16i6.5517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 07/05/2015] [Accepted: 07/01/2015] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient‐specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four‐dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath‐hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath‐hold CT using the deformation map between the phase CT and the breath‐hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient‐specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate >95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of −0.1%±0.6% and −0.2%±0.4% in MTD, −0.2%±1.9% and −0.2%±1.3% in MLD, 0.09%±2.8% and −0.07%±1.8% in lung V20, −0.1%±2.0% and 0.08%±1.34% in lung V10, 0.47%±1.8% and 0.19%±1.3% in lung V5, respectively. We concluded that four‐dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four‐dimensional dose computed using the patient‐specific respiratory trace. PACS number: 87.55.D‐
Collapse
|
14
|
Poulsen PR, Worm ES, Hansen R, Larsen LP, Grau C, Høyer M. Respiratory gating based on internal electromagnetic motion monitoring during stereotactic liver radiation therapy: First results. Acta Oncol 2015. [PMID: 26198651 DOI: 10.3109/0284186x.2015.1062134] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Intrafraction motion may compromise the target dose in stereotactic body radiation therapy (SBRT) of tumors in the liver. Respiratory gating can improve the treatment delivery, but gating based on an external surrogate signal may be inaccurate. This is the first paper reporting on respiratory gating based on internal electromagnetic monitoring during liver SBRT. MATERIAL AND METHODS Two patients with solitary liver metastases were treated with respiratory-gated SBRT guided by three implanted electromagnetic transponders. The treatment was delivered in end-exhale with beam-on when the centroid of the three transponders deviated less than 3 mm [left-right (LR) and anterior-posterior (AP) directions] and 4mm [cranio-caudal (CC)] from the planned position. For each treatment fraction, log files were used to determine the transponder motion during beam-on in the actual gated treatments and in simulated treatments without gating. The motion was used to reconstruct the dose to the clinical target volume (CTV) with and without gating. The reduction in D95 (minimum dose to 95% of the CTV) relative to the plan was calculated for both treatment courses. RESULTS With gating the maximum course mean (standard deviation) geometrical error in any direction was 1.2 mm (1.8 mm). Without gating the course mean error would mainly increase for Patient 1 [to -2.8 mm (1.6 mm) (LR), 7.1 mm (5.8 mm) (CC), -2.6 mm (2.8mm) (AP)] due to a large systematic cranial baseline drift at each fraction. The errors without gating increased only slightly for Patient 2. The reduction in CTV D95 was 0.5% (gating) and 12.1% (non-gating) for Patient 1 and 0.3% (gating) and 1.7% (non-gating) for Patient 2. The mean duty cycle was 55%. CONCLUSION Respiratory gating based on internal electromagnetic motion monitoring was performed for two liver SBRT patients. The gating added robustness to the dose delivery and ensured a high CTV dose even in the presence of large intrafraction motion.
Collapse
Affiliation(s)
- Per Rugaard Poulsen
- a Department of Oncology , Aarhus University Hospital , Denmark
- b Institute of Clinical Medicine, Aarhus University , Denmark
| | | | - Rune Hansen
- c Department of Medical Physics , Aarhus University Hospital , Denmark
| | | | - Cai Grau
- a Department of Oncology , Aarhus University Hospital , Denmark
- b Institute of Clinical Medicine, Aarhus University , Denmark
| | - Morten Høyer
- a Department of Oncology , Aarhus University Hospital , Denmark
- b Institute of Clinical Medicine, Aarhus University , Denmark
| |
Collapse
|
15
|
Chen WZ, Xiao Y, Li J. Impact of dose calculation algorithm on radiation therapy. World J Radiol 2014; 6:874-880. [PMID: 25431642 PMCID: PMC4241494 DOI: 10.4329/wjr.v6.i11.874] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/04/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimize the normal tissue complication probability. Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems. The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work. The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic. Further, the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups. All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy.
Collapse
|
16
|
Siochi RA, Kim Y, Bhatia S. Tumor control probability reduction in gated radiotherapy of non-small cell lung cancers: a feasibility study. J Appl Clin Med Phys 2014; 16:4444. [PMID: 25679148 PMCID: PMC5689977 DOI: 10.1120/jacmp.v16i1.4444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 10/16/2014] [Accepted: 09/28/2014] [Indexed: 11/23/2022] Open
Abstract
We studied the feasibility of evaluating tumor control probability (TCP) reductions for tumor motion beyond planned gated radiotherapy margins. Tumor motion was determined from cone‐beam CT projections acquired for patient setup, intrafraction respiratory traces, and 4D CTs for five non‐small cell lung cancer (NSCLC) patients treated with gated radiotherapy. Tumors were subdivided into 1 mm sections whose positions and doses were determined for each beam‐on time point. (The dose calculation model was verified with motion phantom measurements.) The calculated dose distributions were used to generate the treatment TCPs for each patient. The plan TCPs were calculated from the treatment planning dose distributions. The treatment TCPs were compared to the plan TCPs for various models and parameters. Calculated doses matched phantom measurements within 0.3% for up to 3 cm of motion. TCP reductions for excess motion greater than 5 mm ranged from 1.7% to 11.9%, depending on model parameters, and were as high as 48.6% for model parameters that simulated an individual patient. Repeating the worst case motion for all fractions increased TCP reductions by a factor of 2 to 3, while hypofractionation decreased these reductions by as much as a factor of 3. Treatment motion exceeding gating margins by more than 5 mm can lead to considerable TCP reductions. Appropriate margins for excess motion are recommended, unless applying daily tumor motion verification and adjusting the gating window. PACS numbers: 87.55.dk, 87.57.Q‐
Collapse
|
17
|
Poulsen PR, Worm ES, Petersen JBB, Grau C, Fledelius W, Høyer M. Kilovoltage intrafraction motion monitoring and target dose reconstruction for stereotactic volumetric modulated arc therapy of tumors in the liver. Radiother Oncol 2014; 111:424-30. [PMID: 24997991 DOI: 10.1016/j.radonc.2014.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/30/2014] [Accepted: 05/24/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE To use intrafraction kilovoltage (kV) imaging during liver stereotactic body radiotherapy (SBRT) delivered by volumetric modulated arc therapy (VMAT) to estimate the intra-treatment target motion and to reconstruct the delivered target dose. METHODS Six liver SBRT patients with 2-3 implanted gold markers received SBRT in three fractions of 18.75 Gy or 25 Gy. CTV-to-PTV margins of 5 mm in the axial plane and 10 mm in the cranio-caudal directions were applied. A VMAT plan was designed to give minimum target doses of 95% (CTV) and 67% (PTV). At each fraction, the 3D marker trajectory was estimated by fluoroscopic kV imaging throughout treatment delivery and used to reconstruct the actually delivered CTV dose. The reduction in D95 (minimum dose to 95% of the CTV) relative to the planned D95 was calculated. RESULTS The kV position estimation had mean root-mean-square errors of 0.36 mm and 0.47 mm parallel and perpendicular to the kV imager, respectively. Intrafraction motion caused a mean 3D target position error of 2.9 mm and a mean D95 reduction of 6.0%. The D95 reduction correlated with the mean 3D target position error during a fraction. CONCLUSIONS Kilovoltage imaging for detailed motion monitoring with dose reconstruction of VMAT-based liver SBRT was demonstrated for the first time showing large dosimetric impact of intrafraction tumor motion.
Collapse
Affiliation(s)
- Per Rugaard Poulsen
- Department of Oncology, Aarhus University Hospital, Denmark; Institute of Clinical Medicine, Aarhus University, Denmark.
| | - Esben S Worm
- Department of Oncology, Aarhus University Hospital, Denmark; Department of Medical Physics, Aarhus University Hospital, Denmark
| | | | - Cai Grau
- Department of Oncology, Aarhus University Hospital, Denmark; Institute of Clinical Medicine, Aarhus University, Denmark
| | - Walther Fledelius
- Department of Oncology, Aarhus University Hospital, Denmark; Department of Medical Physics, Aarhus University Hospital, Denmark
| | - Morten Høyer
- Department of Oncology, Aarhus University Hospital, Denmark; Institute of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
18
|
Latifi K, Oliver J, Baker R, Dilling TJ, Stevens CW, Kim J, Yue B, DeMarco M, Zhang GG, Moros EG, Feygelman V. Study of 201 Non-Small Cell Lung Cancer Patients Given Stereotactic Ablative Radiation Therapy Shows Local Control Dependence on Dose Calculation Algorithm. Int J Radiat Oncol Biol Phys 2014; 88:1108-13. [DOI: 10.1016/j.ijrobp.2013.12.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/07/2013] [Accepted: 12/27/2013] [Indexed: 12/14/2022]
|
19
|
Zhang Y, Chen Y, Qiu J, Yang J. Dosimetric Comparisons of Lung SBRT with Multiple Metastases by Two Advanced Planning Systems. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ijmpcero.2014.34032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Jain P, Baker A, Distefano G, Scott AJD, Webster GJ, Hatton MQ. Stereotactic ablative radiotherapy in the UK: current status and developments. Br J Radiol 2013; 86:20130331. [PMID: 23873906 DOI: 10.1259/bjr.20130331] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stereotactic ablative radiotherapy (SABR) has developed from the principles and techniques used in the stereotactic radiosurgery treatment of brain metastases. Advances in computer technology, imaging, planning and treatment delivery and evidence from retrospective analysis of single- and multi-institutional early-phase studies have established SABR in the treatment of medically inoperable early lung cancer. Effective multidisciplinary team working is crucial to safe delivery of SABR. The variation in patient selection, radiotherapy planning and delivery techniques has led to a collective approach to SABR implementation across the UK. Centres developing the technique are represented in the UK SABR Consortium, which is supported by the relevant UK professional bodies and represents a platform to develop extracranial SABR across the UK. The uptake of SABR in the UK has been slowed by workforce issues, but at least 15 centres are currently delivering treatment with over 500 patients treated using UK SABR Consortium guidance. A mentoring program is being piloted helping new centres to develop their programs, and over 30 UK centres are expected to be offering SABR treatment by the end of 2014. The use of consistent guidance for patient selection, treatment planning and delivery in the UK gives the opportunity to collect and audit toxicity and outcome across the centres, contributing to the internationally reported SABR experience. Having established this service in the UK, the development of SABR through clinical research is a priority, and with input from the Radiotherapy Trials Quality Assurance Group, the UK is developing a national study program that includes participation in international trials.
Collapse
Affiliation(s)
- P Jain
- Department of Oncology, Clatterbridge Cancer Centre, Bebington, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Matsugi K, Nakamura M, Miyabe Y, Yamauchi C, Matsuo Y, Mizowaki T, Hiraoka M. Evaluation of 4D dose to a moving target with Monte Carlo dose calculation in stereotactic body radiotherapy for lung cancer. Radiol Phys Technol 2012; 6:233-40. [DOI: 10.1007/s12194-012-0193-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/05/2012] [Accepted: 12/05/2012] [Indexed: 12/25/2022]
|
22
|
Shirata Y, Jingu K, Koto M, Kubozono M, Takeda K, Sugawara T, Kadoya N, Matsushita H. Prognostic factors for local control of stage I non-small cell lung cancer in stereotactic radiotherapy: a retrospective analysis. Radiat Oncol 2012; 7:182. [PMID: 23110967 PMCID: PMC3542195 DOI: 10.1186/1748-717x-7-182] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/26/2012] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this study is to investigate the prognostic factors of stereotactic radiotherapy for stage I NSCLC to improve outcomes. Methods Stage I non-small cell lung cancer patients who were treated with stereotactic radiotherapy between 2005 and 2009 at our hospital were enrolled in this study. The primary endpoint was local control rate. Survival estimates were calculated from the completion date of radiotherapy using the Kaplan-Meier method. The prognostic factors including patients’ characteristics and dose-volume histogram parameters were evaluated using Cox’s proportional hazard regression model. Results Eighty patients (81 lesions) treated with 3 dose levels, 48 Gy/4 fractions, 60 Gy/8 fractions and 60 Gy/15 fractions, were enrolled in this study. Median follow-up was 30.4 months (range, 0.3 – 78.5 months). A Cox regression model showed T factor (p = 0.013), biological effective dose calculated from prescribed dose (BED10) (p = 0.048), and minimum dose for PTV (p = 0.013) to be prognostic factors for local control. Three-year overall survival rate and local control rate were 89.9% (T1: 86.8%, T2: 100%) and 89.0% (T1: 97.9%; T2: 64.8%), respectively. When the 3-year local control rates were examined by prescribed doses, they were 100% for the dose per fraction of 48 Gy /4 fractions (105.6 Gy BED10), 82.1% for 60 Gy/8 fractions (105 Gy BED10), and 57.1% for 60 Gy/15 fractions (84 Gy BED10). The median value of the minimum dose for PTV (%) was 89.88 (%), and the 3-year local control rates were 100% in those with the minimum dose for PTV (%) ≥ 89.88% and 79.2% in those with the minimum dose for PTV (%) < 89.88%. Conclusions Our results suggest that T factor, BED10, and minimum dose for PTV influence the local control rate. Local control rate can be improved by securing the minimum dose for PTV.
Collapse
Affiliation(s)
- Yuko Shirata
- Department of Radiation Oncology, Tohoku University School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu MB, Eclov NCW, Trakul N, Murphy J, Diehn M, Le QT, Dieterich S, Maxim PG, Loo BW. Clinical impact of dose overestimation by effective path length calculation in stereotactic ablative radiation therapy of lung tumors. Pract Radiat Oncol 2012; 3:294-300. [PMID: 24674401 DOI: 10.1016/j.prro.2012.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 02/03/2023]
Abstract
PURPOSE To determine the clinical impact of calculated dose differences between effective path length (EPL) and Monte Carlo (MC) algorithms in stereotactic ablative radiation therapy (SABR) of lung tumors. METHODS AND MATERIALS We retrospectively analyzed the treatment plans and clinical outcomes of 77 consecutive patients treated with SABR for 82 lung tumors between 2003 and 2009 at our institution. Sixty treatments were originally planned using EPL, and 22 using MC. All plans were recalculated for the same beam specifications using MC and EPL, respectively. The doses covering 95%, 50%, and 5% (D95, D50, D5, respectively) of the target volumes were compared between EPL and MC (assumed to be the actual delivered dose), both as physical dose and biologically effective dose. Time to local recurrence was correlated with dose by Cox regression analysis. The relationship between tumor control probability (TCP) and biologically effective dose was determined via logistic regression and used to estimate the TCP decrements due to prescribing by EPL calculations. RESULTS EPL overestimated dose compared with MC in all tumor dose-volume histogram parameters in all plans. The difference was >10% of the MC D95 to the planning target volume and gross tumor volume in 60 of 82 (73%) and 52 of 82 plans (63%), respectively. Local recurrence occurred in 13 of 82 tumors. Controlling for gross tumor volume, higher physical and biologically effective planning target volume D95 correlated significantly with local control (P = .007 and P = .045, respectively). Compared with MC, prescribing based on EPL translated to a median TCP decrement of 4.3% (range, 1.2%-37%) and a >5% decrement in 46% of tumors. CONCLUSIONS Clinical follow-up for local lung tumor control in a sizable cohort of patients treated with SABR demonstrates that EPL overestimates dose by amounts that substantially decrease TCP in a large proportion. EPL algorithms should be avoided for lung tumor SABR.
Collapse
Affiliation(s)
- Michael B Liu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Neville C W Eclov
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Nicholas Trakul
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - James Murphy
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Sonja Dieterich
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Department of Radiation Oncology, University of California, Davis, School of Medicine, Davis, California
| | - Peter G Maxim
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
24
|
Narabayashi M, Mizowaki T, Matsuo Y, Nakamura M, Takayama K, Norihisa Y, Sakanaka K, Hiraoka M. Dosimetric evaluation of the impacts of different heterogeneity correction algorithms on target doses in stereotactic body radiation therapy for lung tumors. JOURNAL OF RADIATION RESEARCH 2012; 53:777-84. [PMID: 22843364 PMCID: PMC3430415 DOI: 10.1093/jrr/rrs026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/16/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
Heterogeneity correction algorithms can have a large impact on the dose distributions of stereotactic body radiation therapy (SBRT) for lung tumors. Treatment plans of 20 patients who underwent SBRT for lung tumors with the prescribed dose of 48 Gy in four fractions at the isocenter were reviewed retrospectively and recalculated with different heterogeneity correction algorithms: the pencil beam convolution algorithm with a Batho power-law correction (BPL) in Eclipse, the radiological path length algorithm (RPL), and the X-ray Voxel Monte Carlo algorithm (XVMC) in iPlan. The doses at the periphery (minimum dose and D95) of the planning target volume (PTV) were compared using the same monitor units among the three heterogeneity correction algorithms, and the monitor units were compared between two methods of dose prescription, that is, an isocenter dose prescription (IC prescription) and dose-volume based prescription (D95 prescription). Mean values of the dose at the periphery of the PTV were significantly lower with XVMC than with BPL using the same monitor units (P < 0.001). In addition, under IC prescription using BPL, RPL and XVMC, the ratios of mean values of monitor units were 1, 0.959 and 0.986, respectively. Under D95 prescription, they were 1, 0.937 and 1.088, respectively. These observations indicated that the application of XVMC under D95 prescription results in an increase in the actually delivered dose by 8.8% on average compared with the application of BPL. The appropriateness of switching heterogeneity correction algorithms and dose prescription methods should be carefully validated from a clinical viewpoint.
Collapse
Affiliation(s)
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Li J, Galvin J, Harrison A, Timmerman R, Yu Y, Xiao Y. Dosimetric verification using monte carlo calculations for tissue heterogeneity-corrected conformal treatment plans following RTOG 0813 dosimetric criteria for lung cancer stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 2012; 84:508-13. [PMID: 22365630 DOI: 10.1016/j.ijrobp.2011.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 12/11/2022]
Abstract
PURPOSE The recently activated Radiation Therapy Oncology Group (RTOG) studies of stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC) require tissue density heterogeneity correction, where the high and intermediate dose compliance criteria were established based on superposition algorithm dose calculations. The study was aimed at comparing superposition algorithm dose calculations with Monte Carlo (MC) dose calculations for SBRT for NSCLC and to evaluate whether compliance criteria need to be adjusted for MC dose calculations. METHODS AND MATERIALS Fifteen RTOG 0236 study sets were used. The planning tumor volumes (PTV) ranged from 10.7 to 117.1 cm(3). SBRT conformal treatment plans were generated using XiO (CMS Inc.) treatment planning software with superposition algorithm to meet the dosimetric high and intermediate compliance criteria recommended by the RTOG 0813 protocol. Plans were recalculated using the MC algorithm of a Monaco (CMS, Inc.) treatment planning system. Tissue density heterogeneity correction was applied in both calculations. RESULTS Overall, the dosimetric quantities of the MC calculations have larger magnitudes than those of the superposition calculations. On average, R(100%) (ratio of prescription isodose volume to PTV), R(50%) (ratio of 50% prescription isodose volume to PTV), D(2 cm) (maximal dose 2 cm from PTV in any direction as a percentage of prescription dose), and V(20) (percentage of lung receiving dose equal to or larger than 20 Gy) increased by 9%, 12%, 7%, and 18%, respectively. In the superposition plans, 3 cases did not meet criteria for R(50%) or D(2 cm). In the MC-recalculated plans, 8 cases did not meet criteria for R(100%), R(50%), or D(2 cm). After reoptimization with MC calculations, 5 cases did not meet the criteria for R(50%) or D(2 cm). CONCLUSIONS Results indicate that the dosimetric criteria, e.g., the criteria for R(50%) recommended by RTOG 0813 protocol, may need to be adjusted when the MC dose calculation algorithm is used.
Collapse
Affiliation(s)
- Jun Li
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Chen VJ, Oermann E, Vahdat S, Rabin J, Suy S, Yu X, Collins SP, Subramaniam D, Banovac F, Anderson E, Collins BT. CyberKnife with Tumor Tracking: An Effective Treatment for High-Risk Surgical Patients with Stage I Non-Small Cell Lung Cancer. Front Oncol 2012; 2:9. [PMID: 22655258 PMCID: PMC3356163 DOI: 10.3389/fonc.2012.00009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/16/2012] [Indexed: 12/25/2022] Open
Abstract
Published data suggests that wedge resection for stage I non-small cell lung cancer (NSCLC) is associated with improved overall survival compared to stereotactic body radiation therapy. We report CyberKnife outcomes for high-risk surgical patients with biopsy-proven stage I NSCLC. PET/CT imaging was completed for staging. Three-to-five gold fiducial markers were implanted in or near tumors to serve as targeting references. Gross tumor volumes (GTVs) were contoured using lung windows; the margins were expanded by 5 mm to establish the planning treatment volume (PTV). Treatment plans were designed using a mean of 156 pencil beams. Doses delivered to the PTV ranged from 42 to 60 Gy in three fractions. The 30 Gy isodose contour extended at least 1 cm from the GTV to eradicate microscopic disease. Treatments were delivered using the CyberKnife system with tumor tracking. Examination and PET/CT imaging occurred at 3 month follow-up intervals. Forty patients (median age 76) with a median maximum tumor diameter of 2.6 cm (range, 1.4-5.0 cm) and a mean post-bronchodilator percent predicted forced expiratory volume in 1 s (FEV1) of 57% (range, 21-111%) were treated. A median dose of 48 Gy was delivered to the PTV over 3-13 days (median, 7 days). The 30 Gy isodose contour extended a mean 1.9 cm from the GTV. At a median 44 months (range, 12-72 months) follow-up, the 3 year Kaplan-Meier locoregional control and overall survival estimates compare favorably with contemporary wedge resection outcomes at 91 and 75%, respectively. CyberKnife is an effective treatment approach for stage I NSCLC that is similar to wedge resection, eradicating tumors with 1-2 cm margins in order to preserve lung function. Prospective randomized trials comparing CyberKnife with wedge resection are necessary to confirm equivalence.
Collapse
Affiliation(s)
- Viola J Chen
- Department of Radiation Medicine, Georgetown University Hospital Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stereotactic radiosurgery-radiotherapy: Should Monte Carlo treatment planning be used for all sites? Pract Radiat Oncol 2011; 1:251-60. [DOI: 10.1016/j.prro.2011.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/25/2022]
|
28
|
Wu D, Zhu H, Tang H, Li C, Xu F. Clinical analysis of stereotactic body radiation therapy using extracranial gamma knife for patients with mainly bulky inoperable early stage non-small cell lung carcinoma. Radiat Oncol 2011; 6:84. [PMID: 21771344 PMCID: PMC3151217 DOI: 10.1186/1748-717x-6-84] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/20/2011] [Indexed: 02/05/2023] Open
Abstract
PURPOSE To evaluate the clinical efficacy and toxicity of stereotactic body radiation therapy (SBRT) using extracranial gamma knife in patients with mainly bulky inoperable early stage non-small cell lung carcinoma (NSCLC). MATERIALS AND METHODS A total of 43 medically inoperable patients with mainly bulky Stage I/II NSCLC received SBRT using gamma knife were reviewed. The fraction dose and the total dose were determined by the radiation oncologist according to patients' general status, tumor location, tumor size and the relationship between tumor and nearby organ at risk (OAR). The total dose of 34~47.5 Gy was prescribed in 4~12 fractions, 3.5~10 Gy per fraction, one fraction per day or every other day. The therapeutic efficacy and toxicity were evaluated. RESULTS The median follow-up was 22 months (range, 3-102 months). The local tumor response rate was 95.35%, with CR 18.60% (8/43) and PR 76.74% (33/43), respectively. The local control rates at 1, 2, 3, 5 years were 77.54%, 53.02%, 39.77%, and 15.46%, respectively, while the 1- and 2-year local control rates were 75% and 60% for tumor ≤3 cm; 84% and 71% for tumor sized 3~5 cm; 55% and 14.6% for tumor sized 5~7 cm; and 45%, 21% in those with tumor size of >7 cm. The overall survival rate at 1, 2, 3, 5 years were 92.04%, 78.04%, 62.76%, 42.61%, respectively. The toxicity of stereotactic radiation therapy was grade 1-2. Clinical stages were significantly important factor in local control of lung tumors (P = 0.000). Both clinical stages (P = 0.015) and chemotherapy (P = 0.042) were significantly important factors in overall survival of lung tumors. CONCLUSION SBRT is an effective and safe therapy for medically inoperable patients with early stage NSCLC. Clinical stage was the significant prognostic factors for both local tumor control and overall survival. The toxicity is mild. The overall local control for bulky tumors is poor. Tumor size is a poor prognostic factor, and the patients for adjuvant chemotherapy need to be carefully selected.
Collapse
Affiliation(s)
- Dajun Wu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
29
|
Taylor ML, Kron T, Franich RD. A contemporary review of stereotactic radiotherapy: inherent dosimetric complexities and the potential for detriment. Acta Oncol 2011; 50:483-508. [PMID: 21288161 DOI: 10.3109/0284186x.2010.551665] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The advantages of highly localised, conformal treatments achievable with stereotactic radiotherapy (SRT) are increasingly being extended to extracranial sites as stereotactic body radiotherapy with advancements in imaging and beam collimation. One of the challenges in stereotactic treatment lies in the significant complexities associated with small field dosimetry and dose calculation. This review provides a comprehensive overview of the complexities associated with stereotactic radiotherapy and the potential for detriment. METHODS This study is based on a comprehensive review of literature accessible via PubMed and other sources, covering stereotactic radiotherapy, small-field dosimetry and dose calculation. FINDINGS Several key issues were identified in the literature. They pertain to dose prescription, dose measurement and dose calculation within and beyond the treatment field. Field-edge regions and penumbrae occupy a significant portion of the total field size. Spectral and dosimetric characteristics are difficult to determine and are compounded by effects of tissue inhomogeneity. Measurement of small-fields is made difficult by detector volume averaging and energy response. Available dosimeters are compared, and emphasis is given to gel dosimetry which offers the greatest potential for three-dimensional small-field dosimetry. The limitations of treatment planning system algorithms as applied to small-fields (particularly in the presence of heterogeneities) is explained, and a review of Monte Carlo dose calculation is provided, including simplified treatment planning implementations. Not incorporated into treatment planning, there is evidence that far from the primary field, doses to patients (and corresponding risks of radiocarcinogenesis) from leakage/scatter in SRT are similar to large fields. CONCLUSIONS Improved knowledge of dosimetric issues is essential to the accurate measurement and calculation of dose as well as the interpretation and assessment of planned and delivered treatments. This review highlights such issues and the potential benefit that may be gained from Monte Carlo dose calculation and verification via three-dimensional dosimetric methods (such as gel dosimetry) being introduced into routine clinical practice.
Collapse
Affiliation(s)
- Michael L Taylor
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
30
|
Stereotactic radiotherapy of primary lung cancer and other targets: results of consultant meeting of the International Atomic Energy Agency. Int J Radiat Oncol Biol Phys 2011; 79:660-9. [PMID: 21281896 DOI: 10.1016/j.ijrobp.2010.10.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 12/25/2022]
Abstract
To evaluate the current status of stereotactic body radiotherapy (SBRT) and identify both advantages and disadvantages of its use in developing countries, a meeting composed of consultants of the International Atomic Energy Agency was held in Vienna in November 2006. Owing to continuous developments in the field, the meeting was extended by subsequent discussions and correspondence (2007-2010), which led to the summary presented here. The advantages and disadvantages of SBRT expected to be encountered in developing countries were identified. The definitions, typical treatment courses, and clinical results were presented. Thereafter, minimal methodology/technology requirements for SBRT were evaluated. Finally, characteristics of SBRT for developing countries were recommended. Patients for SBRT should be carefully selected, because single high-dose radiotherapy may cause serious complications in some serial organs at risk. Clinical experiences have been reported in some populations of lung cancer, lung oligometastases, liver cancer, pancreas cancer, and kidney cancer. Despite the disadvantages expected to be experienced in developing countries, SBRT using fewer fractions may be useful in selected patients with various extracranial cancers with favorable outcome and low toxicity.
Collapse
|
31
|
Unger K, Ju A, Oermann E, Suy S, Yu X, Vahdat S, Subramaniam D, Harter KW, Collins SP, Dritschilo A, Anderson E, Collins BT. CyberKnife for hilar lung tumors: report of clinical response and toxicity. J Hematol Oncol 2010; 3:39. [PMID: 20969774 PMCID: PMC2987864 DOI: 10.1186/1756-8722-3-39] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 10/22/2010] [Indexed: 12/25/2022] Open
Abstract
Objective To report clinical efficacy and toxicity of fractionated CyberKnife radiosurgery for the treatment of hilar lung tumors. Methods Patients presenting with primary and metastatic hilar lung tumors, treated using the CyberKnife system with Synchrony fiducial tracking technology, were retrospectively reviewed. Hilar location was defined as abutting or invading a mainstem bronchus. Fiducial markers were implanted by conventional bronchoscopy within or adjacent to tumors to serve as targeting references. A prescribed dose of 30 to 40 Gy to the gross tumor volume (GTV) was delivered in 5 fractions. Clinical examination and PET/CT imaging were performed at 3 to 6-month follow-up intervals. Results Twenty patients were accrued over a 4 year period. Three had primary hilar lung tumors and 17 had hilar lung metastases. The median GTV was 73 cc (range 23-324 cc). The median dose to the GTV was 35 Gy (range, 30 - 40 Gy), delivered in 5 fractions over 5 to 8 days (median, 6 days). The resulting mean maximum point doses delivered to the esophagus and mainstem bronchus were 25 Gy (range, 11 - 39 Gy) and 42 Gy (range, 30 - 49 Gy), respectively. Of the 17 evaluable patients with 3 - 6 month follow-up, 4 patients had a partial response and 13 patients had stable disease. AAT t a median follow-up of 10 months, the 1-year Kaplan-Meier local control and overall survival estimates were 63% and 54%, respectively. Toxicities included one patient experiencing grade II radiation esophagitis and one patient experiencing grade III radiation pneumonitis. One patient with gross endobronchial tumor within the mainstem bronchus developed a bronchial fistula and died after receiving a maximum bronchus dose of 49 Gy. Conclusion CyberKnife radiosurgery is an effective palliative treatment option for hilar lung tumors, but local control is poor at one year. Maximum point doses to critical structures may be used as a guide for limiting toxicities. Preliminary results suggest that dose escalation alone is unlikely to enhance the therapeutic ratio of hilar lung tumors and novel approaches, such as further defining the patient population or employing the use of radiation sensitizers, should be investigated.
Collapse
Affiliation(s)
- Keith Unger
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Buyyounouski MK, Balter P, Lewis B, D'Ambrosio DJ, Dilling TJ, Miller RC, Schefter T, Tomé W, Harris EER, Price RA, Konski AA, Wallner PE. Stereotactic body radiotherapy for early-stage non-small-cell lung cancer: report of the ASTRO Emerging Technology Committee. Int J Radiat Oncol Biol Phys 2010; 78:3-10. [PMID: 20643514 DOI: 10.1016/j.ijrobp.2010.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/02/2010] [Accepted: 04/02/2010] [Indexed: 12/25/2022]
|
33
|
van der Voort van Zyp NC, Hoogeman MS, van de Water S, Levendag PC, van der Holt B, Heijmen BJ, Nuyttens JJ. Clinical introduction of Monte Carlo treatment planning: A different prescription dose for non-small cell lung cancer according to tumor location and size. Radiother Oncol 2010; 96:55-60. [DOI: 10.1016/j.radonc.2010.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/12/2010] [Accepted: 04/05/2010] [Indexed: 12/25/2022]
|
34
|
Wilcox EE, Daskalov GM, Lincoln H, Shumway RC, Kaplan BM, Colasanto JM. Comparison of Planned Dose Distributions Calculated by Monte Carlo and Ray-Trace Algorithms for the Treatment of Lung Tumors With CyberKnife: A Preliminary Study in 33 Patients. Int J Radiat Oncol Biol Phys 2010; 77:277-84. [DOI: 10.1016/j.ijrobp.2009.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 12/25/2022]
|
35
|
Vahdat S, Oermann EK, Collins SP, Yu X, Abedalthagafi M, Debrito P, Suy S, Yousefi S, Gutierrez CJ, Chang T, Banovac F, Anderson ED, Esposito G, Collins BT. CyberKnife radiosurgery for inoperable stage IA non-small cell lung cancer: 18F-fluorodeoxyglucose positron emission tomography/computed tomography serial tumor response assessment. J Hematol Oncol 2010; 3:6. [PMID: 20132557 PMCID: PMC2830958 DOI: 10.1186/1756-8722-3-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 02/04/2010] [Indexed: 12/25/2022] Open
Abstract
Objective To report serial 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) tumor response following CyberKnife radiosurgery for stage IA non-small cell lung cancer (NSCLC). Methods Patients with biopsy-proven inoperable stage IA NSCLC were enrolled into this IRB-approved study. Targeting was based on 3-5 gold fiducial markers implanted in or near tumors. Gross tumor volumes (GTVs) were contoured using lung windows; margins were expanded by 5 mm to establish the planning treatment volumes (PTVs). Doses ranged from 42-60 Gy in 3 equal fractions. 18F-FDG PET/CT was performed prior to and at 3-6-month, 9-15 months and 18-24 months following treatment. The tumor maximum standardized uptake value (SUVmax) was recorded for each time point. Results Twenty patients with an average maximum tumor diameter of 2.2 cm were treated over a 3-year period. A mean dose of 51 Gy was delivered to the PTV in 3 to 11 days (mean, 7 days). The 30-Gy isodose contour extended an average of 2 cm from the GTV. At a median follow-up of 43 months, the 2-year Kaplan-Meier overall survival estimate was 90% and the local control estimate was 95%. Mean tumor SUVmax before treatment was 6.2 (range, 2.0 to 10.7). During early follow-up the mean tumor SUVmax remained at 2.3 (range, 1.0 to 5.7), despite transient elevations in individual tumor SUVmax levels attributed to peritumoral radiation-induced pneumonitis visible on CT imaging. At 18-24 months the mean tumor SUVmax for controlled tumors was 2.0, with a narrow range of values (range, 1.5 to 2.8). A single local failure was confirmed at 24 months in a patient with an elevated tumor SUVmax of 8.4. Conclusion Local control and survival following CyberKnife radiosurgery for stage IA NSCLC is exceptional. Early transient increases in tumor SUVmax are likely related to radiation-induced pneumonitis. Tumor SUVmaxvalues return to background levels at 18-24 months, enhancing 18F-FDG PET/CT detection of local failure. The value of 18F-FDG PET/CT imaging for surveillance following lung SBRT deserves further study.
Collapse
Affiliation(s)
- Saloomeh Vahdat
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moiseenko V, Liu M, Bergman AM, Gill B, Kristensen S, Teke T, Popescu IA. Monte Carlo calculation of dose distribution in early stage NSCLC patients planned for accelerated hypofractionated radiation therapy in the NCIC-BR25 protocol. Phys Med Biol 2010; 55:723-33. [PMID: 20071759 DOI: 10.1088/0031-9155/55/3/012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The dosimetric consequences of plans optimized using a commercial treatment planning system (TPS) for hypofractionated radiation therapy are evaluated by re-calculating with Monte Carlo (MC). Planning guidelines were in strict accordance with the Canadian BR25 protocol which is similar to the RTOG 0236 and 0618 protocols in patient eligibility and total dose, but has a different hypofractionation schedule (60 Gy in 15 fractions versus 60 Gy in 3 fractions). A common requirement of the BR25 and RTOG protocols is that the dose must be calculated by the TPS without tissue heterogeneity (TH) corrections. Our results show that optimizing plans using the pencil beam algorithm with no TH corrections does not ensure that the BR25 planning constraint of 99% of the PTV receiving at least 95% of the prescription dose would be achieved as revealed by MC simulations. This is due to poor modelling of backscatter and lateral electronic equilibrium by the TPS. MC simulations showed that as little as 75% of the PTV was actually covered by the 95% isodose line. The under-dosage of the PTV was even more pronounced if plans were optimized with the TH correction applied. In the most extreme case, only 23% of the PTV was covered by the 95% isodose.
Collapse
Affiliation(s)
- V Moiseenko
- British Columbia Cancer Agency-Vancouver, 600 W.10th Ave,Vancouver, BC V5Z 4E6, Canada.
| | | | | | | | | | | | | |
Collapse
|
37
|
Künzler T, Fotina I, Stock M, Georg D. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams. Phys Med Biol 2009; 54:7363-77. [DOI: 10.1088/0031-9155/54/24/008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Panettieri V, Barsoum P, Westermark M, Brualla L, Lax I. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code penelope. Radiother Oncol 2009; 93:94-101. [DOI: 10.1016/j.radonc.2009.05.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 05/05/2009] [Accepted: 05/10/2009] [Indexed: 11/30/2022]
|
39
|
Characterization of the Transmission of the Elekta Stereotactic Body Frame (ESBF) and Accounting for it During Treatment Planning. Med Dosim 2009; 34:154-7. [DOI: 10.1016/j.meddos.2008.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 06/25/2008] [Accepted: 08/04/2008] [Indexed: 11/23/2022]
|
40
|
Aarup LR, Nahum AE, Zacharatou C, Juhler-Nøttrup T, Knöös T, Nyström H, Specht L, Wieslander E, Korreman SS. The effect of different lung densities on the accuracy of various radiotherapy dose calculation methods: Implications for tumour coverage. Radiother Oncol 2009; 91:405-14. [PMID: 19297051 DOI: 10.1016/j.radonc.2009.01.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 01/22/2009] [Accepted: 01/24/2009] [Indexed: 11/27/2022]
|
41
|
Pettersson N, Nyman J, Johansson KA. Radiation-induced rib fractures after hypofractionated stereotactic body radiation therapy of non-small cell lung cancer: a dose- and volume-response analysis. Radiother Oncol 2009; 91:360-8. [PMID: 19410314 DOI: 10.1016/j.radonc.2009.03.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 03/06/2009] [Accepted: 03/27/2009] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE The aim of this study is to analyse the dose-response and the volume-response of radiation-induced rib fractures after hypofractionated stereotactic body radiation therapy (SBRT). MATERIALS AND METHODS During the period 1998-2005, 68 patients with medically inoperable stage I non-small cell lung cancer (NSCLC) were treated with hypofractionated SBRT to 45 Gy in 3 fractions. Among the 33 patients with complete treatment records and radiographic follow-up exceeding 15 months (median: 29 months), 13 fractures were found in seven patients. Identifying all ribs receiving at least 21 Gy, 81 ribs (13 with and 68 without fracture) in 26 patients were separately contoured and their dose-volume histograms (DVHs) were obtained. The DVHs were assessed with the mean dose and cut-off models. Maximum likelihood estimation was used to fit dose-response and volume-response curves to each model. RESULTS It was possible to quantify the risk of radiation-induced rib fracture using response curves and information contained in the DVHs. Absolute volumes provided better fits than relative volumes and dose-response curves were more suitable than volume-response curves. For the dose given by the 2 cm(3) cut-off volume, D(2 cm(3)), the logistic dose-response curve for three fractions was parameterised by D(50)=49.8 Gy and gamma(50)=2.05. Consequently, for a median follow-up of 29 months, if D(2 cm(3))<3 x 7.0 Gy the risk is close to 0, and the 5% and 50% risks are given by D(2 cm(3))=3 x 9.1 Gy and 3 x 16.6 Gy, respectively. CONCLUSIONS In this group of patients, the risk for radiation-induced rib fracture following hypofractionated SBRT was related to the dose to 2 cm(3) of the rib.
Collapse
Affiliation(s)
- Niclas Pettersson
- Department of Radiophysics, Sahlgrenska University Hospital, Sweden.
| | | | | |
Collapse
|
42
|
Xiao Y, Papiez L, Paulus R, Timmerman R, Straube WL, Bosch WR, Michalski J, Galvin JM. Dosimetric evaluation of heterogeneity corrections for RTOG 0236: stereotactic body radiotherapy of inoperable stage I-II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2009; 73:1235-42. [PMID: 19251095 DOI: 10.1016/j.ijrobp.2008.11.019] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/11/2008] [Accepted: 11/13/2008] [Indexed: 02/08/2023]
Abstract
PURPOSE Using a retrospective analysis of treatment plans submitted from multiple institutions accruing patients to the Radiation Therapy Oncology Group (RTOG) 0236 non-small-cell stereotactic body radiotherapy protocol, the present study determined the dose prescription and critical structure constraints for future stereotactic body radiotherapy lung protocols that mandate density-corrected dose calculations. METHOD AND MATERIALS A subset of 20 patients from four institutions participating in the RTOG 0236 protocol and using superposition/convolution algorithms were compared. The RTOG 0236 protocol required a prescription dose of 60 Gy delivered in three fractions to cover 95% of the planning target volume. Additional requirements were specified for target dose heterogeneity and the dose to normal tissue/structures. The protocol required each site to plan the patient's treatment using unit density, and another plan with the same monitor units and applying density corrections was also submitted. These plans were compared to determine the dose differences. Two-sided, paired Student's t tests were used to evaluate these differences. RESULTS With heterogeneity corrections applied, the planning target volume receiving >/=60 Gy decreased, on average, 10.1% (standard error, 2.7%) from 95% (p = .001). The maximal dose to any point >/=2 cm away from the planning target volume increased from 35.2 Gy (standard error, 1.7) to 38.5 Gy (standard error, 2.2). CONCLUSION Statistically significant dose differences were found with the heterogeneity corrections. The information provided in the present study is being used to design future heterogeneity-corrected RTOG stereotactic body radiotherapy lung protocols to match the true dose delivered for RTOG 0236.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Radiation Oncology, Jefferson Medical College, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Collins BT, Vahdat S, Erickson K, Collins SP, Suy S, Yu X, Zhang Y, Subramaniam D, Reichner CA, Sarikaya I, Esposito G, Yousefi S, Jamis-Dow C, Banovac F, Anderson ED. Radical cyberknife radiosurgery with tumor tracking: an effective treatment for inoperable small peripheral stage I non-small cell lung cancer. J Hematol Oncol 2009; 2:1. [PMID: 19149899 PMCID: PMC2647945 DOI: 10.1186/1756-8722-2-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/17/2009] [Indexed: 12/19/2022] Open
Abstract
Objective Curative surgery is not an option for many patients with clinical stage I non-small-cell lung carcinoma (NSCLC), but radical radiosurgery may be effective. Methods Inoperable patients with small peripheral clinical stage I NSCLC were enrolled in this study. Three-to-five fiducial markers were implanted in or near tumors under CT guidance. Gross tumor volumes (GTVs) were contoured using lung windows. The GTV margin was expanded by 5 mm to establish the planning treatment volume (PTV). A dose of 42–60 Gy was delivered to the PTV in 3 equal fractions in less than 2 weeks using the CyberKnife radiosurgery system. The 30-Gy isodose contour extended at least 1 cm from the GTV. Physical examination, CT imaging and pulmonary function testing were completed at 6 months intervals for three years following treatment. Results Twenty patients with an average maximum tumor diameter of 2.2 cm (range, 1.1 – 3.5 cm) and a mean FEV1 of 1.08 liters (range, 0.53 – 1.71 L) were treated. Pneumothorax requiring tube thoracostomy occurred following CT-guided fiducial placement in 25% of the patients. All patients completed treatment with few acute side effects and no procedure-related mortality. Transient chest wall discomfort developed in 8 of the 12 patients with lesions within 5 mm of the pleura. The mean percentage of the total lung volume receiving a minimum of 15 Gy was 7.3% (range, 2.4% to 11.3%). One patient who received concurrent gefitinib developed short-lived, grade III radiation pneumonitis. The mean percent predicted DLCO decreased by 9% and 11% at 6 and 12 months, respectively. There were no local failures, regional lymph node recurrences or distant metastases. With a median follow-up of 25 months for the surviving patients, Kaplan-Meier overall survival estimate at 2 years was 87%, with deaths due to COPD progression. Conclusion Radical CyberKnife radiosurgery is a well-tolerated treatment option for inoperable patients with small, peripheral stage I NSCLC. Effective doses and adequate margins are likely to have contributed to the optimal early local control seen in this study.
Collapse
Affiliation(s)
- Brian T Collins
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Baumann P, Nyman J, Hoyer M, Gagliardi G, Lax I, Wennberg B, Drugge N, Ekberg L, Friesland S, Johansson KA, Lund JS, Morhed E, Nilsson K, Levin N, Paludan M, Sederholm C, Traberg A, Wittgren L, Lewensohn R. Stereotactic body radiotherapy for medically inoperable patients with stage I non-small cell lung cancer - a first report of toxicity related to COPD/CVD in a non-randomized prospective phase II study. Radiother Oncol 2008; 88:359-67. [PMID: 18768228 DOI: 10.1016/j.radonc.2008.07.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 06/27/2008] [Accepted: 07/16/2008] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS In a retrospective study using stereotactic body radiotherapy (SBRT) in medically inoperable patients with stage I NSCLC we previously reported a local control rate of 88% utilizing a median dose of 15Gyx3. This report records the toxicity encountered in a prospective phase II trial, and its relation to coexisting chronic obstructive pulmonary disease (COPD) and cardio vascular disease (CVD). MATERIAL AND METHODS Sixty patients were entered in the study between August 2003 and September 2005. Fifty-seven patients (T1 65%, T2 35%) with a median age of 75 years (59-87 years) were evaluable. The baseline mean FEV1% was 64% and median Karnofsky index was 80. A total dose of 45Gy was delivered in three fractions at the 67% isodose of the PTV. Clinical, pulmonary and radiological evaluations were made at 6 weeks, 3, 6, 9, 12, 18, and 36 months post-SBRT. Toxicity was graded according to CTC v2.0 and performance status was graded according to the Karnofsky scale. RESULTS At a median follow-up of 23 months, 2 patients had relapsed locally. No grade 4 or 5 toxicity was reported. Grade 3 toxicity was seen in 12 patients (21%). There was no significant decline of FEV1% during follow-up. Low grade pneumonitis developed to the same extent in the CVD 3/17 (18%) and COPD 7/40 (18%) groups. The incidence of fibrosis was 9/17 (53%) and pleural effusions was 8/17 (47%) in the CVD group compared with 13/40 (33%) and 5/40 (13%) in the COPD group. CONCLUSION SBRT for stage I NSCLC patients who are medically inoperable because of COPD and CVD results in a favourable local control rate with a low incidence of grade 3 and no grade 4 or 5 toxicity.
Collapse
Affiliation(s)
- Pia Baumann
- Divisions of Oncology and Hospital Physics, Radiumhemment, Karolinska University Hospital, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schuring D, Hurkmans CW. Developing and evaluating stereotactic lung RT trials: what we should know about the influence of inhomogeneity corrections on dose. Radiat Oncol 2008; 3:21. [PMID: 18662379 PMCID: PMC2515326 DOI: 10.1186/1748-717x-3-21] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 07/28/2008] [Indexed: 12/13/2022] Open
Abstract
Purpose To investigate the influence of inhomogeneity corrections on stereotactic treatment plans for non-small cell lung cancer and determine the dose delivered to the PTV and OARs. Materials and methods For 26 patients with stage-I NSCLC treatment plans were optimized with unit density (UD), an equivalent pathlength algorithm (EPL), and a collapsed-cone (CC) algorithm, prescribing 60 Gy to the PTV. After optimization the first two plans were recalculated with the more accurate CC algorithm. Dose parameters were compared for the three different optimized plans. Dose to the target and OARs was evaluated for the recalculated plans and compared with the planned values. Results For the CC algorithm dose constraints for the ratio of the 50% isodose volume and the PTV, and the V20 Gy are harder to fulfill. After recalculation of the UD and EPL plans large variations in the dose to the PTV were observed. For the unit density plans, the dose to the PTV varied from 42.1 to 63.4 Gy for individual patients. The EPL plans all overestimated the PTV dose (average 48.0 Gy). For the lungs, the recalculated V20 Gy was highly correlated to the planned value, and was 12% higher for the UD plans (R2 = 0.99), and 15% lower for the EPL plans (R2 = 0.96). Conclusion Inhomogeneity corrections have a large influence on the dose delivered to the PTV and OARs for SBRT of lung tumors. A simple rescaling of the dose to the PTV is not possible, implicating that accurate dose calculations are necessary for these treatment plans in order to prevent large discrepancies between planned and actually delivered doses to individual patients.
Collapse
Affiliation(s)
- Danny Schuring
- Catharina-hospital, Department of radiotherapy, Michelangelolaan 2, PO box 1350, 5602 ZA, Eindhoven, The Netherlands.
| | | |
Collapse
|
46
|
Guckenberger M, Heilman K, Wulf J, Mueller G, Beckmann G, Flentje M. Pulmonary injury and tumor response after stereotactic body radiotherapy (SBRT): Results of a serial follow-up CT study. Radiother Oncol 2007; 85:435-42. [DOI: 10.1016/j.radonc.2007.10.044] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/22/2007] [Accepted: 10/30/2007] [Indexed: 12/25/2022]
|
47
|
Collins BT, Erickson K, Reichner CA, Collins SP, Gagnon GJ, Dieterich S, McRae DA, Zhang Y, Yousefi S, Levy E, Chang T, Jamis-Dow C, Banovac F, Anderson ED. Radical stereotactic radiosurgery with real-time tumor motion tracking in the treatment of small peripheral lung tumors. Radiat Oncol 2007; 2:39. [PMID: 17953752 PMCID: PMC2174503 DOI: 10.1186/1748-717x-2-39] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 10/22/2007] [Indexed: 12/25/2022] Open
Abstract
Background Recent developments in radiotherapeutic technology have resulted in a new approach to treating patients with localized lung cancer. We report preliminary clinical outcomes using stereotactic radiosurgery with real-time tumor motion tracking to treat small peripheral lung tumors. Methods Eligible patients were treated over a 24-month period and followed for a minimum of 6 months. Fiducials (3–5) were placed in or near tumors under CT-guidance. Non-isocentric treatment plans with 5-mm margins were generated. Patients received 45–60 Gy in 3 equal fractions delivered in less than 2 weeks. CT imaging and routine pulmonary function tests were completed at 3, 6, 12, 18, 24 and 30 months. Results Twenty-four consecutive patients were treated, 15 with stage I lung cancer and 9 with single lung metastases. Pneumothorax was a complication of fiducial placement in 7 patients, requiring tube thoracostomy in 4. All patients completed radiation treatment with minimal discomfort, few acute side effects and no procedure-related mortalities. Following treatment transient chest wall discomfort, typically lasting several weeks, developed in 7 of 11 patients with lesions within 5 mm of the pleura. Grade III pneumonitis was seen in 2 patients, one with prior conventional thoracic irradiation and the other treated with concurrent Gefitinib. A small statistically significant decline in the mean % predicted DLCO was observed at 6 and 12 months. All tumors responded to treatment at 3 months and local failure was seen in only 2 single metastases. There have been no regional lymph node recurrences. At a median follow-up of 12 months, the crude survival rate is 83%, with 3 deaths due to co-morbidities and 1 secondary to metastatic disease. Conclusion Radical stereotactic radiosurgery with real-time tumor motion tracking is a promising well-tolerated treatment option for small peripheral lung tumors.
Collapse
Affiliation(s)
- Brian T Collins
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Guckenberger M, Wilbert J, Krieger T, Richter A, Baier K, Meyer J, Flentje M. Four-Dimensional Treatment Planning for Stereotactic Body Radiotherapy. Int J Radiat Oncol Biol Phys 2007; 69:276-85. [PMID: 17707282 DOI: 10.1016/j.ijrobp.2007.04.074] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/04/2007] [Accepted: 04/29/2007] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the influence of tumor motion on the calculation of four-dimensional (4D) dose distributions of the gross tumor volume (GTV) in pulmonary stereotactic body radiotherapy. METHODS AND MATERIALS For 7 patients with eight pulmonary tumors, a respiratory-correlated 4D-computed tomography study was acquired. The internal target volume was the sum of all tumor positions in the planning 4D-computed tomography study, and a 5-mm margin was used for generation of the planning target volume. Three-dimensional (3D) treatment plans were generated with a dose prescription of 3 x 12.5 Gy to the planning target volume enclosing the 65% and 80% isodose. After model-based nonrigid image registration, the 4D dose distributions were calculated. RESULTS No significant difference was found in the dose to the GTV with the tumor in the end-exhalation, end-inhalation, or mid-ventilation phase of the breathing cycle. The high-dose region was confined to the solid tumor, and lower doses were delivered to the surrounding pulmonary tissue of lower density. This nonstatic, variant dose distribution increased the 4D dose to the GTV by 6.2%, on average, compared with calculations using on a static dose distribution during the breathing cycle. The 4D accumulation resulted in a biologic effective dose (BED) of 143 +/- 8 Gy and 106 +/- 4 Gy to the GTV in the plan-65% and plan-80%, respectively. The dose to the ipsilateral lung was not different between the 3D and 4D dose calculations or between plan-65% and plan-80%. CONCLUSIONS In this study, the dose to the GTV was not decreased or blurred in the 4D plan compared with the 3D plan. The 3D doses to the GTV, internal target volume, and dose at the isocenter were good approximations of the 4D dose calculations. The 3D dose at the planning target volume margin underestimated the 4D dose significantly.
Collapse
Affiliation(s)
- Matthias Guckenberger
- Department of Radiation Oncology, Julius-Maximilians University, Wuerzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Panettieri V, Wennberg B, Gagliardi G, Duch MA, Ginjaume M, Lax I. SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems. Phys Med Biol 2007; 52:4265-81. [PMID: 17664607 DOI: 10.1088/0031-9155/52/14/016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this work was to simulate with the Monte Carlo (MC) code PENELOPE the dose distribution in lung tumours including breathing motion in stereotactic body radiation therapy (SBRT). Two phantoms were modelled to simulate a pentagonal cross section with chestwall (unit density), lung (density 0.3 g cm(-3)) and two spherical tumours (unit density) of diameters respectively of 2 cm and 5 cm. The phase-space files (PSF) of four different SBRT field sizes of 6 MV from a Varian accelerator were calculated and used as beam sources to obtain both dose profiles and dose-volume histograms (DVHs) in different volumes of interest. Dose distributions were simulated for five beams impinging on the phantom. The simulations were conducted both for the static case and including the influence of respiratory motion. To reproduce the effect of breathing motion different simulations were performed keeping the beam fixed and displacing the phantom geometry in chosen positions in the cranial and caudal and left-right directions. The final result was obtained by combining the different position with two motion patterns. The MC results were compared with those obtained with three commercial treatment planning systems (TPSs), two based on the pencil beam (PB) algorithm, the TMS-HELAX (Nucletron, Sweden) and Eclipse (Varian Medical System, Palo Alto, CA), and one based on the collapsed cone algorithm (CC), Pinnacle(3) (Philips). Some calculations were also carried out with the analytical anisotropic algorithm (AAA) in the Eclipse system. All calculations with the TPSs were performed without simulated breathing motion, according to clinical practice. In order to compare all the TPSs and MC an absolute dose calibration in Gy/MU was performed. The analysis shows that the dose (Gy/MU) in the central part of the gross tumour volume (GTV) is calculated for both tumour sizes with an accuracy of 2-3% with PB and CC algorithms, compared to MC. At the periphery of the GTV the TPSs overestimate the dose up to 10%, while in the lung tissue close to the GTV PB algorithms overestimate the dose and the CC underestimates it. When clinically relevant breathing motions are included in the MC simulations, the static calculations with the TPSs still give a relatively accurate estimate of the dose in the GTV. On the other hand, the dose at the periphery of the GTV is overestimated, compared to the static case.
Collapse
Affiliation(s)
- Vanessa Panettieri
- Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|