1
|
Salem PP, Chami P, Daou R, Hajj J, Lin H, Chhabra AM, Simone CB, Lee NY, Hajj C. Proton Radiation Therapy: A Systematic Review of Treatment-Related Side Effects and Toxicities. Int J Mol Sci 2024; 25:10969. [PMID: 39456752 PMCID: PMC11506991 DOI: 10.3390/ijms252010969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer is the second leading cause of death worldwide. Around half of all cancer patients undergo some type of radiation therapy throughout the course of their treatment. Photon radiation remains (RT) the most widely utilized modality of radiotherapy despite recent advancements in proton radiation therapy (PBT). PBT makes use of the particle's biological property known as the Bragg peak to better spare healthy tissue from radiation damage, with data to support that this treatment modality is less toxic than photon RT. Hence, proton radiation dosimetry looks better compared to photon dosimetry; however, due to proton-specific uncertainties, unexpected acute, subacute, and long-term toxicities can be encountered. Reported neurotoxicity resulting from proton radiation treatments include radiation necrosis, moyamoya syndrome, neurosensory toxicities, brain edema, neuromuscular toxicities, and neurocognitive toxicities. Pulmonary toxicities include pneumonitis and fibrosis, pleural effusions, and bronchial toxicities. Pericarditis, pericardial effusions, and atrial fibrillations are among the cardiac toxicities related to proton therapy. Gastrointestinal and hematological toxicities are also found in the literature. Genitourinary toxicities include urinary and reproductive-related toxicities. Osteological, oral, endocrine, and skin toxicities have also been reported. The side effects will be comparable to the ones following photon RT, nonetheless at an expected lower incidence. The toxicities collected mainly from case reports and clinical trials are described based on the organs affected and functions altered.
Collapse
Affiliation(s)
- Peter P. Salem
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (P.P.S.); (P.C.)
| | - Perla Chami
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (P.P.S.); (P.C.)
| | - Remy Daou
- Family Medicine Department, Hotel Dieu de France Hospital, Beirut 1660, Lebanon;
| | - Joseph Hajj
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon;
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
| | - Arpit M. Chhabra
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
| | - Charles B. Simone
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Nancy Y. Lee
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Carla Hajj
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| |
Collapse
|
2
|
Chamseddine I, Shah K, Lee H, Ehret F, Schuemann J, Bertolet A, Shih HA, Paganetti H. Decoding Patient Heterogeneity Influencing Radiation-Induced Brain Necrosis. Clin Cancer Res 2024; 30:4424-4433. [PMID: 39106090 PMCID: PMC11444871 DOI: 10.1158/1078-0432.ccr-24-1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE In radiotherapy (RT) for brain tumors, patient heterogeneity masks treatment effects, complicating the prediction and mitigation of radiation-induced brain necrosis. Therefore, understanding this heterogeneity is essential for improving outcome assessments and reducing toxicity. EXPERIMENTAL DESIGN We developed a clinically practical pipeline to clarify the relationship between dosimetric features and outcomes by identifying key variables. We processed data from a cohort of 130 patients treated with proton therapy for brain and head and neck tumors, utilizing an expert-augmented Bayesian network to understand variable interdependencies and assess structural dependencies. Critical evaluation involved a three-level grading system for each network connection and a Markov blanket analysis to identify variables directly impacting necrosis risk. Statistical assessments included log-likelihood ratio, integrated discrimination index, net reclassification index, and receiver operating characteristic (ROC). RESULTS The analysis highlighted tumor location and proximity to critical structures such as white matter and ventricles as major determinants of necrosis risk. The majority of network connections were clinically supported, with quantitative measures confirming the significance of these variables in patient stratification (log-likelihood ratio = 12.17; P = 0.016; integrated discrimination index = 0.15; net reclassification index = 0.74). The ROC curve area was 0.66, emphasizing the discriminative value of nondosimetric variables. CONCLUSIONS Key patient variables critical to understanding brain necrosis post-RT were identified, aiding the study of dosimetric impacts and providing treatment confounders and moderators. This pipeline aims to enhance outcome assessments by revealing at-risk patients, offering a versatile tool for broader applications in RT to improve treatment personalization in different disease sites.
Collapse
Affiliation(s)
- Ibrahim Chamseddine
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keyur Shah
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Felix Ehret
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alejandro Bertolet
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Toussaint L, Matysiak W, Alapetite C, Aristu J, Bannink-Gawryszuk A, Bolle S, Bolsi A, Calvo F, Cerron Campoo F, Charlwood F, Demoor-Goldschmidt C, Doyen J, Drosik-Rutowicz K, Dutheil P, Embring A, Engellau J, Goedgebeur A, Goudjil F, Harrabi S, Kopec R, Kristensen I, Lægsdmand P, Lütgendorf-Caucig C, Meijers A, Mirandola A, Missohou F, Montero Feijoo M, Muren LP, Ondrova B, Orlandi E, Pettersson E, Pica A, Plaude S, Righetto R, Rombi B, Timmermann B, Van Beek K, Vela A, Vennarini S, Vestergaard A, Vidal M, Vondracek V, Weber DC, Whitfield G, Zimmerman J, Maduro JH, Lassen-Ramshad Y. Clinical practice in European centres treating paediatric posterior fossa tumours with pencil beam scanning proton therapy. Radiother Oncol 2024; 198:110414. [PMID: 38942120 DOI: 10.1016/j.radonc.2024.110414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/17/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND AND PURPOSE As no guidelines for pencil beam scanning (PBS) proton therapy (PT) of paediatric posterior fossa (PF) tumours exist to date, this study investigated planning techniques across European PT centres, with special considerations for brainstem and spinal cord sparing. MATERIALS AND METHODS A survey and a treatment planning comparison were initiated across nineteen European PBS-PT centres treating paediatric patients. The survey assessed all aspects of the treatment chain, including but not limited to delineations, dose constraints and treatment planning. Each centre planned two PF tumour cases for focal irradiation, according to their own clinical practice but based on common delineations. The prescription dose was 54 Gy(RBE) for Case 1 and 59.4 Gy(RBE) for Case 2. For both cases, planning strategies and relevant dose metrics were compared. RESULTS Seventeen (89 %) centres answered the survey, and sixteen (80 %) participated in the treatment planning comparison. In the survey, thirteen (68 %) centres reported using the European Particle Therapy Network definition for brainstem delineation. In the treatment planning study, while most centres used three beam directions, their configurations varied widely across centres. Large variations were also seen in brainstem doses, with a brainstem near maximum dose (D2%) ranging from 52.7 Gy(RBE) to 55.7 Gy(RBE) (Case 1), and from 56.8 Gy(RBE) to 60.9 Gy(RBE) (Case 2). CONCLUSION This study assessed the European PBS-PT planning of paediatric PF tumours. Agreement was achieved in e.g. delineation-practice, while wider variations were observed in planning approach and consequently dose to organs at risk. Collaboration between centres is still ongoing, striving towards common guidelines.
Collapse
Affiliation(s)
- Laura Toussaint
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark.
| | - Witold Matysiak
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Claire Alapetite
- Institut Curie, Department of Radiation Oncology & Proton Centre, Paris, France
| | - Javier Aristu
- Clínica Universidad de Navarra, Proton Therapy Unit, Madrid, Spain
| | - Agata Bannink-Gawryszuk
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | - Stephanie Bolle
- Institut Curie, Department of Radiation Oncology & Proton Centre, Paris, France; Institut Gustave Roussy, Department of Radiation Oncology, Villejuif, France; Centro de Protonterapia Quironsalud, Madrid, Spain
| | - Alessandra Bolsi
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Felipe Calvo
- Clínica Universidad de Navarra, Proton Therapy Unit, Madrid, Spain
| | | | - Frances Charlwood
- University of Manchester, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Charlotte Demoor-Goldschmidt
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France; Angers University Hospital, Department of Paediatric Oncology, Angers, France
| | - Jérôme Doyen
- Centre Antoine Lacassagne, Department of Radiation Oncology, Nice, France
| | - Katarzyna Drosik-Rutowicz
- National Research Institute of Oncology Kraków/Gliwice branch, Department of Radiation Oncology, Kraków, Poland
| | - Pauline Dutheil
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Anna Embring
- Karolinska University Hospital, Department of Radiotherapy, Stockholm, Sweden
| | - Jacob Engellau
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Anneleen Goedgebeur
- PARTICLE Proton Therapy Centre University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Farid Goudjil
- Institut Curie, Department of Radiation Oncology & Proton Centre, Paris, France
| | - Semi Harrabi
- Heidelberg Ion Beam Therapy Centre, University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg, Germany
| | - Renata Kopec
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Ingrid Kristensen
- Skåne University Hospital, Hematology, Oncology and Radiation Physics, Lund, Sweden
| | - Peter Lægsdmand
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | | | - Arturs Meijers
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Alfredo Mirandola
- Radiation Oncology Unit, Clinical Department, National Centre for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Fernand Missohou
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | | | - Ludvig P Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Aarhus N, Denmark
| | - Barbora Ondrova
- Proton Therapy Centre Czech, Department of Radiation Oncology, Prague, Czech Republic
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, National Centre for Oncological Hadrontherapy (CNAO), Pavia, Italy; University of Pavia, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, Pavia, Italy
| | - Erik Pettersson
- Sahlgrenska University Hospital, Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Gothenburg, Sweden; Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Department of Medical Radiation Sciences, Gothenburg, Sweden
| | - Alessia Pica
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Sandija Plaude
- West German Proton Therapy Centre Essen (WPE), Essen University Hospital, Essen, Germany
| | | | - Barbara Rombi
- Trento Proton Therapy Centre,epartment of Radiation Oncology, APSS Trento, Italy
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen University Hospital, Essen, Germany; Department of Particle Therapy, University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - Karen Van Beek
- PARTICLE Proton Therapy Centre University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - Anthony Vela
- Centre Regional Francois Baclesse, Department of Radiation Oncology, Caen, France
| | - Sabina Vennarini
- Paediatric Radiotherapy Unit, IRCCS Foundation Institute of Cancer, Milano, Italy
| | - Anne Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, Denmark
| | - Marie Vidal
- Centre Antoine Lacassagne, Department of Radiation Oncology, Nice, France
| | - Vladimir Vondracek
- Proton Therapy Centre Czech, Department of Radiation Oncology, Prague, Czech Republic
| | - Damien C Weber
- Paul Scherrer Institute, Centre for Proton Therapy, ETH Domain, Villigen, Switzerland
| | - Gillian Whitfield
- University of Manchester, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; University of Manchester, Royal Manchester Children's Hospital, The Children's Brain Tumour Research Network, Manchester, United Kingdom
| | - Jens Zimmerman
- Karolinska University Hospital, Department of Radiotherapy Physics and Engineering, Stockholm, Sweden
| | - John H Maduro
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Groningen, the Netherlands
| | | |
Collapse
|
4
|
Paganetti H, Simone CB, Bosch WR, Haas-Kogan D, Kirsch DG, Li H, Liang X, Liu W, Mahajan A, Story MD, Taylor PA, Willers H, Xiao Y, Buchsbaum JC. NRG Oncology White Paper on the Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)02974-2. [PMID: 39059509 DOI: 10.1016/j.ijrobp.2024.07.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
This position paper, led by the NRG Oncology Particle Therapy Work Group, focuses on the concept of relative biologic effect (RBE) in clinical proton therapy (PT), with the goal of providing recommendations for the next-generation clinical trials with PT on the best practice of investigating and using RBE, which could deviate from the current standard proton RBE value of 1.1 relative to photons. In part 1, current clinical utilization and practice are reviewed, giving the context and history of RBE. Evidence for variation in RBE is presented along with the concept of linear energy transfer (LET). The intertwined nature of tumor radiobiology, normal tissue constraints, and treatment planning with LET and RBE considerations is then reviewed. Part 2 summarizes current and past clinical data and then suggests the next steps to explore and employ tools for improved dynamic models for RBE. In part 3, approaches and methods for the next generation of prospective clinical trials are explored, with the goal of optimizing RBE to be both more reflective of clinical reality and also deployable in trials to allow clinical validation and interpatient comparisons. These concepts provide the foundation for personalized biologic treatments reviewed in part 4. Finally, we conclude with a summary including short- and long-term scientific focus points for clinical PT. The practicalities and capacity to use RBE in treatment planning are reviewed and considered with more biological data in hand. The intermediate step of LET optimization is summarized and proposed as a potential bridge to the ultimate goal of case-specific RBE planning that can be achieved as a hypothesis-generating tool in near-term proton trials.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - David G Kirsch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Buchsbaum
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
5
|
Han J, Lee SW, Han NY, Gwak HS. Excessively Delayed Radiation Changes After Proton Beam Therapy for Brain Tumors: Report of Two Cases. Brain Tumor Res Treat 2024; 12:141-147. [PMID: 38742264 PMCID: PMC11096628 DOI: 10.14791/btrt.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Delayed cerebral necrosis is a well-known complication of radiation therapy (RT). Because of its irreversible nature, it should be avoided if possible, but avoidance occurs at the expense of potentially compromised tumor control, despite the use of the modern advanced technique of conformal RT that minimizes radiation to normal brain tissue. Risk factors for radiation-induced cerebral necrosis include a higher dose per fraction, larger treatment volume, higher cumulative dose, and shorter time interval (for re-irradiation). The same principle can be applied to proton beam therapy (PBT) to avoid delayed cerebral necrosis. However, conversion of PBT radiation energy into conventional RT is still short of clinical support, compared to conventional RT. Herein, we describe two patients with excessively delayed cerebral necrosis after PBT, in whom follow-up MRI showed no RT-induced changes prior to 3 years after treatment. One patient developed radiation necrosis at 4 years after PBT to the resection cavity of an astroblastoma, and the other developed brainstem necrosis that became symptomatic 6 months after its first appearance on the 3-year follow-up brain MRI. We also discuss possible differences between radiation changes after PBT versus conventional RT.
Collapse
Affiliation(s)
- Jeongmin Han
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Wook Lee
- Department of Radiation Oncology, National Cancer Center, Goyang, Korea
| | - Na Young Han
- Department of Pathology, National Cancer Center, Goyang, Korea
| | - Ho-Shin Gwak
- Department of Cancer Control, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang, Korea.
| |
Collapse
|
6
|
Lütgendorf-Caucig C, Pelak M, Hug E, Flechl B, Surböck B, Marosi C, Mock U, Zach L, Mardor Y, Furman O, Hentschel H, Gora J, Fossati P, Stock M, Graichen U, Klee S, Georg P. Prospective Analysis of Radiation-Induced Contrast Enhancement and Health-Related Quality of Life After Proton Therapy for Central Nervous System and Skull Base Tumors. Int J Radiat Oncol Biol Phys 2024; 118:1206-1216. [PMID: 38244874 DOI: 10.1016/j.ijrobp.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
PURPOSE Intracerebral radiation-induced contrast enhancement (RICE) can occur after photon as well as proton beam therapy (PBT). This study evaluated the incidence, characteristics, and risk factors of RICE after PBT delivered to, or in direct proximity to, the brain and its effect on health-related quality of life (HRQoL). METHODS AND MATERIALS Four hundred twenty-one patients treated with pencil beam scanning PBT between 2017 and 2021 were included. Follow-up included clinical evaluation and contrast-enhanced magnetic resonance imaging at 3, 6, and 12 months after treatment completion and annually thereafter. RICE was graded according to Common Terminology Criteria for Adverse Events version 4, and HRQoL parameters were assessed via European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ)-C30 questionnaires. RESULTS The median follow-up was 24 months (range, 6-54), and median dose to 1% relative volume of noninvolved central nervous system (D1%CNS) was 54.3 Gy relative biologic effectiveness (RBE; range, 30-76 Gy RBE). The cumulative RICE incidence was 15% (n = 63), of which 10.5% (n = 44) were grade 1, 3.1% (n = 13) were grade 2, and 1.4% (n = 6) were grade 3. No grade 4 or 5 events were observed. Twenty-six of 63 RICE (41.3%) had resolved at the latest follow-up. The median onset after PBT and duration of RICE in patients in whom the lesions resolved were 11.8 and 9.0 months, respectively. On multivariable analysis, D1%CNS > 57.6 Gy RBE, previous in-field radiation, and diabetes mellitus were identified as significant risk factors for RICE development. Previous radiation was the only factor influencing the risk of symptomatic RICE. After PBT, general HRQoL parameters were not compromised. In a matched cohort analysis of 54/50 patients with and without RICE, no differences in global health score or functional and symptom scales were seen. CONCLUSIONS The overall incidence of clinically relevant RICE after PBT is very low and has no significant negative effect on long-term patient QoL.
Collapse
Affiliation(s)
| | - Maciej Pelak
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; University Clinic for Radiotherapy and Radiation Oncology, Uniklinikum Salzburg, Salzburg, Austria.
| | - Eugen Hug
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Birgit Flechl
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Birgit Surböck
- Department of Neurology, Klinikum Favoriten, Vienna, Austria
| | - Christine Marosi
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrike Mock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Leor Zach
- Department of Radiation Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Yael Mardor
- Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv, Israel; Advanced Technology Center, Sheba Medical Center, Ramat Gan, Israel
| | - Orit Furman
- Department of Radiation Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Joanna Gora
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Uwe Graichen
- Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sascha Klee
- Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Petra Georg
- Department of Radiotherapy, Karl Landsteiner University of Health Sciences, University Hospital Krems, Krems, Austria
| |
Collapse
|
7
|
Klawinski DM, Cottrell CE, Schieffer KM, Indyk JA, Gandhi K, Mardis ER, Rodriguez DP, Breneman JC, Osorio DS. Fatal brainstem injury following proton radiation in a patient with medulloblastoma and a germline variant in RNF213. Pediatr Blood Cancer 2024; 71:e30739. [PMID: 37877896 DOI: 10.1002/pbc.30739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Brainstem injury occurs secondary to radiation to the posterior fossa in up to 2% of pediatric patients. It may occur after months to years after treatment. It has been associated with age less than 5 years and with comorbid conditions such as cerebrovascular disease, diabetes mellitus, and hypertension. Radiation necrosis is often symptomatic and can be fatal. A pathogenic variant in RNF213 was found in a patient who suffered fatal radiation necrosis. This mutation has been associated with moyamoya disease and may predispose to radiation necrosis.
Collapse
Affiliation(s)
- Darren M Klawinski
- Department of Pediatrics, Nemours Children's Health Jacksonville, Jacksonville, Florida, USA
| | | | | | | | - Kajal Gandhi
- Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | | | - John C Breneman
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
8
|
Berlin E, Eisenberg R, Hill-Kayser C, Lustig RA, Kurtz G, Cummings E, LaRiviere M. Delivery of re-irradiation and complex palliative radiotherapy using proton therapy in pediatric cancer patients. Pediatr Blood Cancer 2023; 70:e30708. [PMID: 37794575 DOI: 10.1002/pbc.30708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The intent of this study is to characterize indications for pediatric palliative-intent proton radiation therapy (PIPRT). PROCEDURE We retrospectively reviewed patients 21 years and younger who received PIPRT. We defined PIPRT as radiotherapy (RT) aimed to improve cancer-related symptoms/provide durable local control in the non-curative setting. Mixed proton/photon plans were included. Adjacent re-irradiation (reRT) was defined as a reRT volume within the incidental dose cloud of a prior RT target, whereas direct reRT was defined as in-field overlap with prior RT target. Acute toxicity during RT until first inspection visit was graded according to the Common Terminology Criteria for Adverse Events. The Kaplan-Meier method, measured from last PIPRT fraction, was used to assess progression-free survival (PFS) and overall survival (OS). RESULTS Eighteen patients underwent PIPRT between 2014 and 2020. Median age at treatment start was 10 years [2-21]. Median follow-up was 8.2 months [0-48]. Treatment sites included: brain/spine [10], abdomen/pelvis [3], thorax [3], and head/neck [2]. Indications for palliation included: durable tumor control [18], neurologic symptoms [4], pain [3], airway compromise [2], and great vessel compression [1]. Indications for protons included: reRT [15] (three adjacent, 12 direct), craniospinal irradiation [4], reduction of dose to normal tissues [3]. Sixteen experienced grade (G) 1-2 toxicity; two G3. There were no reports of radionecrosis. Median PFS was 5.3 months [95% confidence interval (CI): 2.7-16.3]. Median OS was 8.3 months [95% CI: 5.5-26.3]. CONCLUSIONS The most common indication for PIPRT was reRT to provide durable tumor control. PIPRT appears to be safe, with no cases of high-grade toxicity.
Collapse
Affiliation(s)
- Eva Berlin
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Eisenberg
- Albany Medical College, Albany Medical Center, Albany, New York, USA
| | - Christine Hill-Kayser
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert A Lustig
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Goldie Kurtz
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Cummings
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael LaRiviere
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Handeland AH, Indelicato DJ, Fredrik Fjæra L, Ytre-Hauge KS, Pettersen HES, Muren LP, Lassen-Ramshad Y, Stokkevåg CH. Linear energy transfer-inclusive models of brainstem necrosis following proton therapy of paediatric ependymoma. Phys Imaging Radiat Oncol 2023; 27:100466. [PMID: 37457667 PMCID: PMC10345333 DOI: 10.1016/j.phro.2023.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Background and Purpose Radiation-induced brainstem necrosis after proton therapy is a severe toxicity with potential association to uncertainties in the proton relative biological effectiveness (RBE). A constant RBE of 1.1 is assumed clinically, but the RBE is known to vary with linear energy transfer (LET). LET-inclusive predictive models of toxicity may therefore be beneficial during proton treatment planning. Hence, we aimed to construct models describing the association between brainstem necrosis and LET in the brainstem. Materials and methods A matched case-control cohort (n = 28, 1:3 case-control ratio) of symptomatic brainstem necrosis was selected from 954 paediatric ependymoma brain tumour patients treated with passively scattered proton therapy. Dose-averaged LET (LETd) parameters in restricted volumes (L50%, L10% and L0.1cm3, the cumulative LETd) within high-dose thresholds were included in linear- and logistic regression normal tissue complication probability (NTCP) models. Results A 1 keV/µm increase in L10% to the brainstem volume receiving dose over 54 Gy(RBE) led to an increased brainstem necrosis risk [95% confidence interval] of 2.5 [0.0, 7.8] percentage points. The corresponding logistic regression model had area under the receiver operating characteristic curve (AUC) of 0.76, increasing to 0.84 with the anterior pons substructure as a second parameter. 19 [7, 350] patients with toxicity were required to associate the L10% (D > 54 Gy(RBE)) and brainstem necrosis with 80% statistical power. Conclusion The established models of brainstem necrosis illustrate a potential impact of high LET regions in patients receiving high doses to the brainstem, and thereby support LET mitigation during clinical treatment planning.
Collapse
Affiliation(s)
- Andreas H. Handeland
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Lars Fredrik Fjæra
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Medical Physics, Oslo University Hospital, Norway
| | | | | | - Ludvig P. Muren
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Camilla H. Stokkevåg
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
10
|
Vázquez M, Bachmann N, Pica A, Bolsi A, De Angelis C, Lomax AJ, Weber DC. Early outcome after craniospinal irradiation with pencil beam scanning proton therapy for children, adolescents and young adults with brain tumors. Pediatr Blood Cancer 2023; 70:e30087. [PMID: 36377685 DOI: 10.1002/pbc.30087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Central nervous system (CNS) tumors are the most common solid malignancies in children and adolescents and young adults (C-AYAs). Craniospinal irradiation (CSI) is an essential treatment component for some malignancies, but it can also lead to important toxicity. Pencil beam scanning proton therapy (PBSPT) allows for a minimization of dose delivered to organs at risk and, thus, potentially reduced acute and late toxicity. This study aims to report the clinical outcomes and toxicity rates after CSI for C-AYAs treated with PBSPT. Seventy-one C-AYAs (median age: 7.4 years) with CNS tumors were treated with CSI between 2004 and 2021. Medulloblastoma (n = 42: 59%) and ependymoma (n = 8; 11%) were the most common histologies. Median prescribed total PBSPT dose was 54 GyRBE (range: 18-60.4), and median prescribed craniospinal dose was 24 GyRBE (range: 18-36.8). Acute and late toxicities were coded according to Common Terminology Criteria for Adverse Events. After a median follow-up of 24.5 months, the estimated 2-year local control, distant control, and overall survival were 86.3%, 80.5%, and 84.7%, respectively. Late grade ≥3 toxicity-free rate was 92.6% at 2 years. Recurrent and metastatic tumors were associated with worse outcome. In conclusion, excellent tumor control with low toxicity rates was observed in C-AYAs with brain tumors treated with CSI using PBSPT.
Collapse
Affiliation(s)
- Miriam Vázquez
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Nicolas Bachmann
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Claudio De Angelis
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Radiation Oncology, University Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Tattenberg S, Madden TM, Bortfeld T, Parodi K, Verburg J. Range uncertainty reductions in proton therapy may lead to the feasibility of novel beam arrangements which improve organ-at-risk sparing. Med Phys 2022; 49:4693-4704. [PMID: 35362163 DOI: 10.1002/mp.15644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE In proton therapy, dose distributions are currently often conformed to organs at risk (OARs) using the less sharp dose fall-off at the lateral beam edge to reduce the effects of uncertainties in the in vivo proton range. However, range uncertainty reductions may make greater use of the sharper dose fall-off at the distal beam edge feasible, potentially improving OAR sparing. We quantified the benefits of such novel beam arrangements. METHODS For each of 10 brain or skull base cases, five treatment plans robust to 2 mm setup and 0%-4% range uncertainty were created for the traditional clinical beam arrangement and a novel beam arrangement making greater use of the distal beam edge to conform the dose distribution to the brainstem. Metrics including the brainstem normal tissue complication probability (NTCP) with the endpoint of necrosis were determined for all plans and all setup and range uncertainty scenarios. RESULTS For the traditional beam arrangement, reducing the range uncertainty from the current level of approximately 4% to a potentially achievable level of 1% reduced the brainstem NTCP by up to 0.9 percentage points in the nominal and up to 1.5 percentage points in the worst-case scenario. Switching to the novel beam arrangement at 1% range uncertainty improved these values by a factor of 2, that is, to 1.8 percentage points and 3.2 percentage points, respectively. The novel beam arrangement achieved a lower brainstem NTCP in all cases starting at a range uncertainty of 2%. CONCLUSION The benefits of novel beam arrangements may be of the same magnitude or even exceed the direct benefits of range uncertainty reductions. Indirect effects may therefore contribute markedly to the benefits of reducing proton range uncertainties.
Collapse
Affiliation(s)
- Sebastian Tattenberg
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas M Madden
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Joost Verburg
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Chang S, Liu G, Zhao L, Zheng W, Yan D, Chen P, Li X, Yang K, Deraniyagala R, Stevens C, Grills I, Chinnaiyan P, Li X, Ding X. Redefine the Role of Spot-Scanning Proton Beam Therapy for the Single Brain Metastasis Stereotactic Radiosurgery. Front Oncol 2022; 12:804036. [PMID: 35664795 PMCID: PMC9160604 DOI: 10.3389/fonc.2022.804036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/14/2022] [Indexed: 12/30/2022] Open
Abstract
Purpose To explore the role of using Pencil Beam Scanning (PBS) proton beam therapy in single lesion brain stereotactic radiosurgery (SRS), we developed and validated a dosimetric in silico model to assist in the selection of an optimal treatment approach among the conventional Volumetric Modulated Arc Therapy (VMAT), Intensity Modulated Proton Therapy (IMPT) and Spot-scanning Proton Arc (SPArc). Material and Methods A patient’s head CT data set was used as an in silico model. A series of targets (volume range from 0.3 cc to 33.03 cc) were inserted in the deep central and peripheral region, simulating targets with different sizes and locations. Three planning groups: IMPT, VMAT, and SPArc were created for dosimetric comparison purposes and a decision tree was built based on this in silico model. Nine patients with single brain metastases were retrospectively selected for validation. Multiple dosimetric metrics were analyzed to assess the plan quality, such as dose Conformity Index (CI) (ratio of the target volume to 100% prescription isodose volume); R50 (ratio of 50% prescription isodose volume to the target volume); V12Gy (volume of brain tissue minus GTV receiving 12 Gy), and mean dose of the normal brain. Normal tissue complication probability (NTCP) of brain radionecrosis (RN) was calculated using the Lyman-Kutcher-Burman (LKB) model and total treatment delivery time was calculated. Six physicians from different institutions participated in the blind survey to evaluate the plan quality and rank their choices. Results The study showed that SPArc has a dosimetric advantage in the V12Gy and R50 with target volumes > 9.00 cc compared to VMAT and IMPT. A significant clinical benefit can be found in deep centrally located lesions larger than 20.00 cc using SPArc because of the superior dose conformity and mean dose reduction in healthy brain tissue. Nine retrospective clinical cases and the blind survey showed good agreement with the in silico dosimetric model and decision tree. Additionally, SPArc significantly reduced the treatment delivery time compared to VMAT (SPArc 184.46 ± 59.51s vs. VMAT: 1574.78 ± 213.65s). Conclusion The study demonstrated the feasibility of using Proton beam therapy for single brain metastasis patients utilizing the SPArc technique. At the current stage of technological development, VMAT remains the current standard modality of choice for single lesion brain SRS. The in silico dosimetric model and decision tree presented here could be used as a practical clinical decision tool to assist the selection of the optimal treatment modality among VMAT, IMPT, and SPArc in centers that have both photon and proton capabilities.
Collapse
Affiliation(s)
- Sheng Chang
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, China
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Gang Liu
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lewei Zhao
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Weili Zheng
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Peter Chen
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Xiangpan Li
- Department of Radiation Oncology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rohan Deraniyagala
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, United States
- *Correspondence: Xuanfeng Ding,
| |
Collapse
|
13
|
Fan X, Huang Y, Xu P, Min Y, Li J, Feng M, Xu G, Lang J. Dosimetric analysis of radiation-induced brainstem necrosis for nasopharyngeal carcinoma treated with IMRT. BMC Cancer 2022; 22:178. [PMID: 35177030 PMCID: PMC8851808 DOI: 10.1186/s12885-022-09213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Radiation-induced brainstem necrosis (RIBN) is a late life-threatening complication that can appear after treatment in patients with nasopharyngeal carcinoma (NPC). However, the relationship between RIBN and radiation dose is not still well-defined. Methods During January 2013 and December 2017, a total of 1063 patients with NPC were treated at Sichuan cancer hospital with IMRT. A total of 479 patients were eligible for dosimetric analysis. Dosimetric parameters of the RIBN, Dmax(the maximum dose), D0.1c (maximum average dose delivered to a 0.1-cc volume), D1cc, D2cc, D3cc, D5cc, D10cc and Dmean (mean does) were evaluated and recorded. ROC curve was used to analyze the area under curve (AUC) and cutoff points. Logistic regression for screening dose-volume parameter and logistic dose response model were used to predict the incidence of brainstem necrosis. Results Among the 479 patients with NPC, 6 patients were diagnosed with RIBN, the incidence of RIBN was 1.25% (6/479), and the median time to RIBN after treatment was 28.5 months (range 18–48 months). The dose of the brainstem in patients with RIBN were higher than that in patients without necrosis. ROC curve showed that the area under the curve (AUC) of Dmax was the largest (0.987). Moreover, logistic stepwise regression indicated that Dmax was the most important dose factor. The RIBN incidence at 5% over 5 years (TD5/5) and 50% incidence over 5 years (TD50/5) was 69.59 Gy and76.45 Gy, respectively. Conclusions Brainstem necrosis is associated with high dose irritation. Dmax is the most significant predictive dosimetric factor for RIBN. Dmax of brainstem should be considered as the dose limitation parameter. We suggest that the limitation dose for brainstem was Dmax < 69.59 Gy.
Collapse
Affiliation(s)
- Xigang Fan
- Department of Oncology, People's Hospital of Deyang City, Deyang, Sichuan, China.,Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu, Sichuan, China
| | - Yecai Huang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu, Sichuan, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Peng Xu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu, Sichuan, China
| | - Yanmei Min
- Department of Oncology, The Third Hospital of Mianyang, Mianyang, Sichuan, China
| | - Jie Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu, Sichuan, China
| | - Mei Feng
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu, Sichuan, China
| | - Guohui Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Interventional Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Chengdu, Sichuan, China
| | - Jinyi Lang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu, Sichuan, China. .,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Upadhyay R, Liao K, Grosshans DR, McGovern SL, Frances McAleer M, Zaky W, Chintagumpala MM, Mahajan A, Nana Yeboa D, Paulino AC. Quantifying the risk and dosimetric variables of symptomatic brainstem injury after proton beam radiation in pediatric brain tumors. Neuro Oncol 2022; 24:1571-1581. [PMID: 35157767 PMCID: PMC9435496 DOI: 10.1093/neuonc/noac044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Brainstem toxicity after radiation therapy (RT) is a devastating complication and a particular concern with proton radiation (PBT). We investigated the incidence and clinical correlates of brainstem injury in pediatric brain tumors treated with PBT. METHODS All patients <21 years with brain tumors treated with PBT at our institution from 2007-2019, with a brainstem Dmean >30 Gy and/or Dmax >50.4 Gy were included. Symptomatic brainstem injury (SBI) was defined as any new or progressive cranial neuropathy, ataxia, and/or motor weakness with corresponding radiographic abnormality within brainstem. RESULTS A total of 595 patients were reviewed and 468 (medulloblastoma = 200, gliomas = 114, ependymoma = 87, ATRT = 43) met our inclusion criteria. Median age at RT was 6.3 years and median prescribed RT dose was 54Gy [RBE]. Fifteen patients (3.2%) developed SBI, at a median of 4 months after RT. Grades 2, 3, 4, and 5 brainstem injuries were seen in 7, 5, 1, and 2 patients respectively. Asymptomatic radiographic changes were seen in 51 patients (10.9%). SBI was significantly higher in patients with age ≤3 years, female gender, ATRT histology, patients receiving high-dose chemotherapy with stem cell rescue, and those not receiving craniospinal irradiation. Patients with SBI had a significantly higher V50-52. In 2014, our institution started using strict brainstem dose constraints (Dmax ≤57 Gy, Dmean ≤52.4 Gy, and V54≤10%). There was a trend towards decrease in SBI from 4.4% (2007-2013) to 1.5% (2014-2019) (P = .089) without affecting survival. CONCLUSION Our results suggest a low risk of SBI after PBT for pediatric brain tumors, comparable to photon therapy. A lower risk was seen after adopting strict brainstem dose constraints.
Collapse
Affiliation(s)
- Rituraj Upadhyay
- Department of Radiation Oncology, The James Cancer Centre Ohio State University, Columbus, Ohio, USA
| | - Kaiping Liao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan L McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wafik Zaky
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Debra Nana Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Arnold C Paulino
- Corresponding Author: Arnold C. Paulino, MD, Department of Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0097, Houston, TX 77030, USA ()
| |
Collapse
|
15
|
Paganetti H. Mechanisms and Review of Clinical Evidence of Variations in Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2022; 112:222-236. [PMID: 34407443 PMCID: PMC8688199 DOI: 10.1016/j.ijrobp.2021.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Proton therapy is increasingly being used as a radiation therapy modality. There is uncertainty about the biological effectiveness of protons relative to photon therapies as it depends on several physical and biological parameters. Radiation oncology currently applies a constant and generic value for the relative biological effectiveness (RBE) of 1.1, which was chosen conservatively to ensure tumor coverage. The use of a constant value has been challenged particularly when considering normal tissue constraints. Potential variations in RBE have been assessed in several published reviews but have mostly focused on data from clonogenic cell survival experiments with unclear relevance for clinical proton therapy. The goal of this review is to put in vitro findings in relation to clinical observations. Relevant in vivo pathways determining RBE for tumors and normal tissues are outlined, including not only damage to tumor cells and parenchyma but also vascular damage and immune response. Furthermore, the current clinical evidence of varying RBE is reviewed. The assessment can serve as guidance for treatment planning, personalized dose prescriptions, and outcome analysis.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
16
|
Hyer DE, Ding X, Rong Y. Proton therapy needs further technological development to fulfill the promise of becoming a superior treatment modality (compared to photon therapy). J Appl Clin Med Phys 2021; 22:4-11. [PMID: 34730268 PMCID: PMC8598137 DOI: 10.1002/acm2.13450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Daniel E. Hyer
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| | - Xuanfeng Ding
- Department of Radiation OncologyWilliam Beaumont HospitalRoyal ParkMichiganUSA
| | - Yi Rong
- Department of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| |
Collapse
|
17
|
Tinganelli W, Luoni F, Durante M. What can space radiation protection learn from radiation oncology? LIFE SCIENCES IN SPACE RESEARCH 2021; 30:82-95. [PMID: 34281668 DOI: 10.1016/j.lssr.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Protection from cosmic radiation of crews of long-term space missions is now becoming an urgent requirement to allow a safe colonization of the moon and Mars. Epidemiology provides little help to quantify the risk, because the astronaut group is small and as yet mostly involved in low-Earth orbit mission, whilst the usual cohorts used for radiation protection on Earth (e.g. atomic bomb survivors) were exposed to a radiation quality substantially different from the energetic charged particle field found in space. However, there are over 260,000 patients treated with accelerated protons or heavier ions for different types of cancer, and this cohort may be useful for quantifying the effects of space-like radiation in humans. Space radiation protection and particle therapy research also share the same tools and devices, such as accelerators and detectors, as well as several research topics, from nuclear fragmentation cross sections to the radiobiology of densely ionizing radiation. The transfer of the information from the cancer radiotherapy field to space is manifestly complicated, yet the two field should strengthen their relationship and exchange methods and data.
Collapse
Affiliation(s)
- Walter Tinganelli
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - Francesca Luoni
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany.
| |
Collapse
|
18
|
Indelicato DJ, Ioakeim-Ioannidou M, Bradley JA, Mailhot-Vega RB, Morris CG, Tarbell NJ, Yock T, MacDonald SM. Proton Therapy for Pediatric Ependymoma: Mature Results From a Bicentric Study. Int J Radiat Oncol Biol Phys 2021; 110:815-820. [PMID: 33508372 DOI: 10.1016/j.ijrobp.2021.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/17/2020] [Accepted: 01/20/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To report the long-term efficacy and toxicity of proton therapy for pediatric ependymoma. METHODS AND MATERIALS Between 2000 and 2019, 386 children with nonmetastatic grade 2/3 intracranial ependymoma received proton therapy at 1 of 2 academic institutions. Median age at treatment was 3.8 years (range, 0.7-21.3); 56% were male. Most (72%) tumors were in the posterior fossa and classified as World Health Organization grade 3 (65%). Eighty-five percent had a gross total or near total tumor resection before radiation therapy; 30% received chemotherapy. Median radiation dose was 55.8 Gy relative biologic effectiveness (RBE) (range, 50.4-59.4). RESULTS Median follow-up was 5.0 years (range, 0.4-16.7). The 7-year local control, progression-free survival, and overall survival rates were 77.0% (95% confidence interval [CI], 71.9%-81.5%), 63.8% (95% CI, 58.0%-68.8%), and 82.2% (95% CI, 77.2%-86.3%), respectively. Subtotal resection was associated with inferior local control (59% vs 80%; P < .005), progression-free survival (48% vs 66%; P < .001), and overall survival (70% vs 84%; P < .05). Male sex was associated with inferior progression-free (60% vs 69%; P < .05) and overall survival (76% vs 89%; P < .05). Posterior fossa tumor site was also associated with inferior progression-free (59% vs 74%; P < .05) and overall survival (79% vs 89%; P < .01). Twenty-one patients (5.4%) required hearing aids; of these, 13 received cisplatin, including the 3 with bilateral hearing loss. Forty-five patients (11.7%) required hormone replacement, typically growth hormone (38/45). The cumulative incidence of grade 2+ brain stem toxicity was 4% and occurred more often in patients who received >54 GyRBE. Two patients (0.5%) died of brain stem necrosis. The second-malignancy rate was 0.8%. CONCLUSION Proton therapy offers disease control commensurate with modern photon therapy without unexpected toxicity. The high rate of long-term survival justifies efforts to reduce radiation exposure in this young population. Independent of radiation modality, this large series confirms extent of resection as the most important modifiable factor for survival.
Collapse
Affiliation(s)
- Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida.
| | | | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Raymond B Mailhot-Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Christopher G Morris
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| | - Nancy J Tarbell
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Torunn Yock
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Shannon M MacDonald
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Mizumoto M, Fuji H, Miyachi M, Soejima T, Yamamoto T, Aibe N, Demizu Y, Iwata H, Hashimoto T, Motegi A, Kawamura A, Terashima K, Fukushima T, Nakao T, Takada A, Sumi M, Oshima J, Moriwaki K, Nozaki M, Ishida Y, Kosaka Y, Ae K, Hosono A, Harada H, Ogo E, Akimoto T, Saito T, Fukushima H, Suzuki R, Takahashi M, Matsuo T, Matsumura A, Masaki H, Hosoi H, Shigematsu N, Sakurai H. Proton beam therapy for children and adolescents and young adults (AYAs): JASTRO and JSPHO Guidelines. Cancer Treat Rev 2021; 98:102209. [PMID: 33984606 DOI: 10.1016/j.ctrv.2021.102209] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 11/19/2022]
Abstract
Children and adolescents and young adults (AYAs) with cancer are often treated with a multidisciplinary approach. This includes use of radiotherapy, which is important for local control, but may also cause adverse events in the long term, including second cancer. The risks for limited growth and development, endocrine dysfunction, reduced fertility and second cancer in children and AYAs are reduced by proton beam therapy (PBT), which has a dose distribution that decreases irradiation of normal organs while still targeting the tumor. To define the outcomes and characteristics of PBT in cancer treatment in pediatric and AYA patients, this document was developed by the Japanese Society for Radiation Oncology (JASTRO) and the Japanese Society of Pediatric Hematology/Oncology (JSPHO).
Collapse
Affiliation(s)
- Masashi Mizumoto
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Fuji
- Department of Radiology and National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Toshinori Soejima
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Norihiro Aibe
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Demizu
- Department of Radiation Oncology, Hyogo Ion Beam Medical Center Kobe Proton Center, Kobe, Hyogo, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City University West Medical Center, Nagoya, Aichi, Japan
| | - Takayuki Hashimoto
- Department of Radiation Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Atsushi Motegi
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Atsufumi Kawamura
- Department of Neurosurgery, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Keita Terashima
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Fukushima
- Department of Pediatric Hematology and Oncology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Tomohei Nakao
- Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Akinori Takada
- Department of Radiology, Mie University Hospital, Tsu-shi, Mie, Japan
| | - Minako Sumi
- Department of Radiation Oncology and Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan; Department of Radiation Oncology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | | | - Kensuke Moriwaki
- Department of Medical Statistics, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Miwako Nozaki
- Department of Radiology, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Yuji Ishida
- Department of Pediatrics, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Hyogo, Japan
| | - Keisuke Ae
- Department of Orthopaedic Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ako Hosono
- Department of Pediatric Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hideyuki Harada
- Division of Radiation Therapy, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Etsuyo Ogo
- Department of Radiology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuo Akimoto
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Takashi Saito
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroko Fukushima
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryoko Suzuki
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mitsuru Takahashi
- Department of Orthopaedic Oncology, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Medicine, Nagasaki, Japan
| | - Akira Matsumura
- Departments of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hidekazu Masaki
- Proton Therapy Center, Aizawa Hospital, Matsumoto, Nagano, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Naoyuki Shigematsu
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Sakurai
- Departments of Radiation Oncology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|