1
|
Adrian G, Carlsson H, Kjellén E, Sjövall J, Zackrisson B, Nilsson P, Gebre-Medhin M. Primary tumor volume and prognosis for patients with p16-positive and p16-negative oropharyngeal squamous cell carcinoma treated with radiation therapy. Radiat Oncol 2022; 17:107. [PMID: 35701827 PMCID: PMC9195357 DOI: 10.1186/s13014-022-02074-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The prescribed radiation dose to patients with oropharyngeal squamous cell carcinoma (OPSCC) is standardized, even if the prognosis for individual patients may differ. Easy-at-hand pre-treatment risk stratification methods are valuable to individualize therapy. In the current study we assessed the prognostic impact of primary tumor volume for p16-positive and p16-negative tumors and in relationship to other prognostic factors for outcome in patients with OPSCC treated with primary radiation therapy (RT). METHODS Five hundred twenty-three OPSCC patients with p16-status treated with primary RT (68.0 Gy to 73.1 Gy in 7 weeks, or 68.0 Gy in 4.5 weeks), with or without concurrent chemotherapy, within three prospective trials were included in the study. Local failure (LF), progression free survival (PFS) and overall survival (OS) in relationship to the size of the primary gross tumor volume (GTV-T) and other prognostic factors were investigated. Efficiency of intensified RT (RT with total dose 73.1 Gy or given within 4.5 weeks) was analyzed in relationship to tumor volume. RESULTS The volume of GTV-T and p16-status were found to be the strongest prognostic markers for LF, PFS and OS. For p16-positive tumors, an increase in tumor volume had a significantly higher negative prognostic impact compared with p16-negative tumors. Within a T-classification, patients with a smaller tumor, compared with a larger tumor, had a better prognosis. The importance of tumor volume remained after adjusting for nodal status, age, performance status, smoking status, sex, and hemoglobin-level. The adjusted hazard ratio for OS per cm3 increase in tumor volume was 2.3% (95% CI 0-4.9) for p16-positive and 1.3% (95% 0.3-2.2) for p16-negative. Exploratory analyses suggested that intensified RT could mitigate the negative impact of a large tumor volume. CONCLUSIONS Outcome for patients with OPSCC treated with RT is largely determined by tumor volume, even when adjusting for other established prognostic factors. Tumor volume is significantly more influential for patients with p16-positive tumors. Patients with large tumor volumes might benefit by intensified RT to improve survival.
Collapse
Affiliation(s)
- Gabriel Adrian
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| | - Henrik Carlsson
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences Lund, Skåne University Hospital, Lund University, Lund, Sweden
| | - Elisabeth Kjellén
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Johanna Sjövall
- Department of Otorhinolaryngology –Head and Neck Surgery, Skåne University Hospital, Lund University, Lund, Sweden
| | - Björn Zackrisson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Per Nilsson
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
- Department of Clinical Sciences, Medical Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Maria Gebre-Medhin
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
2
|
den bossche VV, Zaryouh H, Vara-Messler M, Vignau J, Machiels JP, Wouters A, Schmitz S, Corbet C. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resist Updat 2022; 60:100806. [DOI: 10.1016/j.drup.2022.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
3
|
Kunder S, Chatterjee A, Manna S, Mahimkar M, Patil A, Rangarajan V, Budrukkar A, Ghosh-Laskar S, Agarwal JP, Gupta T. Correlation between imaging and tissue biomarkers of hypoxia in squamous cell cancer of the head and neck. World J Nucl Med 2021; 20:228-236. [PMID: 34703390 PMCID: PMC8488888 DOI: 10.4103/wjnm.wjnm_91_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 11/04/2022] Open
Abstract
The aim of this study was to correlate endogenous tissue biomarkers of hypoxia with quantitative imaging parameters derived from 18F-fluoro-misonidazole (F-MISO) and 18F-fluoro-deoxy-glucose (FDG) positron emission tomography/computed tomography (PET/CT) and clinical outcomes in locoregionally advanced head and neck squamous cell carcinoma (HNSCC). Tumor-tissue blocks of HNSCC patients with pretreatment F-MISO-PET/CT and FDG-PET/CT were de-archived for expression of hypoxia-inducible factor-1 alpha (HIF-1α) subunit, carbonic anhydrase-IX (CA-IX), and glucose transporter subunit-1 (GLUT-1) using immunohistochemistry (IHC). The intensity of staining was graded and correlated with quantitative imaging parameters and with disease-related outcomes. Tissue blocks were analyzed for 14 of 20 patients. On IHC, median H-scores for HIF-1α, CA-IX, and GLUT-1 were 130, 0, and 95, respectively. No significant correlation of tissue biomarkers of hypoxia with quantitative imaging parameters was found. However, borderline significant correlation was seen for H-scores of CA-IX with hypoxic tumor volume (HTV) (r = 0.873, P = 0.054) and fractional hypoxic volume (r = 0.824, P = 0.086) derived from F-MISO-PET/CT. At a median follow-up of 43 months, 5-year Kaplan-Meier estimates of locoregional control, disease-free survival, and overall survival were 53%, 43%, and 40%, respectively. Increased expression of HIF-1α or GLUT-1 (dichotomized by median H-scores) was not individually associated with disease-related outcomes. However, a combination of high HTV (>4.89cc) with above median H-scores of either HIF-1α (>130) and/or GLUT-1 (>95) was associated with worse clinical outcomes. None of the three patients with such "adverse hypoxic profile" were long-term survivors. There is no significant correlation of endogenous tissue biomarkers of hypoxia (HIF-1α, CA-IX, and GLUT-1) with quantitative imaging parameters (on F-MISO-PET/CT and FDG-PET/CT) or long-term outcomes in HNSCC. However, a combination of both can identify a subgroup of patients with adverse outcomes.
Collapse
Affiliation(s)
- Shreya Kunder
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Subhakankha Manna
- Department of Mahimkar Lab, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Manoj Mahimkar
- Department of Mahimkar Lab, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Asawari Patil
- Department of Pathology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine & Molecular Imaging, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Ashwini Budrukkar
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sarbani Ghosh-Laskar
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Jai Prakash Agarwal
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer (ACTREC)/Tata Memorial Hospital (TMH), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
4
|
Ferini G, Valenti V, Tripoli A, Illari SI, Molino L, Parisi S, Cacciola A, Lillo S, Giuffrida D, Pergolizzi S. Lattice or Oxygen-Guided Radiotherapy: What If They Converge? Possible Future Directions in the Era of Immunotherapy. Cancers (Basel) 2021; 13:cancers13133290. [PMID: 34209192 PMCID: PMC8268715 DOI: 10.3390/cancers13133290] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/31/2022] Open
Abstract
Palliative radiotherapy has a great role in the treatment of large tumor masses. However, treating a bulky disease could be difficult, especially in critical anatomical areas. In daily clinical practice, short course hypofractionated radiotherapy is delivered in order to control the symptomatic disease. Radiation fields generally encompass the entire tumor mass, which is homogeneously irradiated. Recent technological advances enable delivering a higher radiation dose in small areas within a large mass. This goal, previously achieved thanks to the GRID approach, is now achievable using the newest concept of LATTICE radiotherapy (LT-RT). This kind of treatment allows exploiting various radiation effects, such as bystander and abscopal effects. These events may be enhanced by the concomitant use of immunotherapy, with the latter being ever more successfully delivered in cancer patients. Moreover, a critical issue in the treatment of large masses is the inhomogeneous intratumoral distribution of well-oxygenated and hypo-oxygenated areas. It is well known that hypoxic areas are more resistant to the killing effect of radiation, hence the need to target them with higher aggressive doses. This concept introduces the "oxygen-guided radiation therapy" (OGRT), which means looking for suitable hypoxic markers to implement in PET/CT and Magnetic Resonance Imaging. Future treatment strategies are likely to involve combinations of LT-RT, OGRT, and immunotherapy. In this paper, we review the radiobiological rationale behind a potential benefit of LT-RT and OGRT, and we summarize the results reported in the few clinical trials published so far regarding these issues. Lastly, we suggest what future perspectives may emerge by combining immunotherapy with LT-RT/OGRT.
Collapse
Affiliation(s)
- Gianluca Ferini
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
- Correspondence: ; Tel.: +39-095-789-4581
| | - Vito Valenti
- REM Radioterapia, Viagrande, I-95029 Catania, Italy; (V.V.); (A.T.)
| | | | | | - Laura Molino
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Silvana Parisi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Alberto Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Sara Lillo
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| | - Dario Giuffrida
- Medical Oncology Unit, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy;
| | - Stefano Pergolizzi
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali Università di Messina, I-98100 Messina, Italy; (L.M.); (S.P.); (A.C.); (S.L.); (S.P.)
| |
Collapse
|
5
|
Rogasch J, Beck M, Stromberger C, Hofheinz F, Ghadjar P, Wust P, Budach V, Amthauer H, Tinhofer I, Furth C, Walter-Rittel TC, Zschaeck S. PET measured hypoxia and MRI parameters in re-irradiated head and neck squamous cell carcinomas: findings of a prospective pilot study. F1000Res 2020; 9:1350. [PMID: 33796277 PMCID: PMC7970429 DOI: 10.12688/f1000research.27303.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Tumor hypoxia measured by dedicated tracers like [
18F]fluoromisonidazole (FMISO) is a well-established prognostic factor in head and neck squamous cell carcinomas (HNSCC) treated with definitive chemoradiation (CRT). However, prevalence and characteristics of positron emission tomography (PET) measured hypoxia in patients with relapse after previous irradiation is missing. Here we report imaging findings of a prospective pilot study in HNSCC patients treated with re-irradiation. Methods: In 8 patients with recurrent HNSCC, diagnosed at a median of 18 months after initial radiotherapy/CRT, [
18F]fluorodeoxyglucose (FDG)-PET/CT (n=8) and FMISO-PET/MRI (n=7) or FMISO-PET/CT (n=1) were performed. Static FMISO-PET was performed after 180 min. MRI sequences in PET/MRI included diffusion-weighted imaging with apparent diffusion coefficient (ADC) values and contrast enhanced T1w imaging (StarVIBE). Lesions (primary tumor recurrence, 4; cervical lymph node, 1; both, 3) were delineated on FDG-PET and FMISO-PET data using a background-adapted threshold-based method. SUV
max and SUV
mean in FDG- and FMISO-PET were derived, as well as maximum tumor-to-muscle ratio (TMR
max) and hypoxic volume with 1.6-fold muscle SUV
mean (HV
1.6) in FMISO-PET. Intensity of lesional contrast enhancement was rated relative to contralateral normal tissue. Average ADC values were derived from a 2D region of interest in the tumor. Results: In FMISO-PET, median TMR
max was 1.7 (range: 1.1-1.8). Median HV
1.6 was 0.05 ml (range: 0-7.3 ml). Only in 2/8 patients, HV
1.6 was ≥1.0 ml. In FDG-PET, median SUV
max was 9.3 (range: 5.0-20.1). On contrast enhanced imaging four lesions showed decreased and four lesions increased contrast enhancement compared to non-pathologic reference tissue. Median average ADC was 1,060 ×10
6 mm
2/s (range: 840-1,400 ×10
6 mm
2/s). Conclusions: This pilot study implies that hypoxia detectable by FMISO-PET may not be as prevalent as expected among loco-regional recurrent, HPV negative HNSCC. ADC values were only mildly reduced, and contrast enhancement was variable. The results require confirmation in larger sample sizes.
Collapse
Affiliation(s)
- Julian Rogasch
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Stromberger
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Pirus Ghadjar
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Wust
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Amthauer
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingeborg Tinhofer
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thula C Walter-Rittel
- Department of Diagnostic and Interventional Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
6
|
Busk M, Overgaard J, Horsman MR. Imaging of Tumor Hypoxia for Radiotherapy: Current Status and Future Directions. Semin Nucl Med 2020; 50:562-583. [PMID: 33059825 DOI: 10.1053/j.semnuclmed.2020.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor regions that are transiently or chronically undersupplied with oxygen (hypoxia) and nutrients, and enriched with acidic waste products, are common due to an abnormal and inefficient tumor vasculature, and a deviant highly glycolytic energy metabolism. There is compelling evidence that tumor hypoxia is strongly linked to poor prognosis since oxygen-deprived cells are highly resistant to therapy including radio- and chemotherapy, and survival of such cells is a primary cause of disease relapse. Despite a general improvement in cancer survival rates, hypoxia remains a formidable challenge. Recent progress in radiation delivery systems with improved spatial accuracy that allows dose escalation to hypoxic tumors or even tumor subvolumes, and the development of hypoxia-selective drugs, including bioreductive prodrugs, holds great promise for overcoming this obstacle. However, apart from one notable exception, translation of promising preclinical therapies to the clinic have largely been disappointing. A major obstacle in clinical trials on hypoxia-targeting strategies has been the lack of reliable information on tumor hypoxia, which is crucial for patient stratification into groups of those that are likely to benefit from intervention and those who are not. Further, in many newer trials on hypoxia-selective drugs the choice of cancer disease and combination therapy has not always been ideal, especially not for clinical proof of principle trials. Clearly, there is a pending need for clinical applicable methodologies that may allow us to quantify, map and monitor hypoxia. Molecular imaging may provide the information required for narrowing the gap between potential and actual patient benefit of hypoxia-targeting strategies. The grand majority of preclinical and clinical work has focused on the usefulness of PET-based assessment of hypoxia-selective tracers. Since hypoxia PET has profound inherent weaknesses, the use of other methodologies, including more indirect methods that quantifies blood flow or oxygenation-dependent flux changes through ATP-generating pathways (eg, anaerobic glycolysis) is being extensively studied. In this review, we briefly discuss established and emerging hypoxia-targeting strategies, followed by a more thorough evaluation of strengths and weaknesses of clinical applicable imaging methodologies that may guide timely treatment intensification to overcome hypoxia-driven resistance. Historically, most evidence for the linkage between hypoxia and poor outcome is based on work in the field of radiotherapy. Therefore, main emphasis in this review is on targeting and imaging of hypoxia for improved radiotherapy.
Collapse
Affiliation(s)
- Morten Busk
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark; Danish Centre for Particle Therapy, (AUH), Aarhus, Denmark.
| | - Jens Overgaard
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital (AUH), Aarhus, Denmark
| |
Collapse
|
7
|
Saksø M, Mortensen LS, Primdahl H, Johansen J, Kallehauge J, Hansen CR, Overgaard J. Influence of FAZA PET hypoxia and HPV-status for the outcome of head and neck squamous cell carcinoma (HNSCC) treated with radiotherapy: Long-term results from the DAHANCA 24 trial (NCT01017224). Radiother Oncol 2020; 151:126-133. [PMID: 32805273 DOI: 10.1016/j.radonc.2020.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Hypoxic tumor volumes can be visualized with 18F-FAZA PET/CT. In head and neck squamous cell carcinoma (HNSCC), hypoxia is important for the clinical outcome after primary radiotherapy (RT). The outcome is furthermore heavily influenced by the HPV/p16-positivity of oropharyngeal tumors (OPCp16+ tumors). The study purposes were (1) to report on locoregional failures within five years after primary RT in a prospective cohort stratified by both HPV/p16-status and PET hypoxia and (2) to characterize the failure site and the spatial association to PET hypoxia. MATERIAL AND METHODS From 2009 to 2011, 38 patients with non-metastatic SCC of the larynx, oro-, hypo- and nasopharynx completing primary RT were included in the prospective DAHANCA 24 trial (NCT01017224). Fifteen patients had OPCp16+ tumors. All were imaged with a static FAZA PET/CT prior to treatment. The hypoxia threshold was determined by a tumor-to-muscle ratio (TMR) of 1.6. Recurrences were documented histologically. Imaging of the recurrence was deformable fused with the pre-treatment FAZA PET/CT. The spatial information of recurrence- and hypoxic volumes were compared visually. RESULTS Sixteen patients had more hypoxic tumors (high tracer uptake, TMR ≥1.6) before treatment (42%). With a median follow-up of 7.8 years, nine locoregional recurrences were observed, of which seven were in patients with high-uptake tumors (44% and 9%, respectively, HR 5.8 [1.2-28.2]). The risk of locoregional recurrence was highest among patients with more hypoxic, non-OPCp16+ tumors (57% [21-94%]), with a risk difference of 45% [4-86%], when comparing to less hypoxic, non-OPCp16+ tumors. Eight patients had sufficient imaging of the recurrence for co-registration with the FAZA PET/CT. Six had hypoxic primary tumors, and in two, the recurrence was overlapping the baseline hypoxic subvolume. CONCLUSION HNSCC demonstrating a TMR ≥1.6 at baseline is significantly associated with treatment failure after primary RT. In addition to HPV/p16-status, FAZA PET/CT has potential for the selection of tumors requiring treatment intensification.
Collapse
Affiliation(s)
- Mette Saksø
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark.
| | | | - Hanne Primdahl
- Department of Oncology, Aarhus University Hospital, Denmark
| | | | | | | | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| |
Collapse
|
8
|
Saksø M, Jensen K, Andersen M, Hansen CR, Eriksen JG, Overgaard J. DAHANCA 28: A phase I/II feasibility study of hyperfractionated, accelerated radiotherapy with concomitant cisplatin and nimorazole (HART-CN) for patients with locally advanced, HPV/p16-negative squamous cell carcinoma of the oropharynx, hypopharynx, larynx and oral cavity. Radiother Oncol 2020; 148:65-72. [PMID: 32335364 DOI: 10.1016/j.radonc.2020.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/05/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND A phase I-II study to evaluate the feasibility and efficacy of intensified, primary radiotherapy (RT) for Locally Advanced Head and Neck Squamous Cell Carcinoma (LAHNSCC) employing dose escalation by hyperfractionation, acceleration of treatment time, concomitant chemotherapy and hypoxic modification. METHODS Patients with HPV/p16- LAHNSCC receiving primary hyperfractionated, accelerated RT, 76 Gy/56 fx, 10 fx/week for 5½ weeks, concomitant weekly cisplatin (40 mg/m2) and nimorazole (HART-CN) were included. Primary endpoint was locoregional failure (LRF). Secondary endpoints were overall survival (OS) and toxicity. RESULTS 50 patients received HART-CN from 2013 to 2017. Median age was 60 years. Most patients had stage IV hypo- or oropharynx cancer with a heavy smoking history. All oropharyngeal cancers were HPV/p16-negative. Ninety-eight percent of patients completed RT, but compliance to cisplatin and nimorazole was lower. Median observation time was 44 months. LRF was diagnosed in 10 patients. All LRFs were in the high-dose CTV. The 3-year actuarial LRF was 21%, and OS was 74%. The peak incidence of acute toxicity showed that 67% of patients experienced severe dysphagia, 61% severe mucositis, and 78% were equipped with feeding tubes. Late severe morbidity was seen in 7 of 29 recurrence-free patients with at least 3 years of followup, who presented with either severe dysphagia (n = 2), severe xerostomia (n = 1), severe fibrosis of the neck (n = 3) or osteoradionecrosis (n = 1). Three were still tube dependent. CONCLUSION HART-CN is feasible in patients with HPV/p16- LAHNSCC in good health. Although acute toxicity was pronounced, the proportion of patients with late toxicity was acceptable and outcome at 3 years encouraging.
Collapse
Affiliation(s)
- Mette Saksø
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark.
| | - Kenneth Jensen
- Department of Oncology, Aarhus University Hospital, Denmark
| | - Maria Andersen
- Department of Oncology, Aalborg University Hospital, Denmark
| | | | - Jesper Grau Eriksen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Department of Oncology, Odense University Hospital, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark
| |
Collapse
|