1
|
Cataldi M, Celentano C, Bencivenga L, Arcopinto M, Resnati C, Manes A, Dodani L, Comnes L, Vander Stichele R, Kalra D, Rengo G, Giallauria F, Trama U, Ferrara N, Cittadini A, Taglialatela M. Identification of Drugs Acting as Perpetrators in Common Drug Interactions in a Cohort of Geriatric Patients from Southern Italy and Analysis of the Gene Polymorphisms That Affect Their Interacting Potential. Geriatrics (Basel) 2023; 8:84. [PMID: 37736884 PMCID: PMC10514861 DOI: 10.3390/geriatrics8050084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Pharmacogenomic factors affect the susceptibility to drug-drug interactions (DDI). We identified drug interaction perpetrators among the drugs prescribed to a cohort of 290 older adults and analysed the prevalence of gene polymorphisms that can increase their interacting potential. We also pinpointed clinical decision support systems (CDSSs) that incorporate pharmacogenomic factors in DDI risk evaluation. METHODS Perpetrator drugs were identified using the Drug Interactions Flockhart Table, the DRUGBANK website, and the Mayo Clinic Pharmacogenomics Association Table. Allelic variants affecting their activity were identified with the PharmVar, PharmGKB, dbSNP, ensembl and 1000 genome databases. RESULTS Amiodarone, amlodipine, atorvastatin, digoxin, esomperazole, omeprazole, pantoprazole, simvastatin and rosuvastatin were perpetrator drugs prescribed to >5% of our patients. Few allelic variants affecting their perpetrator activity showed a prevalence >2% in the European population: CYP3A4/5*22, *1G, *3, CYP2C9*2 and *3, CYP2C19*17 and *2, CYP2D6*4, *41, *5, *10 and *9 and SLC1B1*15 and *5. Few commercial CDSS include pharmacogenomic factors in DDI-risk evaluation and none of them was designed for use in older adults. CONCLUSIONS We provided a list of the allelic variants influencing the activity of drug perpetrators in older adults which should be included in pharmacogenomics-oriented CDSSs to be used in geriatric medicine.
Collapse
Affiliation(s)
- Mauro Cataldi
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| | - Camilla Celentano
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
- Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, Cité de la Santé, Place Lange, 31300 Toulouse, France
| | - Michele Arcopinto
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
| | - Chiara Resnati
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| | - Annalaura Manes
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| | - Loreta Dodani
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| | - Lucia Comnes
- Datawizard, Via Salaria 719a, 00138 Rome, Italy;
| | - Robert Vander Stichele
- Heymans Institute of Pharmacology, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (R.V.S.); (D.K.)
- European Institute for Innovation through Health Data, c/o Department Medical Informatics and Statistics, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Dipak Kalra
- Heymans Institute of Pharmacology, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (R.V.S.); (D.K.)
- European Institute for Innovation through Health Data, c/o Department Medical Informatics and Statistics, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
- Istituti Clinici Scientifici—ICS Maugeri S.p.A., Via Bagni Vecchi 1, 82037 Telese, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
| | - Ugo Trama
- General Directorate for Health Protection and Coordination of the Regional Health System, Regione Campania, Centro Direzionale Is. C3, 80132 Naples, Italy;
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
- Istituti Clinici Scientifici—ICS Maugeri S.p.A., Via Bagni Vecchi 1, 82037 Telese, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (L.B.); (M.A.); (G.R.); (F.G.); (N.F.); (A.C.)
| | - Maurizio Taglialatela
- Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Via Sergio Pansini 5, 80131 Naples, Italy; (C.C.); (C.R.); (A.M.); (L.D.); (M.T.)
| |
Collapse
|
2
|
Giorgetti A, Amurri S, Fazio G, Bini C, Anniballi L, Pirani F, Pelletti G, Pelotti S. The Evaluation of CYP2D6, CYP2C9, CYP2C19, and CYP2B6 Phenoconversion in Post-Mortem Casework: The Challenge of Forensic Toxicogenetics. Metabolites 2023; 13:metabo13050661. [PMID: 37233702 DOI: 10.3390/metabo13050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
In toxicogenetics, an integrative approach including the prediction of phenotype based on post-mortem genotyping of drug-metabolising enzymes might help explain the cause of death (CoD) and manner of death (MoD). The use of concomitant drugs, however, might lead to phenoconversion, a mismatch between the phenotype based on the genotype and the metabolic profile actually observed after phenoconversion. The aim of our study was to evaluate the phenoconversion of CYP2D6, CYP2C9, CYP2C19, and CYP2B6 drug-metabolising enzymes in a series of autopsy cases tested positive for drugs that are substrates, inducers, or inhibitors of these enzymes. Our results showed a high rate of phenoconversion for all enzymes and a statistically significant higher frequency of poor and intermediate metabolisers for CYP2D6, CYP2C9, and CYP2C19 after phenoconversion. No association was found between phenotypes and CoD or MoD, suggesting that, although phenoconversion might be useful for a forensic toxicogenetics approach, more research is needed to overcome the challenges arising from the post-mortem setting.
Collapse
Affiliation(s)
- Arianna Giorgetti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Sara Amurri
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Giulia Fazio
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Laura Anniballi
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Filippo Pirani
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Guido Pelletti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| |
Collapse
|
3
|
Allelic and Genotype Frequencies of CYP2B6 ∗2 (64C > T) and CYP2B6 ∗3 (777C > A) in Three Dominant Ethnicities of the Iranian Population. Genet Res (Camb) 2023; 2023:8283470. [PMID: 36817260 PMCID: PMC9934979 DOI: 10.1155/2023/8283470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Background Cytochrome P450 complex plays a key role in drug metabolism. CYP2B6 has an essential part in Cytochrome P450 complex metabolism. This study aims to determine the allelic distribution of CYP2B6∗2 and CYP2B6∗3 in three main Iranian ethnicities: Fars, Turk, and Kurd. Methods The study was conducted on 174 unrelated healthy volunteers from three main Iranian ethnicities. After DNA extraction from peripheral blood samples, genotyping of CYP2B6∗2 and ∗3 was performed using tetra ARMS and ARMS PCR, respectively. Results The average age of 174 cases was 40.69 ± 11.87 (mean ± SD) and 39.06 ± 11.63 (mean ± SD) for males and females. In the CYP2B6∗2 variant, the genotyping frequency of wild type (C/C), heterozygous (C/T), and homozygous mutant (T/T) was 8.7%, 86%, and 5.2%, respectively. The CYP2B6∗2 (c.64C > T) allele frequency was 48.2% (95% CI: (37.8-58.6)). In the CYP2B6∗3 variant, the frequency of wild type (C/C), heterozygous (C/T), and homozygous mutant (T/T) was 75.3%, 11%, and 13.6%, respectively. The CYP2B6∗3 (c.777C > A) allelic frequency was 19.1% (95% CI: (17.5-20.7)). Conclusion Allelic distribution in three main Iranian ethnicities, i.e., Turk, Kurd, and Fars, is remarkably higher than that in other populations, even that in Southern Iran. High frequencies of CYP2B6∗2 and ∗3 in the Iranian population highly affect drug responsiveness. Understanding such variability could help to increase drug efficacy and reduce its toxicity.
Collapse
|
4
|
Frequency of CYP2B6 Alleles in Major Iranian Ethnicities, Affecting Response to Efavirenz. Genet Res (Camb) 2022; 2022:5754776. [PMID: 36320932 PMCID: PMC9605844 DOI: 10.1155/2022/5754776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Efavirenz is an antihuman immunodeficiency virus (HIV) drug metabolized by cytochrome P450 2B6 (CYP2B6) enzyme. Cytochrome P450 2B6 is an enzyme that in humans is encoded by the CYP2B6 gene. Polymorphisms of this gene play a crucial role in the metabolism of drugs such as Efavirenz. This study aims to evaluate the frequency of three clinically significant CYP2B6 polymorphisms (CYP2B6∗6 (516G > T), CYP2B6∗4 (785A > G), and CYP2B6∗5 (1459C > T)) in three major Iranian ethnicities. Methods One hundred forty-seven participants from three main Iranian ethnicities were included in this study. After DNA extraction, CYP2B6∗6 (516G > T), CYP2B6∗4 (785A > G), and CYP2B6∗5 (1459C > T) were genotyped using tetra-primer amplification refractory mutation system polymerase chain reaction (ARMS-PCR). Results The frequency of the mutated allele in the Iranian population for CYP2B6∗6 (516G > T) was 41.50 (95% CI: 35.81, 47.36), which was significantly lower than in Kurds (59.62, 95% CI: 45.10, 72.99). Similarly, Kurds had a higher frequency of mutated allele of CYP2B6∗5 (1459C > T) (46.15%, 95% CI: 32.23, 60.53) than in Iranians (24.49%, 95% CI: 19.68, 29.82). The frequency of A and G alleles of CYP2B6∗4 (785A > G) was 62.59% (95% CI: 56.78, 68.13) and 37.41 (95% CI: 31.87, 43.22), respectively. Conclusion Kurds are at higher risk of adverse drug reactions (ADRs) and insufficient anti-HIV response compared to other Iranians.
Collapse
|
5
|
Zhou Y, Lauschke VM. Population pharmacogenomics: an update on ethnogeographic differences and opportunities for precision public health. Hum Genet 2022; 141:1113-1136. [PMID: 34652573 PMCID: PMC9177500 DOI: 10.1007/s00439-021-02385-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Both safety and efficacy of medical treatment can vary depending on the ethnogeographic background of the patient. One of the reasons underlying this variability is differences in pharmacogenetic polymorphisms in genes involved in drug disposition, as well as in drug targets. Knowledge and appreciation of these differences is thus essential to optimize population-stratified care. Here, we provide an extensive updated analysis of population pharmacogenomics in ten pharmacokinetic genes (CYP2D6, CYP2C19, DPYD, TPMT, NUDT15 and SLC22A1), drug targets (CFTR) and genes involved in drug hypersensitivity (HLA-A, HLA-B) or drug-induced acute hemolytic anemia (G6PD). Combined, polymorphisms in the analyzed genes affect the pharmacology, efficacy or safety of 141 different drugs and therapeutic regimens. The data reveal pronounced differences in the genetic landscape, complexity and variant frequencies between ethnogeographic groups. Reduced function alleles of CYP2D6, SLC22A1 and CFTR were most prevalent in individuals of European descent, whereas DPYD and TPMT deficiencies were most common in Sub-Saharan Africa. Oceanian populations showed the highest frequencies of CYP2C19 loss-of-function alleles while their inferred CYP2D6 activity was among the highest worldwide. Frequencies of HLA-B*15:02 and HLA-B*58:01 were highest across Asia, which has important implications for the risk of severe cutaneous adverse reactions upon treatment with carbamazepine and allopurinol. G6PD deficiencies were most frequent in Africa, the Middle East and Southeast Asia with pronounced differences in variant composition. These variability data provide an important resource to inform cost-effectiveness modeling and guide population-specific genotyping strategies with the goal of optimizing the implementation of precision public health.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| |
Collapse
|
6
|
Metabolizing status of CYP2C19 in response and side effects to medications for depression: Results from a naturalistic study. Eur Neuropsychopharmacol 2022; 56:100-111. [PMID: 35152032 DOI: 10.1016/j.euroneuro.2022.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is one of the leading causes of disability worldwide. Polymorphisms in cytochrome P450 genes (CYP450) were demonstrated to play a significant role in antidepressant response and side effects, but their effect in real-world clinical practice is poorly known. We determined the metabolic status of CYP2C19 based on the combination of *1, *2, *3 and *17 alleles extracted from genome-wide data in 1239 patients with MDD, pharmacologically treated in a naturalistic setting. Symptom improvement and side effects were assessed using the Montgomery and Åsberg Depression Rating Scale and the Udvalg for Kliniske Undersøgelse scale, respectively. We tested if symptom improvement, response and side effects were associated with CYP2C19 metabolic status adjusting for potential confounders. We considered patients treated with drugs for depression having CYP2C19 genotyping recommended by guidelines (T1 Drugs); secondarily, with all psychotropic drugs having CYP2C19 as relevant metabolic path (T2 Drugs). In the group treated with T1 drugs (n = 540), poor metabolizers (PMs) showed higher response and higher symptom improvement compared to normal metabolizers (p = 0.023 and p = 0.009, respectively), but also higher risk of autonomic and neurological side effects (p = 0.022 and p = 0.022 respectively). In patients treated with T2 drugs (n = 801), similar results were found. No associations between metabolizer status and other types of side effects were found (psychic and other side effects). Our study suggests potential advantages of CYP2C19 pharmacogenetic testing to guide treatment prescription, that may not be limited to the drugs currently recommended by guidelines.
Collapse
|
7
|
Frequencies of CYP2B6 ∗4, ∗5, and ∗6 Alleles within an Iranian Population (Mazandaran). Genet Res (Camb) 2021; 2021:8703812. [PMID: 34949964 PMCID: PMC8660211 DOI: 10.1155/2021/8703812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background The human CYP2B subfamily consists of one functional gene (CYP2B6) and one pseudogene (CYP2B7P). Cytochrome P450 2B6 (CYP2B6) is a highly polymorphic enzyme that shows marked interindividual and interethnic variations. Currently, 38 alleles have been described, and some of the allelic variants have been associated with low enzyme activity. The aim of this study was to investigate the frequencies of CYP2B6∗4, CYP2B6∗5, and CYP2B6∗6 alleles in the Mazani ethnic group among Iranian Population. Methods The study was conducted in 289 unrelated healthy volunteers. DNA was extracted from peripheral blood and analyzed by the PCR-RFLP protocol. The PCR product was digested with restriction enzymes and then separated using agarose gel electrophoresis. Results The frequency of CYP2B6∗4, CYP2B6∗5, and CYP2B6∗6 in this study was 34.60%, 7.26%, and 34.54%, respectively. Conclusion The frequency of the CYP2B6∗4 allele in the Mazani ethnic group was much higher (34.60%) than other population. The frequency of CYP2B6∗6 (34.54%) also was higher than its frequency in other previously reported population. But the frequency of CYP2B6∗5 in this study was lower than expected. These results will be useful in understanding the ethnic diversity in Iranian population and offer a preliminary basis for more rational use of drugs that are substrates for CYP2B6 in this population.
Collapse
|
8
|
Pelletti G, Leone O, Gavelli S, Rossi C, Foà A, Agostini V, Pelotti S. Sudden Unexpected Death after a mild trauma: The complex forensic interpretation of cardiac and genetic findings. Forensic Sci Int 2021; 328:111004. [PMID: 34597909 DOI: 10.1016/j.forsciint.2021.111004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
A 55-year-old man affected by a psychotic disorder suddenly died during a quarrel with his father. The autopsy excluded traumatic causes of death, and the cardiac examination identified a severe cardiomegaly with biventricular dilatation of very likely multifactorial origin. Toxicological and pharmacogenetic analyses excluded a fatal intoxication and identified the presence of the antipsychotic drug fluphenazine in the therapeutic range in a normal metabolizer. The screening for genetic variations highlighted a novel heterozygous single-nucleotide variant in the exon 36: c 0.4750C>A (p.Pro1584Thr) of the Ryanodine Receptor Type 2 (RYR2) gene. The mutation detected can be classified as Likely Pathogenic according to the American College of Medical Genetics and Genomics (ACMG) criteria. RYR2 variation has been associated to catecholaminergic polymorphic ventricular tachycardia (CPVT), a disease currently recognized as one of the most malignant cardiac channelopathies, expressed mostly in young patients, normally in the absence of structural heart disease. The victim late middle age, compared to juvenile onset of CPVT reported in literature, his clinical history, his structurally altered heart, circumstances at death and the absence of phenotype-related variations of dilated cardiomyopathy genes, suggested that the fatal arrhythmia could have been caused by an acquired form of dilated cardiopathy/cardiomyopathy. However, the contribution of the genetic variant to death cannot be completely ruled out, since the significance of a VUS or of a novel variant depends on the data available at the time of investigation, and should be periodically evaluated. We discuss the contribution of the structural alteration and of the variant detected, as well as the role of the molecular autopsy in forensic examination, which can make a significant contribution for inferring both cause and manner of death.
Collapse
Affiliation(s)
- Guido Pelletti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Ornella Leone
- Cardiovascular Pathology Unit, Division of Pathology, IRCCS S.Orsola Hospital and University of Bologna, Bologna, Italy.
| | - Simone Gavelli
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Cesare Rossi
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Alberto Foà
- Cardiology Unit, Department of Experimental Diagnostic and Specialty Medicine, IRCCS S. Orsola Hospital and University of Bologna, Bologna, Italy.
| | - Valentina Agostini
- Cardiovascular Pathology Unit, Division of Pathology, IRCCS S.Orsola Hospital and University of Bologna, Bologna, Italy.
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
9
|
Fanelli A, Palazzo C, Balzani E, Iuvaro A, Pelotti S, Melotti RM. An Explorative Study of CYP2D6’s Polymorphism in a Sample of Chronic Pain Patients. PAIN MEDICINE 2019; 21:1010-1017. [DOI: 10.1093/pm/pnz265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Background
A proper antalgic treatment is based on the use of titrated drugs to provide adequate relief and a good tolerability profile. Therapies have a variable effectiveness among subjects depending on medical and genetic conditions. CYP2D6 variations determine a different clinical response to most analgesic drugs commonly used in daily clinical practice by influencing the drugs’ pharmacokinetics. This study was a monocentric clinical trial exploring the CYP2D6 variants in 100 patients with a diagnosis of chronic pain.
Methods
DNA was extracted to evaluate the genotype and to classify patients as normal-fast (gNMs-F), normal-slow (gNMs-S), ultrarapid (gUMs), intermediate (gIMs), and poor metabolizers (gPMs) using the Activity Score (AS). Information on therapies and general side effects experienced by patients was collected. Nongenetic co-factors were evaluated to examine the discrepancy between metabolic profile predicted from genotype (gPh) and metabolic profile (phenocopying).
Results
The distribution of our data underlined the prevalence of the gNMs-F (67%), whereas gNMs-S were 24%, gIMs 6%, gPMs 3%, and no gUMs were found, resulting in 33% of patients with reduced metabolic activity. In the analyzed population sample, 86% and 56% of patients, respectively, took at least one or two drugs inhibiting in vitro activity of the CYP2D6 enzyme.
Conclusions
Over one-third of the enrolled patients showed altered CYP2D6 enzymatic metabolic activity, with a risk of phenocopying potentially due to polypharmacology.
Trial registration
ClinicalTrials.gov ID: NCT03411759.
Collapse
Affiliation(s)
- Andrea Fanelli
- Anesthesia and Pain Medicine Unit, Department of Emergency and Urgency, Policlinico S.Orsola-Malpighi Hospital, Bologna, Italy
| | - Chiara Palazzo
- Forensic Science and Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Alessandra Iuvaro
- Forensic Science and Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Susi Pelotti
- Forensic Science and Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Rita Maria Melotti
- Anesthesia and Pain Medicine Unit, Department of Emergency and Urgency, Policlinico S.Orsola-Malpighi Hospital, Bologna, Italy
- University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Comas D, Luiselli D, Rickards O. Human population genetics of the Mediterranean. Ann Hum Biol 2018; 45:1-4. [PMID: 29382281 DOI: 10.1080/03014460.2017.1416909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- David Comas
- a Department of Experimental and Health Sciences , Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra , Barcelona , Spain
| | - Donata Luiselli
- b Lab. of Molecular Anthropology & Centre of Genome Biology, Department of Biological, Geological and Environmental , University of Bologna.,c Department of the Cultural Heritage, Campus of Ravenna , University of Bologna , Bologna , Italy
| | - Olga Rickards
- d Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology , University of Rome Tor Vergata , Rome , Italy
| |
Collapse
|