1
|
Zhao Y, Naeth MA, Wilkinson SR, Dhar A. Phytoremediation of metals in oil sands process affected water by native wetland species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116732. [PMID: 39018733 DOI: 10.1016/j.ecoenv.2024.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Process affected water and other industrial wastewaters are a major environmental concern. During oil sands mining, large amounts of oil sands process affected water (OSPW) are generated and stored in ponds until reclaimed and ready for surface water discharge. While much research has focused on organics in process waters, trace metals at high concentrations may also pose environmental risks. Phytoremediation is a cost effective and sustainable approach that employs plants to extract and reduce contaminants in water. The research was undertaken in mesocosm scale constructed wetlands with plants exposed to OSPW for 60 days. The objective was to screen seven native emergent wetland species for their ability to tolerate high metal concentrations (arsenic, cadmium, copper, chromium, copper, nickel, selenium, zinc), and then to evaluate the best performing species for OSPW phytoremediation. All native plant species, except Glyceria grandis, tolerated and grew in OSPW. Carex aquatilis (water sedge), Juncus balticus (baltic rush), and Typha latifolia (cattail) had highest survival and growth, and had high metal removal efficiencies for arsenic (81-87 %), chromium (78-86 %), and cadmium (74-84 %), relative to other metals; and greater than 91 % of the dissolved portions were removed. The native plant species were efficient accumulators of all metals, as demonstrated by high root and shoot bioaccumulation factors; root accumulation was greater than shoot accumulation. Translocation factor values were greater than one for Juncus balticus (chromium, zinc) and Carex aquatilis (cadmium, chromium, cobalt, nickel). The results demonstrate the potential suitability of these species for phytoremediation of a number of metals of concern and could provide an effective and environmentally sound remediation approach for wastewaters.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| | - M Anne Naeth
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| | - Sarah R Wilkinson
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| | - Amalesh Dhar
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| |
Collapse
|
2
|
Zhong H, Hu N, Wang Q, Chen Y, Huang L. How to select substrate for alleviating clogging in the subsurface flow constructed wetland? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154529. [PMID: 35292315 DOI: 10.1016/j.scitotenv.2022.154529] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetland (CW) is a cost-effective and environmentally friendly ecological technology for contaminated water remediation, especially in dispersed communities and rural areas. Plants grow, biofilms form, and pollutants attach to the substrate, which is the main supporting structure of a subsurface flow CW (SSFCW) system. After long-term operation, the accumulation of clogs from physical, chemical, and biological processes in SSFCW substrates can easily cause clogging, thus reducing treatment efficiency reduction and service life and causing no discharge of sewage by intermittent until last indicates in the CW surface. Subsequently, stench and mosquito breeding occur, thus influencing environmental sanitation. Substrate clogging is the most serious, challenging, and inevitable problem in the long-term operation of SSFCWs. The present study reviews the effects of substrates on clogging categorized into physical, chemical, and biological clogging and analyzes the substrates that can alleviate/aggravate clogging in CWs. The recommended substrates that can relieve clogging include plastic, rubber, soil mixture, walnut shell, biochar, organic waste, alum sludge, and lightweight aggregate, while shell, steel slag, blast furnace slag, zeolite, and soil may easily generate phosphorus-clogging substances. CW substrate clogging is a mixture of three clogs with synergistic effects, and the corresponding clogging mitigation substrates mentioned above can be used to alleviate the most severe among the three types of clogs to reduce the synergy, and thus to promote stable operation and technology level of CWs. This review aims to promote the scientific selection of substrates for the stable operation and technical level of CW through targeted recommendations for substrates that relieve clogging. Future studies should focus the effects of influent water quality and substrate type on clogging, and waste as substrate to alleviate clogging, while mitigating the negative environmental impact of waste treatment.
Collapse
Affiliation(s)
- Hui Zhong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Ning Hu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resource and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| |
Collapse
|
3
|
Lee S, Han J, Ro HM. Mechanistic insights into Cd(II) and As(V) sorption on Miscanthus biochar at different pH values and pyrolysis temperatures. CHEMOSPHERE 2022; 287:132179. [PMID: 34521014 DOI: 10.1016/j.chemosphere.2021.132179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/13/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Biochar has received great attention as a biosorbent, but explanations of the underlying sorption mechanisms are still unclear. Here, batch sorption of cadmium (Cd(II)) and arsenate (As(V)) to Miscanthus biochar at different pH values and pyrolysis temperatures and the sorption mechanisms were comprehensively investigated. The maximum sorption capacities for both Cd(II) and As(V) were observed under alkaline conditions. Physisorption was identified as a common sorption mechanism for both Cd(II) and As(V) irrespective of pH; however, inner-sphere complexation with acidic functional groups (AFGs) and crystallized precipitation as otavite predominate at higher pH values for Cd(II), while hydrophobic attraction of arsenite and metallic As and electrostatic bridging with multivalent ions at deprotonated AFGs are presumed to be dominant sorption mechanisms for As(V). Inner-sphere complexes of Cd(II) (98.6%) and electrostatic bridging complexes of As(V) (89.5%) were the dominant sorption forms for B400, while inner-sphere complexes (45.9%) and precipitates (50.5%) of Cd(II) and physisorption and hydrophobic interactions of As (63.7%) were abundant. The results challenge the widely held notion that the sorption of anions decreases as pH increases, while that of cations increases with increasing pH. This unexpected phenomenon can be explained by reduction of As(V) and by the difference in the charge densities between As(V) and basic functional groups of the biochar. Such biochar-induced reduction would cause an unexpected risk of exposing human health and ecosystems to reduceable pollutants. These findings contribute to a better explanation for the environmental fate and behavior of inorganic pollutants in biochar applications.
Collapse
Affiliation(s)
- Seoyeon Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junho Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hee-Myong Ro
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Wang Y, Cai Z, Sheng S, Pan F, Chen F, Fu J. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134736. [PMID: 31715485 DOI: 10.1016/j.scitotenv.2019.134736] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Considerable number of studies have been carried out to develop and apply various substrate materials for constructed wetlands (CWs), however, there is a lack of method and model for comprehensive evaluation of different types of CWs substrates. To this end, this article summarized nearly all the substrate materials of CWs available in the literatures, including natural materials, agricultural/industrial wastes and artificial materials. The sources and physicochemical properties of various substrate materials, as well as their removal capacities for main water contaminants including nutrients, heavy metals, surfactants, pesticides/herbicides, emerging contaminants and fecal indicator bacteria (FIB) were comprehensively described. Further, a scoring model for the substrate evaluation was constructed based on likely cost, availability, permeability, reuse and contaminant removal capacities, which can be used to select the most suitable substrate material for different considerations. The provided information and constructed model contribute to better understanding of CWs substrate for readers, and help solve practical problems on substrates selection and CWs construction.
Collapse
Affiliation(s)
- Yanting Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhengqing Cai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Sheng Sheng
- Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Fenfei Chen
- Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Jie Fu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
5
|
Batool A. Metal accumulation from leachate by polyculture in crushed brick and steel slag using pilot-scale constructed wetland in the climate of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31508-31521. [PMID: 31478177 DOI: 10.1007/s11356-019-06211-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
The temperate climate of Pakistan has enhanced the performance of macrophytes grown in crushed brick and steel slag in constructed wetland for removal of heavy metals from leachate. Two pilot-scale constructed wetlands [constructed wetland 1 (CW1) and constructed wetland 2 (CW2)] were planted with a polyculture of Phragmites australis and Typha latifolia in crushed brick and steel slag, respectively. These wetlands were located in the National University of Sciences and Technology, Islamabad campus, and operated for 15 months for treatment of leachate with climatic variations of Islamabad. The metal accumulation in a polyculture of Phragmites australis and Typha latifolia and in substrates was analyzed in the laboratory of Institute of Environmental Sciences and Engineering located near wetland site. Despite the high temperature in summer season, removal of Cu, Zn, and Pb was efficient due to the synergistic combination of macrophytes and substrates in both wetlands. Substrates acted as a primary sink of metals and enhanced metal accumulation in the plant's roots which resulted in poor translocation of Cu, Zn, and Pb to shoots. Despite the variation in precipitation and temperature during summer and winter seasons, the average removal of copper, zinc, and lead was 95%, 91%, and 89% by polyculture in crushed brick in CW1 and 97%, 95%, and 91% in steel slag in CW2, respectively. A The variation in climate has a negligible effect on the sorption of metals by both substrates in CW1 and CW2. Furthermore, Phragmites australis with crushed brick in CW1 was efficient for removal of Zn and Typha latifolia was performing better with steel slag in CW2 for significantly high removal of Cu and Pb in the climate of Islamabad, Pakistan.
Collapse
Affiliation(s)
- Ammara Batool
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| |
Collapse
|
6
|
Sizirici B, Yildiz I, AlYammahi A, Obaidalla F, AlMehairbi M, AlKhajeh S, AlHammadi TA. Adsorptive removal capacity of gravel for metal cations in the absence/presence of competitive adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7530-7540. [PMID: 29282663 DOI: 10.1007/s11356-017-0999-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Locally available and low cost granular gravel as an adsorbent material was employed to determine its capacity to remove metal cations Cu(II), Fe(II), Ni(II), and Zn(II) from single metal solution and landfill leachate samples. Adsorption kinetics and mechanism under different parameters including dosage, time, and pH were studied. It was found that the experimental results fitted to the Freundlich model suggesting an adsorption process on a multilayer heterogeneous surface for both single metal solution and landfill leachate samples. The adsorption of metal cations followed second-order kinetics occurring in a single step on the surface of gravel. The order of removal efficiency of metals was found to be Cu(II)(98%) > Fe(II)(87.5%) > Zn(II)(76.05%) > Ni(II)(36.38%) in single metal solution and Cu(II)(98.3%) > Fe(II)(83%) > Zn(II)(48%) > Ni(II)(27.32%) in landfill leachate sample at pH 7. The regeneration efficiency of the metals adsorbed on the gravel resulted in the order of Fe(II)(99.54%) > Cu(II)(99%) > Ni(II)(49.46%) > Zn (II)(2.25%).
Collapse
Affiliation(s)
- Banu Sizirici
- Civil Infrastructure and Environmental Engineering Department, Khalifa University, P.O Box: 127788, Abu Dhabi, United Arab Emirates.
| | - Ibrahim Yildiz
- Chemistry Department, Khalifa University, P.O Box: 127788, Abu Dhabi, United Arab Emirates
| | - Amnah AlYammahi
- Civil Infrastructure and Environmental Engineering Department, Khalifa University, P.O Box: 127788, Abu Dhabi, United Arab Emirates
| | - Fatma Obaidalla
- Civil Infrastructure and Environmental Engineering Department, Khalifa University, P.O Box: 127788, Abu Dhabi, United Arab Emirates
| | - Madeya AlMehairbi
- Civil Infrastructure and Environmental Engineering Department, Khalifa University, P.O Box: 127788, Abu Dhabi, United Arab Emirates
| | - Shahad AlKhajeh
- Civil Infrastructure and Environmental Engineering Department, Khalifa University, P.O Box: 127788, Abu Dhabi, United Arab Emirates
| | - Tethkar AlQayed AlHammadi
- Civil Infrastructure and Environmental Engineering Department, Khalifa University, P.O Box: 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Papaevangelou VA, Gikas GD, Tsihrintzis VA. Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands: Overall performance, and fate and distribution of this element within the wetland environment. CHEMOSPHERE 2017; 168:716-730. [PMID: 27836267 DOI: 10.1016/j.chemosphere.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
The current experimental work aimed at the investigation of the overall chromium removal capacity of constructed wetlands (CWs) and the chromium fate-distribution within a wetland environment. For this purpose, the experimental setup included the parallel operation and monitoring of two horizontal subsurface flow (HSF) pilot-scale CWs and two vertical flow (VF) pilot-scale CWs treating Cr-bearing wastewater. Samples were collected from the influent, the effluent, the substrate and the plants. Apart from the continuous experiment, batch experiments (kinetics and isotherm) were conducted in order to investigate the chromium adsorption capacity of the substrate material. According to the findings, HSF-CWs demonstrated higher removal capacities in comparison to VF-CWs, while in both types the planted units indicated better performance compared to the unplanted ones. Analysis in various wetland compartments and annual mass balance calculation highlighted the exceptional contribution of substrate to chromium retention, while Cr accumulation in plant was not so high. Finally, experimental data fitted better to the pseudo-second-order and Langmuir models regarding kinetics and isotherm simulation.
Collapse
Affiliation(s)
- Vassiliki A Papaevangelou
- Laboratory of Ecological Engineering and Technology, Department of Environmental Engineering, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece.
| | - Georgios D Gikas
- Laboratory of Ecological Engineering and Technology, Department of Environmental Engineering, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece.
| | - Vassilios A Tsihrintzis
- Centre for the Assessment of Natural Hazards and Proactive Planning & Laboratory of Reclamation Works and Water Resources Management, Department of Infrastructure and Rural Development, School of Rural and Surveying Engineering, National Technical University of Athens, Zografou, 15780 Athens, Greece.
| |
Collapse
|
8
|
Zhao X, Luo H, Tao T, Zhao Y. Immobilization of arsenic in aqueous solution by waterworks alum sludge: prospects in China. ACTA ACUST UNITED AC 2015. [DOI: 10.1080/00207233.2015.1071522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|