1
|
Fotouh A, Shosha EAEM, Zanaty AM, Darwesh MM. Immunopathological investigation and genetic evolution of Avian leukosis virus Subgroup-J associated with myelocytomatosis in broiler flocks in Egypt. Virol J 2024; 21:83. [PMID: 38600532 PMCID: PMC11005230 DOI: 10.1186/s12985-024-02329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/27/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Avian leukosis virus Subgroup-J (ALV-J) is a rapidly oncogenic evolving retrovirus infecting a variety of avian species; causing severe economic losses to the local poultry industry. METHODS To investigate ALV-J, a total of 117 blood samples and 57 tissue specimens of different organs were collected for virological, and pathological identification, serological examinations, molecular characterization, and sequencing analysis. To the best of our knowledge, this is the first detailed report recorded in broiler flocks in Egypt. The present study targets the prevalence of a viral tumor disease circulating in broiler flocks in the El-Sharqia, El-Dakahliya, and Al-Qalyubiyya Egyptian governorates from 2021 to 2023 using different diagnostic techniques besides ALV-J gp85 genetic diversity determination. RESULT We first isolated ALV-J on chicken embryo rough cell culture; showing aggregation, rounding, and degeneration. Concerning egg inoculation, embryonic death, stunting, and curling were observed. Only 79 serum samples were positive for ALV-J (67.52%) based on the ELISA test. Histopathological investigation showed tumors consist of uniform masses, usually well-differentiated myelocytes, lymphoid cells, or both in the liver, spleen, and kidneys. Immunohistochemical examination showed that the myelocytomatosis-positive signals were in the spleen, liver, and kidney. The PCR assay of ALV-J gp85 confirmed 545 base pairs with only 43 positive samples (75.4%). Two positive samples were sequenced and submitted to the Genbank with accession numbers (OR509852-OR509853). Phylogenetic analysis based on the gp85 gene showed that the ALV-J Dakahlia-2 isolate is genetically related to ALV-EGY/YA 2021.3, ALV-EGY/YA 2021.4, ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9 with amino acid identity percentage 96%, 97%; 96%, 96%; respectively. Furthermore, ALV-J Sharqia-1 isolate is highly genetically correlated to ALV-EGY/YA 2021.14, and ALV-EGY/YA 2021.9, ALV-J isolate QL1, ALV-J isolate QL4, ALV-J isolate QL3, ALV-EGY/YA 2021.4 with amino acid identity percentage 97%, 97%; 98%, 97%, 97%, 95%; respectively. CONCLUSIONS This study confirmed that ALV-J infection had still been prevalent in broilers in Egypt, and the genetic characteristics of the isolates are diverse.
Collapse
Affiliation(s)
- Ahmed Fotouh
- Pathology and Clinical Pathology Department, Faculty of Veterinary Medicine, New Valley University, Kharga, Egypt
| | | | - Ali Mahmood Zanaty
- Gene Analysis Unit, Reference Laboratory for Quality Control on Poultry, Animal Health Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Marwa Mostafa Darwesh
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Qaluiobiya, Egypt
| |
Collapse
|
2
|
Teng M, Liu JL, Luo Q, Zheng LP, Yao Y, Nair V, Zhang GP, Luo J. Efficient Cross-Screening and Characterization of Monoclonal Antibodies against Marek's Disease Specific Meq Oncoprotein Using CRISPR/Cas9-Gene-Edited Viruses. Viruses 2023; 15:v15040817. [PMID: 37112797 PMCID: PMC10142107 DOI: 10.3390/v15040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Marek's disease (MD) caused by pathogenic Marek's disease virus type 1 (MDV-1) is one of the most important neoplastic diseases of poultry. MDV-1-encoded unique Meq protein is the major oncoprotein and the availability of Meq-specific monoclonal antibodies (mAbs) is crucial for revealing MDV pathogenesis/oncogenesis. Using synthesized polypeptides from conserved hydrophilic regions of the Meq protein as immunogens, together with hybridoma technology and primary screening by cross immunofluorescence assay (IFA) on Meq-deleted MDV-1 viruses generated by CRISPR/Cas9-gene editing, a total of five positive hybridomas were generated. Four of these hybridomas, namely 2A9, 5A7, 7F9 and 8G11, were further confirmed to secrete specific antibodies against Meq as confirmed by the IFA staining of 293T cells overexpressing Meq. Confocal microscopic analysis of cells stained with these antibodies confirmed the nuclear localization of Meq in MDV-infected CEF cells and MDV-transformed MSB-1 cells. Furthermore, two mAb hybridoma clones, 2A9-B12 and 8G11-B2 derived from 2A9 and 8G11, respectively, displayed high specificity for Meq proteins of MDV-1 strains with diverse virulence. Our data presented here, using synthesized polypeptide immunization combined with cross IFA staining on CRISPR/Cas9 gene-edited viruses, has provided a new efficient approach for future generation of specific mAbs against viral proteins.
Collapse
Affiliation(s)
- Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jin-Ling Liu
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qin Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Lu-Ping Zheng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford GU24 0NF, UK
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology and College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China and Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
3
|
Current Epidemiology and Co-Infections of Avian Immunosuppressive and Neoplastic Diseases in Chicken Flocks in Central China. Viruses 2022; 14:v14122599. [PMID: 36560601 PMCID: PMC9784009 DOI: 10.3390/v14122599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022] Open
Abstract
The avian immunosuppressive and neoplastic diseases caused by Marek's disease virus (MDV), avian leucosis virus (ALV), and reticuloendotheliosis virus (REV) are seriously harmful to the global poultry industry. In recent years, particularly in 2020-2022, outbreaks of such diseases in chicken flocks frequently occurred in China. Herein, we collected live diseased birds from 30 poultry farms, out of 42 farms with tumour-bearing chicken flocks distributed in central China, to investigate the current epidemiology and co-infections of these viruses. The results showed that in individual diseased birds, the positive infection rates of MDV, ALV, and REV were 69.5% (203/292), 14.4% (42/292), and 4.7% (13/277), respectively, while for the flocks, the positive infection rates were 96.7% (29/30), 36.7% (11/30), and 20% (6/30), respectively. For chicken flocks, monoinfection of MDV, ALV, or REV was 53.3% (16/30), 3.3% (1/30), and 0% (0/30), respectively, but a total of 43.3% (13/30) co-infections was observed, which includes 23.3% (7/30) of MDV+ALV, 10.0% (3/30) of MDV+REV, and 10.0% (3/30) of MDV+ALV+REV co-infections. Interestingly, no ALV+REV co-infection or REV monoinfection was observed in the selected poultry farms. Our data indicate that the prevalence of virulent MDV strains, partially accompanied with ALV and/or REV co-infections, is the main reason for current outbreaks of avian neoplastic diseases in central China, providing an important reference for the future control of disease.
Collapse
|
4
|
Wu X, Chu F, Zhang L, Chen S, Gao L, Zhang H, Huang H, Wang J, Chen M, Xie Z, Chen F, Zhang X, Xie Q. New rapid detection by using a constant temperature method for avian leukosis viruses. Front Microbiol 2022; 13:968559. [PMID: 36060773 PMCID: PMC9433894 DOI: 10.3389/fmicb.2022.968559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
The avian leukemia virus causes avian leukemia (AL), a severe immunosuppressive disease in chickens (ALV). Since the 1990s, the diversity of ALV subpopulations caused by ALV genome variation and recombination, and the complexity of the infection and transmission, with currently no effective commercial vaccine and therapeutic for ALV, has resulted in severe economic losses to the chicken business in various parts of the world. Therefore, as a key means of prevention and control, an effective, rapid, and accurate detection method is imperative. A new real-time reverse transcription recombinase-aided amplification (RT-RAA) assay for ALV with rapid, highly specific, low-cost, and simple operational characteristics have been developed in this study. Based on the amplification of 114 base pairs from the ALV P12 gene, real-time RT-RAA primers and a probe were designed for this study. The lowest detection line was 10 copies of ALV RNA molecules per response, which could be carried out at 39°C in as fastest as 5 min and completed in 30 min, with no cross-reactivity with Marek's disease virus, avian reticuloendothelial virus, Newcastle disease virus, infectious bronchitis virus, infectious bursal disease virus, infectious laryngotracheitis virus, and avian influenza virus. Furthermore, the kappa value of 0.91 (>0.81) was compared with reverse transcription–polymerase chain reaction (RT-PCR) for 44 clinical samples, and the coefficients of variation were within 5.18% of the repeated assays with three low-level concentration gradients. These results indicate that using a real-time RT-RAA assay to detect ALV could be a valuable method.
Collapse
Affiliation(s)
- Xiuhong Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Fengsheng Chu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Luxuan Zhang
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Sheng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Liguo Gao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Hao Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Haohua Huang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Jin Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Mengjun Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- *Correspondence: Xinheng Zhang
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Qingmei Xie
| |
Collapse
|
5
|
Kurokawa A, Yamamoto Y. Development of monoclonal antibodies specific to Marek disease virus- EcoRI-Q (Meq) for the immunohistochemical diagnosis of Marek disease using formalin-fixed, paraffin-embedded samples. J Vet Diagn Invest 2022; 34:458-464. [PMID: 35260010 PMCID: PMC9254047 DOI: 10.1177/10406387221080444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Marek disease (MD) is a viral disease characterized by the development of lymphoma in poultry. Although morphologic confirmation of lymphoma is used to diagnose MD, immunohistochemical detection of MD virus-EcoRI-Q (Meq), which is a viral protein that is expressed exclusively in MD tumor cells, would further improve the accuracy of diagnosis. We developed monoclonal antibodies (mAbs) that specifically detect Meq by immunohistochemistry (IHC) using formalin-fixed, paraffin-embedded (FFPE) sections. We evaluated the sensitivity and specificity of 14 mAbs that we produced, using FFPE samples of MDCC-MSB1 cells, MD tumor tissues, and tissues of uninfected chickens. Four different antigen retrieval conditions were investigated. Thirteen mAbs reacted with Meq in FFPE sections, but immunohistochemical reactivity and specificity varied depending on the mAb and antigen retrieval condition; heat-induced antigen retrieval (HIAR) was more effective at detecting Meq than the other tested conditions. HIAR pH 9 tended to increase immunoreactivity and decrease specificity. Of the 5 mAbs that immunoreacted strongly with Meq without nonspecific reactions under the optimal antigen retrieval conditions, 3 mAbs (1C1-121, 3A3-112, 5F7-82) did not produce background staining of tumor or non-tumor tissues; 2 mAbs (2C5-11, 4A5-54) produced background staining. The mAb 6B5-128 reacted moderately with Meq without nonspecific reactions and background staining. The remaining mAbs showed weak immunoreactivity or problematic nonspecific reactions. Our results suggest that some of our developed mAbs can be used in IHC to detect Meq in FFPE sections with high specificity, and that the use of IHC may greatly improve the diagnosis of MD.
Collapse
Affiliation(s)
- Aoi Kurokawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yu Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Song B, Zeb J, Hussain S, Aziz MU, Circella E, Casalino G, Camarda A, Yang G, Buchon N, Sparagano O. A Review on the Marek's Disease Outbreak and Its Virulence-Related meq Genovariation in Asia between 2011 and 2021. Animals (Basel) 2022; 12:ani12050540. [PMID: 35268107 PMCID: PMC8908813 DOI: 10.3390/ani12050540] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Marek’s disease is continuously causing an economic loss in Asia, despite the wide use of vaccines in the last decade. This review aims at summarizing the outbreak, the virulence-related meq gene variation, and the pathological information of Marek’s disease in the last decade in Asia. We found that a total of 132 viral strains emerged in 12 countries with different meq sequences. Among the evidence we have collected, 12 strains found in China were vaccine-resistant, reaching a mortality rate of 30% and above. This evidence requires the related region in China to consider the renewal of its vaccination type; however, more studies regarding the vaccination efficiency in other Asian countries are recommended, as the current information is not enough. The visceral tumor is the most common pathological type (13 in 16 studies) in Asia, while it is possible that a neural type may exist. We suggest that farmers monitor the behavioral changes of chickens to identify this harmful disease at the early stage. The phylogenetic analysis shows interconnection between Middle Eastern, South Asian, and East Asian countries that are geologically connected—poultry trading managers should consider the potential of viral transmitting. Abstract Marek’s disease is an infectious disease in poultry that usually appears in neural and visceral tumors. This disease is caused by Gallid alphaherpesvirus 2 infection in lymphocytes, and its meq gene is commonly used in virulent studies for coding the key protein functional in oncogenic transformation of the lymphocytes. Although vaccines have been introduced in many countries to control its spread and are proven to be efficient, recent records show a decline of such efficiency due to viral evolution. In this study, we reviewed the outbreak of Marek’s disease in Asia for the last 10 years, together with associated meq sequences, finding a total of 36 studies recording outbreaks with 132 viral strains in 12 countries. The visceral type is the most common (13 in 16 studies) form of Marek’s disease, but additional unobserved neural changes may exist. MD induces liver lymphoma most frequently (11 in 14 studies), and tumors were also found in spleen, kidney, heart, gizzard, skin, intestine, lung, and sciatic nerve. Twelve viral strains distributed in China have been reported to escape the CVI988 vaccine, reaching a mortality rate of more than 30%. Phylogenetic analyses show the internal connection between the Middle East (Turkey, Iraq, Iran, Saudi Arabia), South Asia (India, Indonesia), and East Asia (China and Japan), while external viral communications might occasionally occur. In 18 strains with both sequential and mortality data, amino acid alignment showed several point substitutions that may be related to its virulence. We suggest more behavioral monitoring in Marek’s disease-endemic regions and further studies on strain virulence, together with its Meq protein structural changes.
Collapse
Affiliation(s)
- Baolin Song
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
| | - Sabir Hussain
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
| | - Muhammad Umair Aziz
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
| | - Elena Circella
- Department of Veterinary Medicine, University of Bari, S.P. Casamassima km. 3, 70010 Valenzano, Italy; (E.C.); (G.C.); (A.C.)
| | - Gaia Casalino
- Department of Veterinary Medicine, University of Bari, S.P. Casamassima km. 3, 70010 Valenzano, Italy; (E.C.); (G.C.); (A.C.)
| | - Antonio Camarda
- Department of Veterinary Medicine, University of Bari, S.P. Casamassima km. 3, 70010 Valenzano, Italy; (E.C.); (G.C.); (A.C.)
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853, USA;
| | - Olivier Sparagano
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (B.S.); (J.Z.); (S.H.); (M.U.A.); (G.Y.)
- Correspondence:
| |
Collapse
|
7
|
Li Y, Liu Y, Lin Z, Cui S, Chang S, Cui Z, Zhao P, Wang Y. Role of env gene and LTR sequence in the pathogenesis of subgroup K avian leukosis virus. J Gen Virol 2022; 103. [PMID: 35130137 DOI: 10.1099/jgv.0.001719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Avian leukosis virus (ALV) is a retrovirus that induces tumours in infected birds; ALV is divided into different subgroups according to the env gene and cellular tropism. In general, ALV subgroup J (ALV-J) is considered to be the most pathogenic and prevalent subgroup while subgroup K (ALV-K), a newly identified subgroup, only causes mild symptoms. To illuminate the roles of the env viral gene and LTR sequence in pathogenic differences between ALV-J and ALV-K, rescued ALV-J strain rSDAU1005, rescued ALV-K strain rJS11C1, and recombinant strains rENV(J)-LTR(K) and rENV(K)-LTR(J) were characterized and investigated in this study. Among rescued viruses, rSDAU1005 had the highest replication efficiency while rJS11C1 replicated the slowest (replication efficiency rankings were rSDAU1005 >rENV(K)-LTR(J)>rENV(J)-LTR(K)>rJS11 C1). The luciferase reporter gene assay results showed that the promoter activity of ALV-K LTR was lower than that of the ALV-J LTR promoter, which may have accounted for the slower replication efficiency of ALV-K. Pathogenicity of the four rescued viruses was determined via inoculating the yolk sacs of specific-pathogen-free chickens. The results demonstrated that all four viruses were pathogenic; rSDAU1005 caused the most severe growth retardation and immunosuppression. rENV(J)-LTR(K) was more pathogenic when compared to rENV(K)-LTR(J), indicating that env and the LTR sequence play important roles in pathogenicity between ALV-K and ALV-J. Additionally, env seemed to especially play a role in ALV-K pathogenesis. This study provided scientific data and insight to improve detection methods and judgement criteria in ALV clearance and surveillance.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China.,China Animal Health and Epidemiology Center, Qingdao, PR China
| | - Yi Liu
- China Animal Disease Control Centre, Beijing, PR China
| | - Zhanye Lin
- Ministry of Agriculture and Rural Affairs of China, Animal Husbandry and Veterinary Bureau, Beijing, PR China
| | - Shuai Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Zhizhong Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| | - Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, PR China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, PR China
| |
Collapse
|
8
|
Lounas A, Besbaci M, Akkou M, Tali O. Occurrence of Marek's disease in vaccinated Algerian broiler breeder flocks: A histopathological survey. Vet World 2021; 14:3021-3027. [PMID: 35017852 PMCID: PMC8743772 DOI: 10.14202/vetworld.2021.3021-3027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Marek's disease (MD) is a lymphoproliferative disease that occurs in chickens. In the absence of control measures, MD causes devastating losses to commercial poultry flocks. Vaccination has enabled dramatic success in the prevention and control of MD. However, the MD vaccination program has failed frequently, and occasional clinical outbreaks have been reported in the vaccinated flocks as well. The present study aimed to describe the clinical and histopathological characteristics of the field cases of MD in broiler breeder flocks. MATERIALS AND METHODS A survey on the update of MD occurrence in Algerian broiler breeder flocks was conducted from June 2020 to September 2020. Ten vaccinated broiler breeder flocks located in Central Algeria and having progressive tumors in different visceral organs were evaluated for MD virus infection by conducting a histopathological examination of the birds. RESULTS The age of the birds affected with MD ranged from 13 to 22 weeks. The mortality rate varied sensitively from 4% to 10%. The clinical symptoms reported in the affected flocks included locomotor, nervous, digestive, and respiratory symptoms. Necropsy of the dead or euthanized birds revealed visceral lymphomatosis in several organs and macroscopic changes in the peripheral nerves (including loss of longitudinal striation, color change [grayish], and volume increase). The histopathological findings included the infiltration and proliferation of lymphocytes and blast cells (lymphoblasts) in various organs of the birds, which are the typical characteristics of MD and, therefore, confirmed the field infection of MD in these birds. CONCLUSION The present study provided evidence for the high prevalence of MD in the broiler breeder flocks vaccinated with a bivalent vaccine (turkey herpesvirus+Rispens) at the hatchery. The findings of the present study may indicate high-level failure of vaccination in these birds.
Collapse
Affiliation(s)
- Abdelaziz Lounas
- Veterinary Sciences Institute, University of Blida 1, Blida, Algeria
| | - Mohamed Besbaci
- Veterinary Sciences Institute, University of Blida 1, Blida, Algeria
| | - Madjid Akkou
- Veterinary Sciences Institute, University of Blida 1, Blida, Algeria
| | - Oumennoune Tali
- Veterinary Sciences Institute, University of Blida 1, Blida, Algeria
| |
Collapse
|
9
|
Li M, Xiong H, Wu H, Hu D, Lin Y, Huang X, Wang J, Qi K, Liu H. Pathologic Characterization of Coinfection with Histomonas meleagridis, Marek's Disease Virus, and Subtype J Avian Leukosis Virus in Chickens. Avian Dis 2021; 65:237-240. [PMID: 34412453 DOI: 10.1637/aviandiseases-d-21-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 11/05/2022]
Abstract
Histomonas meleagridis is a trichomonad protozoan parasite that can cause an important poultry disease known as histomoniasis; Marek's disease virus (MDV) and subtype J avian leukosis virus (ALV-J) usually cause avian oncogenic diseases. Although these diseases have been reported in a single pathogen infection, information about their coinfection is scarce. This study reports a naturally occurring case of coinfection with H. meleagridis, MDV, and ALV-J in a local chicken flock at the age of 150 days. Necropsy revealed necrosis and swelling in the liver and spleen. Histologic analysis showed large areas of mild to severe necrosis of hepatocytes, with numerous intralesional trophozoites of H. meleagridis by H&E and periodic acid-Schiff staining; H&E staining showed pleomorphic and neoplastic lymphoid tumor cells in the liver and myeloid cells with eosinophilic cytoplasmic granules in the spleen. Coexpression of MDV and ALV-J antigens was detected in the liver by fluorescence multiplex immunohistochemistry staining. The 18S rRNA gene of H. meleagridis, meq gene of MDV, and gp85 gene of ALV-J were identified in mixed liver and spleen tissues by PCR and sequencing, respectively.
Collapse
Affiliation(s)
- Ming Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Haifeng Xiong
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Hanwen Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Dongmei Hu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Yan Lin
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueting Huang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Jun Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China,
| |
Collapse
|
10
|
Deng Q, Shi M, Li Q, Wang P, Li M, Wang W, Gao Y, Li H, Lin L, Huang T, Wei P. Analysis of the evolution and transmission dynamics of the field MDV in China during the years 1995-2020, indicating the emergence of a unique cluster with the molecular characteristics of vv+ MDV that has become endemic in southern China. Transbound Emerg Dis 2020; 68:3574-3587. [PMID: 33354907 DOI: 10.1111/tbed.13965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 01/23/2023]
Abstract
Marek's disease (MD) continues to threaten the sustainability of the world poultry industry. In this study, the sequences of the meq gene of 220 MDV strains isolated during the years 1964-2020 were analysed, including 50 from our group plus 170 isolates from the GenBank. Analyses, using phylogenetic trees, amino acid (aa)-mutation screening, evolutionary studies and transmission dynamics were all performed. All strains were divided into two clusters (Clusters 1 and 2), and Cluster 1 includes the mild strains, the vaccine strains and the foreign virulent strains, while Cluster 2 was dominated by the Chinese field strains. Our study identified that the Chinese field strains in Cluster 2 during the years 1995-2020 likely originated in the 1980s from abroad, and the estimated genetic diversity of these strains experienced two growth phases in the years 2005-2007.5 and 2015-2017. Viral phylogeography identified 3 major geographic provincial regions for the Chinese field strains of Cluster 2: the Northeastern Region (Jilin, Liaoning and Heilongjiang), the East-central Region (Henan, Shandong and Jiangsu) and the Southern Region (Guangxi, Guangdong and Yunnan). The spread of Northeastern strains to East-central chicken flocks and the further spread from Guangxi to Guangdong are strongly indicated. The emergence of the mutations A88T and Q93R together in the Southern strains during the years 2017-2020 with molecular characteristics of vv+ MDV were also found later than those in the Northern strains. Overall, the Chinese field strains in Cluster 2 in southern China in recent years have been rapidly evolving. Guangxi Province has become an epicentre for these viruses and the chicken flocks in the Southern region have been facing the adverse effects of the emerging vv+ MDV.
Collapse
Affiliation(s)
- Qiaomu Deng
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Mengya Shi
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qiuhong Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Peikun Wang
- Institute of Microbe and Host Health, Linyi University, Linyi, China
| | - Min Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Yanli Gao
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Haijuan Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Lulu Lin
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Teng Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| |
Collapse
|
11
|
Cui W, Huang J, Niu X, Shang H, Sha Z, Miao Y, Wang H, Chen R, Wei K, Zhu R. Screening active fractions from Pinus massoniana pollen for inhibiting ALV-J replication and their structure activity relationship investigation. Vet Microbiol 2020; 252:108908. [PMID: 33254056 DOI: 10.1016/j.vetmic.2020.108908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
The objective was to identify the active fractions of polysaccharide against replication of ALV-J and elucidate their structure activity relationship. The optimal extraction conditions were extracting temperature 90℃, pH 9 and the ratio of liquid to solid 30:1. Under these conditions, extraction yield of total polysaccharide was 6.5 % ± 0.19 %. Total polysaccharide was then purified by DEAE-52 cellulose and Sephadex G-200 gel. Three fractions, PPP-1, PPP-2, and PPP-3, were identified with molecular weight of 463.70, 99.41, and 26.97 kDa, respectively. Three polysaccharide fractions were all composed of 10 monosaccharides in different proportions. Compared with PPP-1, which was mainly composed of glucose, PPP-2 and PPP-3 contained a higher proportion of galactose, glucuronic acid and galacturonic acid. The Congo red assay indicated that the PPP-2 may have a triple helical structure, while PPP-1 and PPP-3 were absent. In vitro assay showed that there was no significant cytotoxicity among the polysaccharide fractions under the concentration of 800 μg mL-1 (P > 0.05). The antiviral test showed that PPP-2 had the strongest activity, indicating PPP-2 was the major antiviral component. The structure-activity relationship showed that the antiviral activities of polysaccharide fractions were affected by their monosaccharide composition, molecular weight, and triple helical structure, which was a result of a combination of multiple molecular structural factors. These results showed that the PPP-2 could be exploited as a valued product for replacing synthetic antiviral drugs, and provided support for future applications of polysaccharide from Pinus massoniana pollen as a useful source for antiviral agent.
Collapse
Affiliation(s)
- Wenping Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Jin Huang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Xiangyun Niu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Hongqi Shang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Zhou Sha
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Yongqiang Miao
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Huan Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Ruichang Chen
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China.
| | - Kai Wei
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| | - Ruiliang Zhu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271000, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.
| |
Collapse
|
12
|
Wan X, Xu L, Sun X, Li H, Yan F, Han R, Li H, Li Z, Tian Y, Liu X, Kang X, Wang Z, Wang Y. Gut microbiota profiles of commercial laying hens infected with tumorigenic viruses. BMC Vet Res 2020; 16:218. [PMID: 32600312 PMCID: PMC7324990 DOI: 10.1186/s12917-020-02430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies have shown that some viral infections cause structural changes in the intestinal microflora, but little is known about the effects of tumorigenic viral infection on the intestinal microflora of chickens. RESULTS A 29-week commercial layer flock positive for avian leukosis virus-J (ALV-J), Marek's disease virus (MDV) and avian reticuloendotheliosis virus (REV) was selected, and fresh fecal samples were collected and examined for the composition of the gut microflora by Illumina sequencing of the V3-V4 region of the 16S rRNA gene. The operational taxonomic units (OTUs) of the fecal microbiota differentiated the chickens infected with only ALV-J and those coinfected with ALV-J and MDV or REV from infection-negative chickens. The enrichment and diversity of cloacal microflora in chickens infected with ALV-J alone were slightly different from those in the infection-negative chickens. However, the diversity of cloacal microflora was significantly increased in chickens coinfected with both ALV-J and MDV or REV. CONCLUSIONS The intestinal microbiota was more strongly disturbed in chickens after coinfection with ALV-J and MDV or REV than after infection with ALV-J alone, and there may be underlying mechanisms by which the capacity for the stabilization of the intestinal flora was impaired due to viral infection and tumorigenesis.
Collapse
Affiliation(s)
- Xianhua Wan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000 China
| | - Laipeng Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000 China
| | - Xiangli Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000 China
| | - Hui Li
- College of Environmental and Resource Sciences, Henan Agricultural University, Zhengzhou, 450000 China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000 China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450002 China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000 China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450002 China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000 China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450002 China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000 China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450002 China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000 China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450002 China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000 China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450002 China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000 China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450002 China
| | - Zhenya Wang
- Key Laboratory of “Runliang” Antiviral Medicines Research and Development, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou, 450001 China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000 China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450002 China
| |
Collapse
|
13
|
He S, Zheng G, Yang X, Dong J, Zhou D, Venugopal N, Yao Y, Cheng Z. Avian leukosis virus subgroup J induces B cell anergy mediated by Lyn inhibited BCR signal transduction. Vet Microbiol 2020; 247:108781. [PMID: 32768227 DOI: 10.1016/j.vetmic.2020.108781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 12/22/2022]
Abstract
Immune tolerance induced by avian leukosis virus subgroup J (ALV-J) is a prerequisite for tumorigenesis. Although we had reported that B cell anergy induced by ALV-J was the main reason for immune tolerance, the molecular mechanism still remains unclear. Here, we found SU protein of ALV-J interacted with tyrosine kinase Lyn (a key protein in BCR signaling pathway) by confocal laser scanning microscopy and co-immunoprecipitation test, which suggested that Lyn might play an important role in B cell anergy induced by ALV-J. Correspondingly, the mRNA and protein level of Lyn was significantly up-regulated in B cells after ALV-J infection. Subsequently, the phosphorylated protein levels of Lyn at Tyr507 site were significantly up-regulated in ALV-J-infected B cells after BCR signal activation, but the phosphorylated protein level of Syk (a direct substrate of Lyn) at Tyr525/526 site, Ca2+ flux, and NF-κB p65 protein level were significantly down-regulated. Interestingly, the phosphorylated protein level of Syk at Tyr525/526 site, Ca2+ flux, and NF-κB p65 protein level were both significantly retrieved after the shLyn treatment in B cells infected by ALV-J. In summary, these results indicated that ALV-J activated the negative regulatory effect of phosphorylated Lyn protein at 507 site in BCR signal transduction pathway and then mediated B cell anergy, which will provide a new insight for revealing the pathogenesis of immune tolerance induced by ALV-J.
Collapse
Affiliation(s)
- Shuhai He
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China; College of Husbandry and Veterinary, Xinyang Agriculture and Forestry University, No 1, North Ring Road, Xinyang City, Henan Province, 464000, China.
| | - Gaoying Zheng
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Xiaoxia Yang
- Hospital of Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Jianguo Dong
- College of Husbandry and Veterinary, Xinyang Agriculture and Forestry University, No 1, North Ring Road, Xinyang City, Henan Province, 464000, China.
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| | - Nair Venugopal
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK.
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey, GU24 0NF, UK.
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, No 61, Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
14
|
Wang P, Lin L, Shi M, Li H, Gu Z, Li M, Gao Y, Teng H, Mo M, Wei T, Wei P. Vertical transmission of ALV from ALV-J positive parents caused severe immunosuppression and significantly reduced marek's disease vaccine efficacy in three-yellow chickens. Vet Microbiol 2020; 244:108683. [PMID: 32402336 DOI: 10.1016/j.vetmic.2020.108683] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
In order to evaluate the influence of the vertical transmission of avian leukosis virus (ALV) from J subgroup (ALV-J) positive parents on the vaccine efficacy of Marek's disease virus (MDV), ALV-J positive male breeders × female breeders of Three-yellow chickens and the ALV negative male breeder × the negative female breeders were used respectively for crossbreeding to produce eggs and the hatching offspring. The commercial CVI988/Rispens vaccine was used to vaccinate the crossbred offspring at 1-day-old. At 7-days-old, the birds were inoculated with the inactivated oil-emulsion vaccines (OEVs) AIV-H5 monovalent and NDV + AIV-H9 bivalent, respectively. Then the birds were challenged with a Chinese very virulent (vv) MDV field strain GXY2 at 14-day-old. The results showed that the viral load of the challenged GXY2 in the offspring from the ALV-J positive breeders was significantly higher than that from the ALV-negative breeders' (P < 0.05), and the mortality and tumor incidence of offspring from the ALV-J positive breeders were higher than those of the ALV-negative breeders. Also the offspring of the ALV-J positive breeders exhibited a significant negative effect on the development of the immune organs (P < 0.05) and lower antibody responses to the vaccinations with the commercial OEVs (P<0.05). The MD vaccine protective index in the offspring from the ALV-J positive breeders was lower than that from the ALV-negative breeders. The results of the study demonstrated that the vertical transmission of ALV from the ALV-J positive parents caused severe immunosuppression and significantly reduced the Marek's disease vaccine efficacy in Three-yellow chickens.
Collapse
Affiliation(s)
- Peikun Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China; Institute of Microbe and Host Health, Linyi University, Linyi, Shandong 276005, China
| | - Lulu Lin
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Mengya Shi
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Haijuan Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhanming Gu
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanli Gao
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Huang Teng
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Meilan Mo
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Tianchao Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
15
|
Liu Y, Xu Z, Zhang Y, Yu M, Wang S, Gao Y, Liu C, Zhang Y, Gao L, Qi X, Cui H, Pan Q, Li K, Wang X. Marek's disease virus as a CRISPR/Cas9 delivery system to defend against avian leukosis virus infection in chickens. Vet Microbiol 2020; 242:108589. [PMID: 32122593 DOI: 10.1016/j.vetmic.2020.108589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022]
Abstract
The CRISPR/CRISPR-associated protein 9 (Cas9) system is a powerful gene-editing tool originally discovered as an integral mediator of bacterial adaptive immunity. Recently, this technology has been explored for its potential utility in providing new and unique treatments for viral infection. Marek's disease virus (MDV) and avian leukosis virus subgroup J (ALV-J), major immunosuppressive viruses, cause significant economic losses to the chicken industry. Here, we evaluated the efficacy of using MDV as a CRISPR/Cas9-delivery system to directly target and disrupt the reverse-transcribed products of the ALV-J RNA genome during its infection cycle in vitro and in vivo. We first screened multiple potential guide RNA (gRNA) target sites in the ALV-J genome and identified several optimized targets capable of effectively disrupting the latently integrated viral genome and providing efficient defense against new infection by ALV-J in cells. The optimal single-gRNAs and Cas9-expression cassettes were inserted into the genome of an MDV vaccine strain. The results indicated that engineered MDV stably expressing ALV-J-targeting CRISPR/Cas9 efficiently resisted ALV-J challenge in host cells. These findings demonstrated the CRISPR/Cas9 system as an effective treatment strategy against ALV-J infection. Furthermore, the results highlighted the potential of MDV as an effective delivery system for CRISPR/Cas9 in chickens.
Collapse
Affiliation(s)
- Yongzhen Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Zengkun Xu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yu Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Mengmeng Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Suyan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Changjun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Yanping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Hongyu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Qing Pan
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, People's Republic of China.
| |
Collapse
|
16
|
Detection and Molecular Characterization of a Natural Coinfection of Marek's Disease Virus and Reticuloendotheliosis Virus in Brazilian Backyard Chicken Flock. Vet Sci 2019; 6:vetsci6040092. [PMID: 31756886 PMCID: PMC6958383 DOI: 10.3390/vetsci6040092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/12/2023] Open
Abstract
Marek’s disease virus (MDV) and the reticuloendotheliosis virus (REV) are two of the primary oncogenic viruses that significantly affect chickens. In Brazil, there have been no previous published reports on the presence of field REV alone or in coinfection. This retrospective study analyzes samples from a case of lymphoproliferative lesions from a backyard chicken flock. MDV and REV were detected by PCR and classified as MDV1 and REV3, respectively, through sequencing and phylogenetic analysis based on the glycoprotein B (gB) genes for MDV and the polymerase (pol) and envelope (env) genes for REV. Real-time PCR reactions were performed for MDV to rule out the presence of the Rispens vaccine strain. This is the first report of the presence of REV in coinfection with a MDV clinical case in Brazil and the first molecular characterization of REV in South America. This study highlights the importance of molecular diagnosis for REV and MDV in poultry. In addition, this study highlights the distribution of these two viruses worldwide and the latent risk of them solely or in coinfection to this part of the world.
Collapse
|
17
|
Li T, Xie J, Liang G, Ren D, Sun S, Lv L, Xie Q, Shao H, Gao W, Qin A, Ye J. Co-infection of vvMDV with multiple subgroups of avian leukosis viruses in indigenous chicken flocks in China. BMC Vet Res 2019; 15:288. [PMID: 31409367 PMCID: PMC6691527 DOI: 10.1186/s12917-019-2041-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In China, although the ALV eradication program and the MD vaccination strategy greatly reduce the disease burdens caused by the infection of ALV and MDV, the frequent emergence of novel ALV-K or vvMDV in the vaccinated chicken flock challenges the current control strategies for both diseases. RESULTS In Guangdong Province, an indigenous chicken flock was infected with neoplastic disease. Hematoxylin-eosin staining of the tissues showed the typical characteristics of MDV and classical ALV infection. The PCR and sequencing data demonstrated that the identified MDV was clustered into a very virulent MDV strain endemic in domestic chickens in China. Moreover, subgroups ALV-A and ALV-K were efficiently recovered from two samples. The full genome sequence revealed that the ALV-K isolate was phylogenetically close to the ALV TW3593 isolate from Taiwan Province. CONCLUSIONS A co-infection of vvMDV with multiple ALV subgroups emerged in a chicken flock with neoplastic disease in Guangdong Province. The co-infection with different subgroups of ALV with vvMDV in one chicken flock poses the risk for the emergence of novel ALVs and heavily burdens the control strategy for MDV.
Collapse
Affiliation(s)
- Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guangcheng Liang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dan Ren
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shu Sun
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lu Lv
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wei Gao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
18
|
Liu H, Ma K, Liu M, Yang C, Huang X, Zhao Y, Qi K. Histologic findings and viral antigen distribution in natural coinfection of layer hens with subgroup J avian leukosis virus, Marek's disease virus, and reticuloendotheliosis virus. J Vet Diagn Invest 2019; 31:761-765. [PMID: 31378167 DOI: 10.1177/1040638719868274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We investigated the histologic findings and viral antigen distribution in 3 cases of natural coinfection of layer hens with subgroup J avian leukosis virus (ALV-J), Marek's disease virus (MDV), and reticuloendotheliosis virus (REV) in hens. At autopsy, diseased hens were found to have hepatosplenomegaly and thickened proventriculi, with white tumor nodules in the liver, spleen, lung, kidney, and ovary. Microscopically, most tissues had been infiltrated by neoplastic lymphocytes; the spleen, lung, proventriculus, heart, and liver had been infiltrated by both neoplastic lymphocytes and myeloblastic cells and/or primitive reticular cells. Fluorescence multiplex immunohistochemistry staining revealed ALV-J, MDV, and REV antigens co-expressed in the same tissue, even the same cell.
Collapse
Affiliation(s)
- Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kui Ma
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Miaomiao Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Chengcheng Yang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueting Huang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Yu Zhao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
19
|
Liu H, Yang C, Liu M, Ma K, Huang X, Zhao Y, Hu D, Qi K. Pathological lesions in the immune organs of ducklings following experimental infection with goose parvovirus. Res Vet Sci 2019; 125:212-217. [PMID: 31271953 DOI: 10.1016/j.rvsc.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 11/16/2022]
Abstract
Goose parvovirus (GPV) is the etiological agent of Derzsy's disease, with a natural reservoir consisting only of geese and Muscovy ducks. However, the pathological changes in the immune organs of ducklings experimentally infected with GPV remain unknown. In this study, 2-day-old Cherry Valley ducklings were intramuscularly injected with GPV. Immune organs (e.g., thymus, bursa of Fabricius, spleen, Harderian gland, cecal tonsil, bone marrow, and peripheral blood lymphocytes [PBLs]) were collected 1, 3, 5, 7, 10, and 14 days post-infection (dpi). Pathological lesions were assessed by histology and the viral load was concurrently assessed using quantitative real-time polymerase chain reaction. GPV antigen was detected via immunofluorescence staining and immunohistochemistry. No clinical symptoms or death were observed in the infected ducklings from 1 to 14 dpi; however, lesions with different degrees of hemorrhage and hyperemia were observed in the thymus, spleen and Harderian gland. Lymphocyte necrosis was identified in the thymus and spleen. In the immune organs, the highest viral loads were found in the spleen at 7 dpi, followed by the bone marrow, PBLs, and cecal tonsil at 3 dpi, and the bursa, Harderian gland, and thymus at 1 dpi. GPV antigen was primarily expressed in the cecal tonsil, spleen, and Harderian gland at 5 dpi, as well as in the PBLs and bone marrow at 3 dpi. Our findings indicate widespread GPV replication and dissemination in the immune organs of Cherry Valley ducklings.
Collapse
Affiliation(s)
- Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Chengcheng Yang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Miaomiao Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Kui Ma
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Xueting Huang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Yu Zhao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Dongmei Hu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
20
|
He S, Zheng G, Zhou D, Li G, Zhu M, Du X, Zhou J, Cheng Z. Clonal anergy of CD117 +chB6 + B cell progenitors induced by avian leukosis virus subgroup J is associated with immunological tolerance. Retrovirology 2019; 16:1. [PMID: 30602379 PMCID: PMC6317241 DOI: 10.1186/s12977-018-0463-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The pathogenesis of immunological tolerance caused by avian leukosis virus subgroup J (ALV-J), an oncogenic retrovirus, is largely unknown. RESULTS In this study, the development, differentiation, and immunological capability of B cells and their progenitors infected with ALV-J were studied both morphologically and functionally by using a model of ALV-J congenital infection. Compared with posthatch infection, congenital infection of ALV-J resulted in severe immunological tolerance, which was identified as the absence of detectable specific antivirus antibodies. In congenitally infected chickens, immune organs, particularly the bursa of Fabricius, were poorly developed. Moreover, IgM-and IgG-positive cells and total immunoglobulin levels were significantly decreased in these chickens. Large numbers of bursa follicles with no differentiation into cortex and medulla indicated that B cell development was arrested at the early stage. Flow cytometry analysis further confirmed that ALV-J blocked the differentiation of CD117+chB6+ B cell progenitors in the bursa of Fabricius. Furthermore, both the humoral immunity and the immunological capability of B cells and their progenitors were significantly suppressed, as assessed by (a) the antibody titres against sheep red blood cells and the Marek's disease virus attenuated serotype 1 vaccine; (b) the proliferative response of B cells against thymus-independent antigen lipopolysaccharide (LPS) in the spleen germinal centres; and (c) the capacities for proliferation, differentiation and immunoglobulin gene class-switch recombination of B cell progenitors in response to LPS and interleukin-4(IL-4) in vitro. CONCLUSIONS These findings suggested that the anergy of B cells in congenitally infected chickens is caused by the developmental arrest and dysfunction of B cell progenitors, which is an important factor for the immunological tolerance induced by ALV-J.
Collapse
Affiliation(s)
- Shuhai He
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
- College of Husbandry and Veterinary, Xinyang Agriculture and Forestry University, Xinyang, 464000 China
| | - Gaoying Zheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Gen Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Mingjun Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Xusheng Du
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
21
|
Zhou J, Zhao GL, Wang XM, Du XS, Su S, Li CG, Nair V, Yao YX, Cheng ZQ. Synergistic Viral Replication of Marek's Disease Virus and Avian Leukosis Virus Subgroup J is Responsible for the Enhanced Pathogenicity in the Superinfection of Chickens. Viruses 2018; 10:E271. [PMID: 29783672 PMCID: PMC5977264 DOI: 10.3390/v10050271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
Superinfection of Marek's disease virus (MDV) and avian leukosis virus subgroup J (ALV-J) causes lethal neoplasia and death in chickens. However, whether there is synergism between the two viruses in viral replication and pathogenicity has remained elusive. In this study, we found that the superinfection of MDV and ALV-J increased the viral replication of the two viruses in RNA and protein level, and synergistically promoted the expression of IL-10, IL-6, and TGF-β in chicken embryo fibroblasts (CEF). Moreover, MDV and ALV-J protein expression in dual-infected cells detected by confocal laser scanning microscope appeared earlier in the cytoplasm and the nucleus, and caused more severe cytopathy than single infection, suggesting that synergistically increased MDV and ALV-J viral-protein biosynthesis is responsible for the severe cytopathy. In vivo, compared to the single virus infected chickens, the mortality and tumor formation rates increased significantly in MDV and ALV-J dual-infected chickens. Viral loads of MDV and ALV-J in tissues of dual-infected chickens were significantly higher than those of single-infected chickens. Histopathology observation showed that more severe inflammation and tumor cells metastases were present in dual-infected chickens. In the present study, we concluded that synergistic viral replication of MDV and ALV-J is responsible for the enhanced pathogenicity in superinfection of chickens.
Collapse
Affiliation(s)
- Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Guo-Liang Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Xiao-Man Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Xu-Sheng Du
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Shuai Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Chen-Gui Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Yong-Xiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Zi-Qiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.
| |
Collapse
|